Two-photon exchange in muonic-hydrogen and lepton-proton scattering

Vladimir Pascalutsa

Institute for Nuclear Physics University of Mainz, Germany

with Franziska Hagelstein, Vadim Lensky, Marc Vanderhaeghen

Radiative corrections

 $\sigma^{exp} \equiv \sigma_{1\gamma} (1 + \delta_{soft} + \delta_{2\gamma})$

- Soft corrections are well understood Tsai(1961), Mo & Tsai (1968), Maximon & Tjon (2000)
- 2γ (or, TPE) involve the nucleon structure
- TPE not calculable (at present) from first principles, viz. QCD
- Nevertheless, there are many model calculations

Blunden, Melnitchouk, Tjon (2003); Guichon & Vanderhaeghen (2003); Kondratyuk & Blunden (2007); Borisyuk & Kobushkin (2006, 2007, 2008, 2012); Bystritsky, Kuraev, Tomasi-Gustaffson (2006) ... many more recently

- Soft corrections are well understood Tsai(1961), Mo & Tsai (1968), Maximon & Tjon (2000)
- 2γ (or, TPE) involve the nucleon structure
- TPE not calculable (at present) from first principles, viz. QCD
- Nevertheless, there are many model calculations

Blunden, Melnitchouk, Tjon (2003); Guichon & Vanderhaeghen (2003); Kondratyuk & Blunden (2007); Borisyuk & Kobushkin (2006, 2007, 2008, 2012); Bystritsky, Kuraev, Tomasi-Gustaffson (2006) ... many more recently

TPE?

2γ-exchange: comparison with data

near-forward 2γ agree with data multi-particle 2γ, e.g. ππN, is important Tomalak, Pasquini, Vdh (2017) Pasquini, Vdh, Ann.Rev.Nucl.Part.Sci(2018)

• TPE is relevant at the current level of precision, especially in muonic hydrogen, and hydrogen HFS

- TPE is relevant at the current level of precision, especially in muonic hydrogen, and hydrogen HFS
- TPE not calculable (at present) from first principles, viz. QCD

- TPE is relevant at the current level of precision, especially in muonic hydrogen, and hydrogen HFS
- TPE not calculable (at present) from first principles, viz. QCD
- fortunately, forward calculation is sufficient

- TPE is relevant at the current level of precision, especially in muonic hydrogen, and hydrogen HFS
- TPE not calculable (at present) from first principles, viz. QCD
- fortunately, forward calculation is sufficient
- off-forward is suppressed by an extra α in HFS and $\alpha \log \alpha$ in the Lamb shift

- TPE is relevant at the current level of precision, especially in muonic hydrogen, and hydrogen HFS
- TPE not calculable (at present) from first principles, viz. QCD
- fortunately, forward calculation is sufficient
- off-forward is suppressed by an extra α in HFS and $\alpha \log \alpha$ in the Lamb shift
- forward calculations can be done by dispersive data-driven approaches
 - Lamb shift: Pachucki (1999), Carlson & Vanderhaeghen (2011), more refs below
 - HFS: Martynenko et al (2003); Carlson, Nazaryan & Griffioen (2008, 2011)

- TPE is relevant at the current level of precision, especially in muonic hydrogen, and hydrogen HFS
- TPE not calculable (at present) from first principles, viz. QCD
- fortunately, forward calculation is sufficient
- off-forward is suppressed by an extra α in HFS and $\alpha \log \alpha$ in the Lamb shift
- forward calculations can be done by dispersive data-driven approaches
 - Lamb shift: Pachucki (1999), Carlson & Vanderhaeghen (2011), more refs below
 - HFS: Martynenko et al (2003); Carlson, Nazaryan & Griffioen (2008, 2011)
- Land theory calculations are available as well
 - Lamb shift: Nevado & Pineda (2008); Alarcon, Lensky, VP (2014)
 - HFS: Hagelstein et al (2017, 2019)

Example: Lamb shift budget in muonic H

Lamb shift: hadronic corrections summary

polarizat	bility correcti	on	dispersiv	ve estimates			
on 2S lev	/el in μH in μe	eV	HBChPT	↓ H + 0	HBChPT dispersive	>	BChPT
(μeV)	Pachucki [9]	Martynenko [10]	Nevado and Pineda [11]	Carlson and Vanderhaeghen [12]	Birse and McGovern [13]	Gorchtein et al. [14]	LO-BχPT [this work]
$\Delta E_{2S}^{(\mathrm{subt})}$	1.8	2.3	_	5.3 (1.9)	4.2 (1.0)	$-2.3 (4.6)^{a}$	-3.0
$\Delta E_{2S}^{(\text{inel})}$	-13.9	-13.8	_	-12.7 (5)	-12.7 (5) ^b	-13.0 (6)	-5.2
$\Delta E_{2S}^{(\text{pol})}$	-12 (2)	-11.5	-18.5	-7.4 (2.4)	-8.5 (1.1)	-15.3 (5.6)	$-8.2(^{+1.2}_{-2.5})$

^a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions ^b Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

[LO-BxPT] Alarcon, Lensky, Pascalutsa, EPJC (2014) 74:2852

elastic contribution on 2S level: $\Delta E_{2S} = -23 \mu eV$

inelastic contribution:

Carlson, Vdh (2011) + Birse, McGovern (2012) total hadronic correction on Lamb shift

$$\Delta E_{TPE}(2P - 2S) = (33 \pm 2) \mu eV$$

... or about 10% of needed correction

Lamb shift: hadronic corrections summary

TPE elastic correction:

							•••
3rd Zemach moment (Jentschura '11) (Borie '12)		, ,	⊢∔ -1 1				
Disp. Rel. (Pachucki '99) (Birse-McGovern '12)			1				
Finite-Energy SR (Gorchtein et al. '13)							
Bound-State QED (Mohr et al. '13)			+				
<mark>HBχPT LO</mark> (Nevado-Pineda '08)					+		
HBχPT NLO (Peset-Pineda '14)						i	
	-30	-25	-20	-15	-10	-5	0

TPE polarizability correction

ΔE^{el} [μeV]

 ΔE_{2S}^{pol} [µeV]

e-

e-

e.

Energy and momentum transfer: ν , Q^2

e-

e-

Energy and momentum transfer: ν , Q^2

e-

Bjorken variable: $x = \frac{Q^2}{2M\nu}$

Structure Functions: $F_1(x, Q^2), F_2(x, Q^2)$ – unpolarized $g_1(x, Q^2), g_2(x, Q^2)$ – polarized (for $S \ge 1/2$) $b_{1,2,3,4}(x, Q^2)$ – tensor (for $S \ge 1$) jQuery.Feyn with MathJax

Elastic (x = 1)

Inelastic $(0 < x \le x_0 < 1)$

Elastic (x = 1)

Inelastic $(0 < x \le x_0 < 1)$

Elastic (x = 1)

Inelastic $(0 < x \le x_0 < 1)$

$$\begin{split} F_1(x,Q^2) &\sim \sigma_T(\nu,Q^2) \\ F_2(x,Q^2) &\sim (\sigma_T + \sigma_L)(\nu,Q^2) \\ g_1(x,Q^2) &\sim [(Q/\nu)\sigma_{LT} + \sigma_{TT}](\nu,Q^2) \\ g_2(x,Q^2) &\sim [(\nu/Q)\sigma_{LT} - \sigma_{TT}](\nu,Q^2) \end{split}$$

Elastic
$$(x = 1)$$

Inelastic $(0 < x \le x_0 < 1)$

$$\begin{split} F_1(x,Q^2) &\sim \sigma_T(\nu,Q^2) \\ F_2(x,Q^2) &\sim (\sigma_T + \sigma_L)(\nu,Q^2) \\ g_1(x,Q^2) &\sim [(Q/\nu)\sigma_{LT} + \sigma_{TT}](\nu,Q^2) \\ g_2(x,Q^2) &\sim [(\nu/Q)\sigma_{LT} - \sigma_{TT}](\nu,Q^2) \end{split}$$

with G_E electric and G_M magnetic Form Factors,

jQuery.Feyn with MathJax

Elastic
$$(x = 1)$$

Inelastic $(0 < x \le x_0 < 1)$

$$\begin{split} F_1(x,Q^2) &\sim \sigma_T(\nu,Q^2) \\ F_2(x,Q^2) &\sim (\sigma_T + \sigma_L)(\nu,Q^2) \\ g_1(x,Q^2) &\sim [(Q/\nu)\sigma_{LT} + \sigma_{TT}](\nu,Q^2) \\ g_2(x,Q^2) &\sim [(\nu/Q)\sigma_{LT} - \sigma_{TT}](\nu,Q^2) \end{split}$$

with G_E electric and G_M magnetic Form Factors,

$$\tau = Q^2 / 4M^2$$

jQuery.Feyn with MathJax

Elastic (x = 1)

$$F_1^{\text{el}}(x, Q^2) = \frac{1}{2} G_M^2(Q^2) \,\delta(1-x)$$

$$F_2^{\text{el}}(x, Q^2) = \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1+\tau} \,\delta(1-x)$$

$$g_1^{\text{el}}(x, Q^2_P) = \frac{G_EQ^2 + \tau G_M^2(Q^2)}{2(1+\tau)} G_M(Q^2) \,\delta(1-x)$$

$$g_2^{\text{el}}(x, Q^2) = \frac{G_E(Q^2) - G_M(Q^2)}{2(1+\tau)} \tau G_M(Q^2) \,\delta(1-x)$$

Inelastic $(0 < x \le x_0 < 1)$

$$\begin{split} F_1(x,Q^2) &\sim \sigma_T(\nu,Q^2) \\ F_2(x,Q^2) &\sim (\sigma_T + \sigma_L)(\nu,Q^2) \\ g_1(x,Q^2) &\sim [(Q/\nu)\sigma_{LT} + \sigma_{TT}](\nu,Q^2) \\ g_2(x,Q^2) &\sim [(\nu/Q)\sigma_{LT} - \sigma_{TT}](\nu,Q^2) \end{split}$$

with total photoabsorption cross sections $\sigma(\nu, Q^2)$

with G_E electric and G_M magnetic Form Factors, $\tau = Q^2/4M^2$

Unitary and causality

Relation to forward Compton scattering

Optical theorem:

Vladimir Pascalutsa - Two-photon exchange

Structure Effects through 2y

F. Hagelstein, R. Miskimen and V. Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016) 29-97

proton-structure effects at subleading orders arise through multi-photon processes

$$T^{\mu\nu}(q,p) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1(\nu,Q^2) + \frac{1}{M^2}\left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right)\left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right)T_2(\nu,Q^2) - \frac{1}{M}\gamma^{\mu\nu\alpha}q_{\alpha}S_1(\nu,Q^2) - \frac{1}{M^2}\left(\gamma^{\mu\nu}q^2 + q^{\mu}\gamma^{\nu\alpha}q_{\alpha} - q^{\nu}\gamma^{\mu\alpha}q_{\alpha}\right)S_2(\nu,Q^2)$$

Structure Effects through 2y

F. Hagelstein, R. Miskimen and V. Pascalutsa, Prog. Part. Nucl. Phys. 88 (2016) 29-97

proton-structure effects at subleading orders arise through multi-photon processes

Zemach radius (Hyperfine splitting)

$$T^{\mu\nu}(q,p) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) \overline{T_1(\nu,Q^2)} + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu}\right) \overline{T_2(\nu,Q^2)} - \frac{1}{M^2} \gamma^{\mu\nu\alpha} q_{\alpha} \overline{S_1(\nu,Q^2)} - \frac{1}{M^2} \gamma^{\mu\nu\alpha} q^2 + q^{\mu} \gamma^{\nu\alpha} q_{\alpha} - q^{\nu} \gamma^{\mu\alpha} q_{\alpha} \overline{S_2(\nu,Q^2)}$$

CS Amplitudes & Structure Functions

JGU PHANNES.GUTENBERG

2γ in Lamb Shift

$$\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

dispersion relation & optical theorem:

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 dx \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$
$$T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 dx \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$

2γ in Lamb Shift

$$\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

$$\frac{\text{dispersion relation}}{\& \text{ optical theorem:}} \qquad T_1(\nu, Q^2) = \overline{T_1(0, Q^2)} + \frac{32\pi Z^2 \alpha M \nu^2}{Q^4} \int_0^1 \mathrm{d}x \, \frac{x f_1(x, Q^2)}{1 - x^2 (\nu/\nu_{\mathrm{el}})^2 - i0^+} \\ T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha M}{Q^2} \int_0^1 \mathrm{d}x \, \frac{f_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\mathrm{el}})^2 - i0^+}$$

* data-driven dispersive calculations:

low-energy expansion:

$$\lim_{Q^2 \to 0} \overline{T}_1(0, Q^2) / Q^2 = 4\pi \beta_{M1}$$

modelled Q² behavior:

$$\overline{T}_1(0,Q^2) = 4\pi\beta_{M1} Q^2 / (1 + Q^2 / \Lambda^2)^4$$

Caution: in the dispersive approach the T₁(0,Q²) subtraction function is modelled!

Pinning down the subtraction function

$$T_1^{NB}(0,Q^2) = \beta_{M1} Q^2 + \left(\frac{1}{6}\beta_{M2} + 2\beta'_{M1} + \alpha_{\rm em}b_{3,0} + \frac{1}{(2M)^2}\beta_{M1}\right) Q^4 + \mathcal{O}(Q^6)$$

Subtraction function: Q² dependence

Lensky,Hagelstein,VP & Vdh (2018)

Chiral Perturbation Theory of the Lamb Shift

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

* LO BChPT prediction:

 $E_{\rm LS}^{\rm (LO) \, pol.}(\mu {\rm H}) = 8^{+3}_{-1} \, \mu {\rm eV}$

V. Lensky, F. Hagelstein, V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D **97** (2018) 074012

New data on proton Compton scattering

- 60 days of dedicated data-taking in 2017 and 2018 with polarized beam
- > 10^6 Compton events, tagger upgrade
- differential cross sections and beam asymmetry of Compton scattering below pion threshold
- E. Mornacchi et al. [A2 Coll.] (red points)
- TAPS 2001 experiment (blue points)

New data on proton Compton scattering

2y (in Lamb Shift) from ChEFT

contributions from above $Q_{max} > m_{\rho} = 775 \text{ MeV}$

Assuming BChPT is working, it should be best applicable to atomic

systems, where the energies are very

- HBChPT: at least 25% •
- BCHPT: less than 15% ٠

Fig. 4 The polarizability effect on the 2S-level shift in μ H computed in HB χ PT and B χ PT as a function of the ultraviolet cutoff Q_{max} . The *arrows* on the *right* indicate the asymptotic $(Q_{\text{max}} \rightarrow \infty)$ values

J. M. Alarcon, V. Lensky, V. Pascalutsa, Eur. Phys. J. C 74 (2014) 2852

2γ in HFS

$$\frac{E_{\rm HFS}(nS)}{E_F(nS)} = \frac{4m}{1+\kappa} \frac{1}{i} \int_{-\infty}^{\infty} \frac{\mathrm{d}\nu}{2\pi} \int \frac{\mathrm{d}\mathbf{q}}{(2\pi)^3} \frac{1}{Q^4 - 4m^2\nu^2} \left\{ \frac{\left(2Q^2 - \nu^2\right)}{Q^2} S_1(\nu, Q^2) + \frac{3\nu}{M} S_2(\nu, Q^2) \right\}$$

with $u_{
m el} = Q^2/2M$

$$S_{1}(\nu,Q^{2}) = S_{1}^{\text{Born}}(\nu,Q^{2}) + \frac{2\pi\alpha}{M}F_{2}^{2}(Q^{2}) + \frac{16\pi\alpha M}{Q^{2}}\int_{0}^{x_{0}} dx \frac{g_{1}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{\text{el}})^{2} - i0^{+}} \Delta_{1}$$

$$\nu S_{2}(\nu,Q^{2}) = \nu S_{2}^{\text{Born}}(\nu,Q^{2}) + \frac{64\pi\alpha M^{4}\nu^{2}}{Q^{6}}\int_{0}^{x_{0}} dx \frac{x^{2}g_{2}(x,Q^{2})}{1 - x^{2}(\nu/\nu_{\text{el}})^{2} - i0^{+}} \Delta_{2}$$

using dispersion relation & optical theorem

- * (non-Born) polarizability + (Born) elastic 2γ contributions
- * S₁ and S₂ fulfil unsubtracted dispersion relations

Polarizability Effect on the HFS

$$\begin{split} \Delta_{\text{pol}} &= \frac{\alpha m}{2\pi (1+\kappa)M} \left[\Delta_1 + \Delta_2 \right] & \text{with } v = \sqrt{1+1/\tau_l}, v_l = \sqrt{1+1/\tau_l}, \tau_l = Q^2/4m^2 \text{ and } \tau = Q^2/4M^2 \\ \Delta_1 &= 2 \int_0^\infty \frac{\mathrm{d}Q}{Q} \left(\frac{5+4v_l}{(v_l+1)^2} \left[\left[4I_1(Q^2) + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} \mathrm{d}x \, x^2 g_1(x,Q^2) \right] \\ & \times \left\{ \frac{1}{(v_l+\sqrt{1+x^2\tau^{-1}})(1+\sqrt{1+x^2\tau^{-1}})(1+v_l)} \left[4 + \frac{1}{1+\sqrt{1+x^2\tau^{-1}}} + \frac{1}{v_l+1} \right] \right\} \end{split}$$

$$\Delta_2 &= 96M^2 \int_0^\infty \frac{\mathrm{d}Q}{Q^3} \int_0^{x_0} \mathrm{d}x \, g_2(x,Q^2) \left\{ \frac{1}{v_l+\sqrt{1+x^2\tau^{-1}}} - \frac{1}{v_l+1} \right\}$$

$$I_1(Q^2) = \frac{2M^2}{Q^2} \int_0^{x_0} dx \, g_1(x, Q^2)$$
$$I_1^{\text{non-pol}}(Q^2) = I_A^{\text{non-pol}}(Q^2) = -\frac{1}{4}F_2^2(Q^2)$$

I1(Q2) is not a pure polarizability

- proton-polarizability effect on the HFS is completely constrained by empirical information
- a ChPT calculation will put the reliability of dispersive calculations (and ChPT) to the test

Hyperfine splitting in muonic H

Hyperfine splitting in muonic H

JGU

Muon

Hyperfine splitting in muonic H

Measurements of the μH ground-state HFS planned by 1) CREMA, 2) FAMU, 3) J-PARC/Riken-RAL collaborations

currently, disagreement between data-driven evaluations and chiral perturbation theory

Muon

 Questions to empiric parametrizations of nucleon structure functions (next slides)

Inclusive cross section

When we add spin degrees of freedom to the target and beam, 2 Additonal SF needed.

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{Mott} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$
$$+ \gamma g_1(x, Q^2) + \delta g_2(x, Q^2)$$

Inclusive <u>Polarized</u> Cross Section

JGU

Access polarized structure functions

 $\frac{d^2 \sigma^{\uparrow\uparrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow\uparrow}}{d\Omega dE'} = \frac{4\alpha^2}{\nu Q^2} \frac{E'}{E} \left[\left(E + E' \cos \theta \right) g_1 - 2M x g_2 \right]$

 $\frac{d^2 \sigma^{\uparrow \Rightarrow}}{d\Omega dE'} - \frac{d^2 \sigma^{\downarrow \Rightarrow}}{d\Omega dE'} = \frac{4\alpha^2}{\nu Q^2} \frac{E'}{E} \sin \theta \left[g_1 + \frac{2ME}{\nu} g_2 \right]$

Results from Hall A @ JLab [K. Slifer et al]

g_2 contribution to Hyperfine Structure

good agreement with the MAID and most recent Hall B models

200% difference from Hall B 2007 model used in PRA78, 02251

Carlson, Nazaryan & Griffioen (2008, 2011)

Results from Hall A @ JLab [K. Slifer et al]

 How do new models compare with previous publications?

Term	$Q^2~({ m GeV^2})$	MAID	Hall B	HB 2007
Δ_2	(0,0.05)	-0.87	-0.80	-0.23
	(0.05, 20)	-1.26	-1.16	-0.33
	$(20,\infty)$	0.00	0.00	0.00
Total Δ_2		-2.13	-1.96	-0.56
			Phys.Rev	/.A.78.022517
	-	Carlson,	Nazaryan &	Griffioen (2008, 2011)

Results from Hall A @ JLab [K. Slifer et al]

 How do new models compare with previous publications?

Term	$Q^2~({ m GeV^2})$	MAID	Hall B	HB 2007
Δ_2	(0,0.05)	-0.87	-0.80	-0.23
	(0.05, 20)	-1.26	-1.16	-0.33
	$(20,\infty)$	0.00	0.00	0.00
Total Δ_2		-2.13	-1.96	-0.56
			Phys.Rev	/.A.78.022517
	-	Carlson,	Nazaryan &	Griffioen (2008, 2011)

• bigger cancellation between Δ_1 and Δ_2 , hence better agreement with ChPT.

Conclusions on TPE

Conclusions on TPE

- Lepton scattering: model-dependent, for review see
 Pasquini & Vanderhaeghen,
 Ann.Rev.Nucl.Part.Sci(2018)
- Hydrogen spectroscopy: dispersive calculations vs. ChPT agree in the Lamb shift and might soon agree in HFS stay tuned!

HYPERFINE SPLITTING IN μ H

- Measurements of the µH ground-state HFS planned by the CREMA, FAMU and J-PARC / Riken-RAL collaborations
- Very precise input for the 2γ polarizability effect needed to find the μH ground-state HFS transition in experiment
- Zemach radius involves magnetic properties of the proton

HFS theory status

 $\Delta E_{\rm HFS}(1S) = \left[1 + \Delta_{\rm QED} + \Delta_{\rm weak+hVP} + \Delta_{\rm Zemach} + \Delta_{\rm recoil} + \Delta_{\rm pol}\right] \Delta E_0^{\rm HFS}$

 $\Delta_{\rm TPE}$

Phys. Rev. A 68 052503, Phys. Rev. A 83, 042509, Phys. Rev. A 71, 022506

	$\mu \mathrm{p}$		
	Magnitude Uncertainty		
$\Delta E_0^{ m HFS}$	182.443 meV	0.1×10^{-6}	
$\Delta_{ m QED}$	1.1×10^{-3}	1×10^{-6}	
$\Delta_{\rm weak+hVP}$	2×10^{-5}	2×10^{-6}	
Δ_{Zemach}	7.5×10^{-3}	7.5×10^{-5}	
$\Delta_{ m recoil}$	$1.7 imes 10^{-3}$	10^{-6}	
Δ_{pol}	4.6×10^{-4}	8×10^{-5}	

 $\leftarrow G_E(Q^2), G_M(Q^2)$ $\leftarrow G_E, G_M, F_1, F_2$ $\leftarrow g_1(x, Q^2), g_2(x, Q^2)$

Polarizability correction is fully expressed in terms of spin structure functions (no subtractions), yet their poor knowledge leads disagreement with ChPT !

Zemach radius vs the rms charge radius

An extraction of Zemach radius from muonic H hfs should be consistent with the charge radius extraction from muH Lamb shift?!

Recent values of the TPE

[G U

Lower bound directly from e-p data

Various extractions

 New high-pressure time projection chamber (TPC) is built by the PNPI group (St. Petersburg) for use at A2

 Detection of both scattered electron and recoil proton — first "overdetermined kinematics" experiment — reducing systematic uncertainties (radiative corrections).

- Detection of both scattered electron and recoil proton — first "overdetermined kinematics" experiment — reducing systematic uncertainties (radiative corrections).
- Successful test runs performed.

- Detection of both scattered electron and recoil proton — first "overdetermined kinematics" experiment — reducing systematic uncertainties (radiative corrections).
- Successful test runs performed.

Projected data for TPC@A2 [V. Sokhoyan et al] in comparison with Bernauer et al (A1 Coll)

Projected data for TPC@A2 [V. Sokhoyan et al] in comparison with Bernauer et al (A1 Coll)

This is happening within the next funding period of I STB

Projected data for TPC@A2 [V. Sokhoyan et al] in comparison with Bernauer et al (A1 Coll)

This is happening within the next funding period of I STB

• Join and/or support!