Design of a multipass optical cavity for spin-flip spectroscopy of muonic hydrogen in FAMU experiment

Luigi Moretti, Eugenio Fasci, Livio Gianfrani et FAMU collaboration

Department of Mathematics and Physics of University of Campania “Luigi Vanvitelli”
I.N.F.N. Sezione di Napoli
Outline

- FAMU Experiment Workflow;
- Spin-flip transition probability in μp;
- Requirements about the MOC for FAMU experiment;
- Scheme of experimental setup;
- Design of different prototype of MOC;
- HR Mirror fabrication;
- Ray-tracing simulation;
- Light injection system;
The FAMU experiment is based on the capability to detect the difference of muon transfer rate (λ_{pO}) from μp to μO as function of μp kinetic energy.
spin-flip transition

\[\sigma_{sf} = 6.58 \times 10^{-22} \text{cm}^2 \]

cross-section of spin-flip transition at 80 K from Adamczak et al., NIMPR B 281 72-76 (2012)

Transition probability of one muonic atom:

\[
P = \frac{\sigma_{sf}}{h\nu} D = 2.24 \times 10^{-5} \left[\frac{\text{cm}^2}{\text{mJ}} \right] \cdot D = \frac{D}{D_{sat}}
\]

- \(D\): laser fluence
- \(D_{sat}\): saturation fluence

\[
h\nu = 2.9 \times 10^{-20} \text{J} \rightarrow D_{sat} = \frac{h\nu}{\sigma_{sf}} = 4.47 \times 10^4 \left[\frac{\text{mJ}}{\text{cm}^2} \right]
\]

In PSI experiment, the saturation fluence of transition is 16.5 mJ/cm²
Cavity enhancement effect at glance

\[E_i : \text{laser pulse energy} \quad N_R : \text{number of reflection (} \propto 1/\alpha) \]

\[\rightarrow D_{cav} = \frac{N_R E_i}{S_{ill}} \]

\(\alpha \) is the losses per pass

Transition probability in cavity:

\[\bar{P}_{cav} = \frac{D_{cav}}{D_{sat}} \]

PSI experiment: \(\bar{P} = \frac{0.15\text{mJ} \times 670 / 12.3\text{cm}^2}{16.5} \approx 0.50 \)

Vogelsang et al. OpEx 22 13050 (2014)
Requirements of MOC

The Multipass Optical Cavity for atomic muon spectroscopy must have several peculiar characteristics:

• High photon energy density \rightarrow to reduce the mirror surface;
• Low losses per pass \rightarrow high reflectivity mirrors; no injection hole;
• Low and non-uniform density of μp \rightarrow The light must filled uniformly the cavity;
• No active system for the mirror stabilisation \rightarrow No resonant cavity;
• The photon cavity lifetime smaller than muon lifetime \rightarrow Time window of measurement.
Conventional Multipass Optical Cavity

Design - Herriott cell

- Injection hole in the mirror
- No uniform filling of light

Francesco D'amato - “Variable length Herriott-type multipass cell”, EP 1972922 A1
Longitudinal cavity \((L = 10 \text{ cm})\):

- The muons are stopped into the substrate mirrors (FuSi) providing a X-ray background signal.

Transversal cavity \((L = 5 \text{ cm})\):

- The length of cavity is not enough to design a open-cavity. Therefore is necessary to have lateral mirrors.
Muon beam simulation (1)

GEANT simulation about the best signal-to-noise ratio taking into account the muons beam shape, mirrors material and size, laser energy, etc.
Muon beam simulation (2)

Working with very close mirrors is difficult because of:
1) Construction of the mirrors
2) Low statistics in one day of data taking
hence the SNR is not too relevant, we will not be able to work with small time windows!

Eventually the mirrors must be small, their distance should be (in my opinion) the largest to collect as many muons as possible (consider also the beam divergence once entering the gas). Target and cavity MUST be the same thing (to minimize the non-illuminated gas). Cavity must be completely filled by light.

\begin{center}
\begin{tikzpicture}
\draw[black, thick,->] (0,0) -- (2,0) node[anchor=north] {muons};
\draw[black, thick] (1,0) -- (1,1) node[anchor=north east] {mirror1};
\draw[black, thick] (1,1) -- (1,2) node[anchor=north east] {mirror2};
\draw[black, thick] (1,2) -- (1,3);
\draw[black, thick] (1,3) -- (1,4) node[anchor=north east] {w = 1.5 cm \hspace{1cm} d = 5 cm \hspace{1cm} z = 1.5 cm};
\end{tikzpicture}
\end{center}
Sketch of transversal closed cavity

Transversal open cavity with the requested size it is very critical in terms of fabrication specifications.

R_t, R_b curvature radius of mirrors 760 mm
Design of Transversal closed MOC

- Thickness of mirror: 2 mm
- Material: FuSi or Stainless steel
- Mirror surface, (12x12) mm²
- Length of cavity, 50 mm

The quantity of FuSi should be minimised in order to reduce the X-ray background signal due to the Bremsstrahlung of electrons in the FuSi substrate.
Ray-tracing simulation

- Generalize \(\begin{pmatrix} y_1 \\ y'_1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix} \)

- Can cascade to make single matrix for system

- Example: go through lens and propagate distance \(L = f \)

\[
\begin{pmatrix} y_2 \\ y'_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y'_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix} = \begin{pmatrix} 1 & f \\ -1/f & 0 \end{pmatrix} \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}
\]
TABLE 6.1. Ray Matrices for Some Common Optical Elements and Media

1. **Homogeneous Medium:**
 - Length d
 - Matrix: $\begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}$

2. **Thin Lens:**
 - Focal length f
 - ($f > 0$, converging; $f < 0$, diverging)
 - Matrix: $\begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}$

3. **Dielectric Interface:**
 - Refractive indices n_1, n_2
 - Matrix: $\begin{bmatrix} 1 & 0 \\ 0 & n_2/n_1 \end{bmatrix}$

4. **Spherical Dielectric Interface:**
 - Radius R
 - Matrix: $\begin{bmatrix} 1 & 0 \\ (n_2 - n_1)/n_2 & 1/n_2 \\ n_1/R & n_2/R \end{bmatrix}$

5. **Spherical Mirror:**
 - Radius of curvature R
 - Matrix: $\begin{bmatrix} 1 & 0 \\ -1/R & 1 \end{bmatrix}$
Ray-tracing (1)

Injection angle: $\alpha_{xy} = 20 \text{ mrad}; \alpha_{zy} = 32 \text{ mrad}$

No critical alignment

transversal cavity ($L = 5 \text{ cm}$):

$\tau_c \approx 130 \text{ ns}$

$L_{eff} = c\tau_c \approx 39 \text{ m}$
Ray-tracing (2)

max value of xy-angle: 3.6°
max value of xz-angle: 2°
The paraxial approximation is preserved

\[S_{ill} = (1.1 \times 1.4) \text{ cm}^2 \]

About 1000 reflections;
14% of reflection on the lateral walls
Evaluation of interference effect

\[P_l(t) \propto e^{-\frac{t^2}{2\tau_p^2}} \]

\[E_l(t) \propto \sqrt{P_l(t)} \propto e^{-\frac{t^2}{2\tau_p^2}} \]

The time between two reflection in cavity is about 0.17 ns. The electric field interferes with himself if there is superimposition of the counter propagating wave during the travel of light in cavity. After about 100 reflection (the duration of time pulse) the amplitude of electric field is quite low. Therefore, to take into account the interference effect we sum the electric field profile from the first 100 reflections.
Interference effect

Beam waist with radius of 1 mm

Number of reflection involved in the interference effect: 98

Light intensity on XZ plane in the middle of cavity

\[E_t = \sum_{i=0}^{98} R_n^2 E_n(r) \]
About the substrate of HR mirrors

The lateral mirrors are a strong disturbance for the measurement

- Fused Silica: Increase the lifetime of muons and it provides an increasing of X-ray background noise due to Bremsstrahlung.

- Stainless steel: screening and therefore reduce the X-ray signal.

- We are investigated the feasibility of making the substrate mirrors with more heavier metals (Tungsten).
Sketch of open transversal cavity

Cylindrical mirror

L = 10 cm
HR mirror design-1

XY-view of top mirror

Cylindrical part of mirrors

XZ-view of bottom mirror
HR mirror design-2

- Substrate material: FuSi
- HR coating: ZnS/Ge
Details about of HR coating

- **Substrate**: Fused Silica;

- **HR coating**: Semiconductor multilayer Ge/ZnS;

\[d_{ZnS} = \frac{\lambda}{4n_{ZnS}} = 0.75 \mu m \]

\[d_{Ge} = \frac{\lambda}{4n_{Ge}} = 0.43 \mu m \]

\[\lambda = 6.73 \mu m \quad n_{ZnS} = 2.23 \quad n_{Ge} = 3.94 \]

\[R_N \approx \left[\frac{1 - \left(\frac{n_{Ge}}{n_{ZnS}} \right)^{2N}}{1 + \left(\frac{n_{Ge}}{n_{ZnS}} \right)^{2N}} \right]^2 \]

\[N = 4 \quad D_{coat} = N(d_{ZnS} + d_{Ge}) \approx 4 \mu m \]
Ray-tracing simulation

XY plane

ZY plane

Evolution of optical ray slope

It is preserved the paraxial propagation.

\[\beta_{yx} = 5 \text{ mrad} \quad \beta_{yz} = 11 \text{ mrad} \]

Luigi Moretti, The Proton Radius, Veli Losinj 15-20 September 2019
Laser energy in cavity and illuminated surface

Photon lifetime is related with the cavity losses and the reflectivity of mirrors

\[E = E_0 \exp[-t/\tau_c] \]

\[\tau_c \approx 300 \text{ ns} \]

Reflection points on the bottom mirror

\[L_{\text{eff}} = c\tau_c \approx 90 \text{ m} \]

\[\alpha = 1 - \sqrt{R_1 R_2} = 11 \times 10^{-4} \]

\[S_{\text{ill}} \approx (27 \times 21) \text{ cm}^2 \]
spin-flip transition

In order to take into account the lifetime of muonic atoms and the cavity photon lifetime:

\[
\frac{dN_{sf}}{dt} = n_\mu(t) \frac{\sigma_{sf}}{h\nu} I(t)
\]

\[
N_{sf}(t) = \frac{\sigma_{sf}}{h\nu} \int_0^t dt' n_\mu(t') I(t')
\]

\[
n_\mu(t) = n_\mu(0) \exp(-t/\tau_\mu)
\]

\[
I(t) = I_0 \exp(-t/t_c)
\]

\[
\tau_\mu = 2.2 \mu s
\]

\[
\tau_c = 300 \text{ ns}
\]

\[
\frac{1}{\tau} = \frac{1}{\tau_\mu} + \frac{1}{\tau_c}
\]

\[
\tau \approx 270 \text{ ns}
\]

\[
N_{sf} = \frac{n_\mu(0) I(0) \sigma_{sf} \tau}{h\nu} (1 - e^{-t/\tau})
\]
The injection system of light will be realised with a couple of Off-Axis Parabolic Mirrors

- Simple system for the alignment
- Reduced losses respect the use of lens

The size of beam inside the cavity depends from the ratio between focal lengths of the OAP mirrors
Conclusions and Perspectives

• MOC is a crucial device to increase the spin-flip probability transition;

• the best solution could be a transversal MOC with a length of 10 cm with FuSi substrate;

• thermal characterisation and laser power damage will be carried out on HR mirrors.
Thank You