A New Track Trigger for the Proton-Radius Measurement at COMPASS++/Amber

T. Pöschl, C. Dreisbach, J. Friedrich, S. Huber, I. Konorov, M. J. Losekamm, S. Paul, B. Veit

Technical University of Munich
Institute for Hadronic Structure and Fundamental Symmetries
Measurement of the Q^2 Spectrum at COMPASS

- high-intensity muon beam
 $\phi_\mu \sim 2 \cdot 10^6 / s - 2 \cdot 10^7 / s$

- would correspond to data rates of
 3 GB/s – 20 GB/s (~7-50 PB per year)

- without trigger selection only
 ~0.04‰ interesting events
 (for $Q^2 > 10^{-3}$ GeV2)

→ remove the “unscattered” muons with a kink trigger
Triggering on Scattered Muons

Requirements

• reject unscattered muons below $Q^2 < \text{threshold} \ (\sim 10^{-4} - 10^{-3} \text{GeV}^2)$

• high trigger efficiency for scattered muons with $Q^2 > 10^{-3} \text{GeV}^2 \ (>90\%)$

• low material budget (source of multiple scattering)

• large active area (large beam profile)

• withstand high beam rate without pile up
Fiber-Trigger Stations: Scintillating Plastic Fibers Coupled to Silicon Photomultipliers

Tracking Station
- layers of scintillating plastic fibers with alternating orientation
- 250 fibers per layer with 200 $\mu m \times 200 \mu m$ cross section and $\sim 200 \text{ mm}$ length
- 4 layers (2 oriented horizontally, 2 oriented vertically)
- relative shift of layers by 100 $\mu m \rightarrow 100 \mu m \times 100 \mu m$ effective “pixel” size
- each fiber individually read out by two silicon photomultipliers (one on each end)
Fiber-Trigger Stations: Scintillating Plastic Fibers Coupled to Silicon Photomultipliers

- low material budget (~4% contribution)
- very fast: organic scintillator ~ 2 ns
 SiPMs ~ 10 – 100 ns
- good single-channel time resolution
- no pile-up for expected beam settings
Identification of a Scattered Muon

- determines track parameters of incoming muon

✓ only one trigger station within the scattering-sensitive measurement regime (minimize multiple scattering)
✓ simple calculation for online triggering (FPGA based)
• low-Q^2 resolution limited by fiber cross-section
Challenge: Having a High Detection Efficiency for the Muon

- high-energy muons are nearly minimum-ionizing: ~40 keV energy deposition in fiber
- together with scintillation efficiency, photon transport, and detection efficiency of SiPMs we expect only ~10 photoelectrons (p.e.) in average (Poisson distributed)

- noise level of SiPMs ~10 kHz @ 2 p.e.
 → reduced to a few Hz by coincidence requirement of two SiPMs
Simulation of Trigger Efficiency and Rejection Efficiency

- **efficiency**: 97% @ $Q^2 = 10^{-3}$ GeV2
- **rejection power**: 96.5% @ $Q^2 < 10^{-3}$ GeV2

Systematic Studies
- misalignment studies
- influence of mechanical tolerances (gaps between fibers, fiber-size variations, …)
- tune trigger threshold
- acceptance correction for measurement range
- investigate correlation between trigger efficiency and proton-radius parameters
Fitting Procedure: Markov-Chain Monte Carlo (MCMC)
(Work in Progress!)

- Bayesian probabilistic analysis method

- evaluate the full posterior-probability distribution (not only a point estimate)

- update information on parameters given new data

- include acceptance corrections as nuisance parameters in the fit with informative priors

- marginalize out nuisance parameters
 \(\rightarrow \) posterior-probability distribution of the target parameter \(<r^2>\)

- allows extended correlation studies between the parameters

\[
p(\theta|D) = \frac{L(D|\theta) \cdot \pi(\theta)}{\int L(D|\theta')\pi(\theta')} \propto L(D|\theta) \cdot \pi(\theta)
\]

\[
p(\theta_0|D) = \int p(\theta_0, \theta_n|D) \, d\theta_n
\]

Implementation using the Bayesian Analysis toolkit (BAT)
(Caldwell et al.
http://www.mppmu.mpg.de/bat)
Example: Fitting Polynomial Function (up to Q^8) to Toy MC Data

\[r_D = 0.77 \text{ fm}^2 \]
\[r_G = 2.63 \text{ fm}^4 \]
\[r = 26 \text{ fm}^6 \]
\[r = 374 \text{ fm}^8 \]

work in progress
Example: Fitting Polynomial Function (up to Q^8) to Toy MC Data

work in progress
Example: Fitting Polynomial Function (up to Q^8) to Toy MC Data
Example: Fitting Polynomial Function (up to Q^8) to Toy MC Data

→ easily visualizable how a constraint on a nuisance parameter would influence the target parameter
Quantifying Correlation

work in progress
Next Steps & Conclusion

• Include acceptance correction in MCMC Fit Procedure
 • parametrize with uncertainties (a few nuisance parameters)
 • binned template from simulation (a few thousand nuisance parameters)
 → check correlation with proton radius

• implement further acceptance corrections
 • vertex cuts
 • tracking uncertainties
 • recoil-kinematics reconstruction (muon in spectrometer & proton in TPC)

• further systematic checks of fitting procedure with different parametrizations of form factor
 • fit-range dependence

• build and test trigger stations in particle beam
Thank you for your attention!