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 Aim at including more machine learning and optimization routines in 
RF operation, profiting from the progress made in OP
 Optimize the rf settings after early commissioning
 Speed-up the setting up for LHC fills
 Systematically reduce bunch-by-bunch variability
 Minimize PS-SPS losses in view of operation with LIU beam 

parameters

 Settings are presently adjusted manually, some rf manipulations are 
good candidates for automatized optimization
 Double splittings
 Triple splitting

 More complex rf manipulations could also benefit on a longer term
 Bunch rotation
 Controlled longitudinal emittance blow-up

Introduction and motivation



Longitudinal beam quality from BSM
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 Adjustments can be done using analysis in BSM at extraction

 Present performance: < ±10% variability in bunch intensity and bunch 
length at extraction

 Is this the beam quality sufficiently good? Are we reaching the limit imposed 
by beam loading?

S. Hancock
R. Maillet



Phase error in the double splittings
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 Based on FFT of bunch-by-bunch intensity (or bunch length)

 The amplitude of each harmonic gives the pattern, the phase gives the orientation

 For double splittings: peaks at 1/2 and (1/2)/2=1/4

LHC Beams in the PS: Reliability and Reproducibility issues, S. Hancock, LHC Performance Workshop, Chamonix (2003) 

𝜙20 = 𝜙20,err

𝜙40 = 2𝜙20 + 𝜙40,err

https://cds.cern.ch/record/642257?ln=fr


Phase error in the double splittings
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 Both steps of the splitting are independent and can be treated separately

 A machine model based on linear regression of measured data should be 
sufficient as a mean to optimize double splittings

𝜙20 = 𝜙20,err

𝜙40 = 2𝜙20 + 𝜙40,err



Optimization of double splittings
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 Optimization using Powell or Nelder-Mead downhill simplex methods were tested 

 Each function call would correspond in operation to one cycle (or super-cycle)

 Even with fine tuning, the optimization will still require a certain number of 
iterations, cannot be used in daily operation (~10-30 min in practice for that test…)

 Reinforcement learning should help to minimize the number of iterations

ሚ𝜆𝑐
2 = ሚ𝜆0.25

2 + ሚ𝜆0.50
2



Effect of beam loading on double splittings
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 Beam loading is a limitation to the best achievable bunch-by-bunch 
variability (variation of effective rf amplitude and phase along the batch 
because the machine is not full)

 The optimum point is shifted in phase, and the optimization in simulations 
manages to reach the optimum

The steps in the optimization 
clearly need adjustment…



Phase and amplitude error in triple splitting
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 Using the same method as for double splittings, using FFT on the beam at 
extraction (accounting double splittings)

 For triple splitting, the peaks are at (1/3)/4=1/12, (2/3)/4=2/12, 
(4/3)/4=4/12, (5/3)/4=5/12

𝜙ℎ14 = 𝜙ℎ14,err

𝜙ℎ21 = 𝜙21,err

𝑉ℎ14 = 𝛼ℎ14,err ⋅ 𝑉ℎ14,prog

𝛼ℎ14,err



Scanning possible errors in triple splitting
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 Three possible optimization 
parameters (2 degrees of freedom)

 Depending on the criterion, different 
minimization route, the optimization 
can get stuck in local minima

 Combination of two criterion is 
necessary to have a clear solution and 
avoid local minima

Bunch intensity Bunch length

Bunch peak
𝛼ℎ14,err = 0.90



Scanning possible errors in triple splitting
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𝛼ℎ14,err = 0.95

Bunch intensity Bunch length

Bunch peak
 Three possible optimization 

parameters (2 degrees of freedom)

 Depending on the criterion, different 
minimization route, the optimization 
can get stuck in local minima

 Combination of two criterion is 
necessary to have a clear solution and 
avoid local minima



Scanning possible errors in triple splitting
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𝛼ℎ14,err = 1.00

Bunch intensity Bunch length

Bunch peak
 Three possible optimization 

parameters (2 degrees of freedom)

 Depending on the criterion, different 
minimization route, the optimization 
can get stuck in local minima

 Combination of two criterion is 
necessary to have a clear solution and 
avoid local minima



Scanning possible errors in triple splitting
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𝛼ℎ14,err = 1.05

Bunch intensity Bunch length

Bunch peak
 Three possible optimization 

parameters (2 degrees of freedom)

 Depending on the criterion, different 
minimization route, the optimization 
can get stuck in local minima

 Combination of two criterion is 
necessary to have a clear solution and 
avoid local minima



Scanning possible errors in triple splitting
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𝛼ℎ14,err = 1.10

Bunch intensity Bunch length

Bunch peak
 Three possible optimization 

parameters (2 degrees of freedom)

 Depending on the criterion, different 
minimization route, the optimization 
can get stuck in local minima

 Combination of two criterion is 
necessary to have a clear solution and 
avoid local minima



Effect of beam loading on triple splitting
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 Beam loading also affects the triple splitting, the optimum point is shifted in 
phase and in amplitude of the step at h=14

 The optimum point differs for optimization on the bunch intensity or the 
bunch length

 NB: one-turn delay feedback is not included in the simulations, impedance 
reduction is essential to improve the lowest achievable bunch-by-bunch 
variability  

Bunch intensity, 𝛼ℎ14,err = 1.00 Bunch length, 𝛼ℎ14,err = 1.00



Optimization of triple splitting (intensity)
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 Using Powell optimizer to minimize bunch-by-bunch intensity variability

Last iteration

Best solution ?



Optimization of triple splitting (length)
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 Using Powell optimizer to minimize bunch-by-bunch length variability

Last iteration

Best solution ?



Conclusions and next steps
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 Optimization routines were tested in simulations on the double and triple splittings, 
without and with intensity effects, and will be used as a basis for more complex 
developments.

 The optimization routines could be fine tuned to reduce the number of iterations. In 
order to have an operational optimizer for the splittings, machine learning methods 
could be applied to minimize the number of required iterations.

 Machine learning can also help establishing the dependence of bunch-by-bunch 
variability as a function of the feedback efficiency in simulations, by building a 
surrogate model.

 Which machine learning methods could be applied for which rf manipulation?
Linear regression (double splittings)
Neural networks (triple splitting, bunch rotation, controlled emittance blow-

up…)

Bayesian optimization (statistical fluctuations in measurements)
Multi objective optimization (triple splitting)
Reinforcement learning (using measured data along the run)
etc…


