

Study of surface contamination on ultralow background (ULB) materials

July 22, 2019

Maria Laura di Vacri Low Background Lab Workshop

PNNL is operated by Battelle for the U.S. Department of Energy

HEMT SuperCDMS Tower Board 4-Kelvin SQUID Board Still Plate Cold Plate Mixing Chamber **Outer Neutron Shield** Radon /acuum Coax Barrier Graded Pb Gamma Shield Detector Detector Inner Neutron Shield Clamps Housing Vertical Flex Cable Nested NI cans E-stem C-stem Horizontal Flex Cable Shield Detect

SuperCDMS SNOLAB detector

The usual suspects

Pacific

Uranium-238

Thorium-232

Validation of all materials: a challenging task

\rightarrow Extremely stringent radiopurity requirements

Ultra sensitive analytical techniques Dedicated facilities

> Meticulously clean analytical procedure specifically developed \geq R&D to develop ultrapure materials (*i.e.*, electroformed copper)

After validation, will materials remain "ultraclean" forever?

\rightarrow Surface contamination!

- Manufacturing and processing
- > Handling for assembly
- > Machining
- Moving and storage

SCDMS detector components

Exposure to dust, even in clean rooms!

MAJORANA DEMONSTRATOR detector components

ICP-MS: a powerful tool

Direct, fast, quantitativeSurface and bulk

- > Understanding
- Identifying rather than observing (too late!)
- Quantifying and controlling

Exposure to dust: direct measurement of dust activity

Surface exposure
Surface leaching
Quantitative analysis

PFA (Perfluoroalkoxy alkane) Exposed surface ~ 7cm²

Silicon Exposed surface ~5cm²

Method validation

Accumulation rate on PFA and Si surfaces

Class 10000 clean room at PNNL, 29 day exposure

8

Source: https://pubs.usgs.gov/of/2005/1413/maps.htm

Room air – Class 10000 clean room comparison

PFA surface, 30 day exposure

Pacific

SNO+ detector

The acrylic vessel

Th & U accumulation from mine dust: Estimated* (Fe, XRF) vs measured (ICP-MS)

*SNOLAB-STR-2007-003 Fe/Th = 1.1E+4Fe/U = 4.9E+4

A: Mezzanine at LBL on desk

E: SNO+ control room

F: Dirty side of the carwash

B: Close to dust monitor in SCDMS area C: Hallway close to PICO @ 2.5m

- U (estimated)
- Th (ICP-MS)
- U (ICP-MS)

B: Close to dust monitor in SCDMS area C: Hallway close to PICO @ 2.5m

> Th (estimated) U (estimated) Th (ICP-MS) U (ICP-MS)

*SNOLAB-STR-2007-003 Fe/K = 6.56 (rock)

A: Mezzanine at LBL on desk B: Close to dust monitor in SCDMS area C: Hallway close to PICO @ E: SNO+ control room F: Dirty side of the carwash

K accumulation from concrete: Estimated* (Ca, XRF) vs measured (ICP-MS)

*SNOLAB-STR-2007-003 Ca/K = 6.27 (concrete)

A: Mezzanine at LBL on desk B: Close to dust monitor in SCDMS area C: Hallway close to PICO @

E: SNO+ control room F: Dirty side of the carwash

Dust contribution to surface contamination

- > Limiting
- Inferred, estimated, assumed

> ICP-MS

- Rapid, direct identification and quantitation
- Ultra sensitive
- Bulk + surface analysis

First direct measurement of deposition rate of contamination from dust

- Actual direct measurement not matching predictions
- Informing backgrounds

SCDMS detector components

MAJORANA DEMONSTRATOR detector components

How can we support ULB detectors?

Contribution to contamination from exposure to dust (even in clean rooms!)

- First direct measurement
- > Qualitative and quantitative

Study of contribution in significant locations

Valuable for planning detector assembly and installation

Study of contribution variation with ongoing activities

Measurement not limited to K Pb Th U!

- ICP-MS potential analysis of almost all the periodic table
- > Forensic: identification of the contamination source
- > Finger print of unwanted contamination carriers

Thank you

Sonia Alcantar Khadouja Harouaka DOE Detector R&D for High Energy Physics (KA-25)

BACK UP SLIDES

22

From SNOLAB-STR-2007-003

Element	Detection Limit	Rock Sample 8	Rock Sample 11	Shotcrete Sample 15	Concrete Sample 14
	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Th	0.02	5.54	5.19	14.9	13.1
U	0.005	1.21	1.14	2.56	2.38

Table 2: The ICP-MS results for each measured element in ppm. Note that N.D. is used if the element was not detected.

Element	Detection Limit	Rock Sample 8	Rock Sample 11	Shotcrete
	(ppm)	(%)	(%)	(%)
Al	100	6.01	6.43	6.04
Ca	90	3.43	3.80	9.54
Fe	200	6.37	6.68	2.54
K	30	0.97	1.02	1.76

Table 3: The ICP-AES results for Al, Ca, Fe, K, Mg, Mn and Na. The WD-XRF results for silicon and the gamma-ray spectroscopy results for H, C and O.

5.52E(-05)

1.57E(-09)

* Nat Pb activity from A.Alessandrello et al./Nucl. Instr. And Meth. In Phys. Res. B 142 (1998) 163-172

U [μBq day⁻¹ cm⁻²]

Exposure of a Si wafer

Si wafer Surface ~ 700 cm² Thickness 0.77 mm Density 2.33 g cm⁻³

https://www.svmi.com/silicon-wafers/300mm-wafers/

Contamination after a month exposure of the Si wafer in SNOLAB locations normalized to the total wafer mass

		Th		U
		[ppt/month/wafer]	sd	[pp
A	Mezzanine at LBL on desk	2.04E-02	7.78E-03	
В	Close to the dust monitor in SCDMS area	1.37E-01	1.10E-01	
С	Hallway close to PICO @ 2.5m	1.77E-02	1.31E-02	
D	Bottom of cryopit (quiet area) on desk	5.46E-03	8.21E-03	
Е	SNO+ control room	3.20E-02	1.09E-02	
F	Dirty side of the carwash	1.39E+01	2.16E+00	
G	Close to dust monitor in Juntion carwash-Refuge-OldLab	3.49E-01	2.10E-02	
Н	Surface building @ 3rd floor	1.32E+01	4.92E+00	
I	Hallway J Drift @ 2.5m	2.10E-01	8.21E-02	
J	Chem Lab on top of cabinet	2.44E+00	1.57E+00	
K	Top of the stairs entering the DEAP area	9.36E-02	4.35E-02	

pt/month/wafer] sd 1.97E-02 4.58E-03 8.60E-02 4.29E-02 6.88E-03 1.19E-02 7.77E-03 8.99E-03 4.99E-02 1.51E-02 8.33E+00 1.90E+00 1.94E-01 4.31E-02 2.67E+00 1.89E-01 1.95E-02 1.30E-02 6.04E-01 3.72E-01 2.10E-02 9.53E-03