

A New Track Trigger for the Proton-Radius Measurement at COMPASS++/Amber

T. Pöschl, C. Dreisbach, J. Friedrich, S. Huber, I. Konorov, M. J. Losekamm, S. Paul, B. Veit

Technical University of Munich

Institute for Hadronic Structure and Fundamental Symmetries

Measurement of the Q² Spectrum at COMPASS

Triggering on Scattered Muons

Requirements

- reject unscattered muons below $Q^2 < threshold (~ 10^{-4} 10^{-3} \text{ GeV}^2)$
- high trigger efficiency for scattered muons with $Q^2 > 10^{-3} \text{ GeV}^2$ (>90%)
- low material budget (source of multiple scattering)
- large active area (large beam profile)
- withstand high beam rate without pile up

Fiber-Trigger Stations: Scintillating Plastic Fibers Coupled to Silicon Photomultipliers

Tracking Station

- layers of scintillating plastic fibers with alternating orientation
- 250 fibers per layer with 200 μm x 200 μm cross section and ~200 mm length
- 4 layers (2 oriented horizontally, 2 oriented vertically)
- relative shift of layers by 100 $\mu m \rightarrow$ 100 $\mu m \times 100 \mu m$ effective "pixel" size
- each fiber individually read out by two silicon photomultipliers (one on each end)

Fiber-Trigger Stations: Scintillating Plastic Fibers Coupled to Silicon Photomultipliers

Thomas Pöschl (TUM) | 18.09.2019 | Proton-Radius Puzzle

Identification of a Scattered Muon

- (minimize multiple scattering)
- ✓ simple calculation for online triggering (FPGA based)
- low-Q² resolution limited by fiber cross-section

Challenge: Having a High Detection Efficiency for the Muon

- high-energy muons are nearly minimum-ionizing: ~40 keV energy deposition in fiber
- together with scintillation efficiency, photon transport, and detection efficiency of SiPMs we expect only ~10 photoelectrons (p.e.) in average (Poisson distributed)
- noise level of SiPMs ~10 kHz @ 2 p.e.

Simulation of Trigger Efficiency and Rejection Efficiency

rejection power: 96.5% @ Q² < 10⁻³ GeV²

Systematic Studies

- misalignment studies
- influence of mechanical tolerances (gaps between fibers, fiber-size variations, ...)
- tune trigger threshold
- acceptance correction for measurement range
- investigate correlation between trigger efficiency and proton-radius parameters Thomas Pöschl (TUM) | 18.09.2019 | Proton-Radius Puzzle

Fitting Procedure: Markov-Chain Monte Carlo (MCMC) (Work in Progress!)

- Bayesian probabilistic analysis method
- evaluate the full posterior-probability distribution (not only a point estimate)
- update information on parameters given new data
- include acceptance corrections as nuisance parameters in the fit with informative priors
- marginalize out nuisance parameters
 → posterior-probability distribution of the target parameter (<r²>)
- allows extended correlation studies between the parameters

Thomas Pöschl (TUM) | 18.09.2019 | Proton-Radius Puzzle

$$p(\theta|D) = \frac{L(D|\theta) \cdot \pi(\theta)}{\int L(D|\theta')\pi(\theta')} \propto L(D|\theta) \cdot \pi(\theta)$$

$$p(\theta_0|D) = \int p(\theta_0, \theta_n|D) \, d\theta_n$$

implementation using the Bayesian Analysis toolkit (BAT) (Caldwell et al. <u>http://www.mppmu.mpg.de/bat</u>)

ТШП

Example: Fitting Polynomial Function (up to Q⁸) to Toy MC Data

Example: Fitting Polynomial Function (up to Q⁸) to Toy MC Data

Example: Fitting Polynomial Function (up to Q⁸) to Toy MC Data

Example: Fitting Polynomial Function (up to Q⁸) to Toy MC Data

Quantifying Correlation

work in progress

Next Steps & Conclusion

- Include acceptance correction in MCMC Fit Procedure
 - parametrize with uncertainties (a few nuisance parameters)
 - binned template from simulation (a few thousand nuisance parameters)
 - \rightarrow check correlation with proton radius
 - implement further acceptance corrections
 - vertex cuts
 - tracking uncertainties
 - recoil-kinematics reconstruction (muon in spectrometer & proton in TPC)
 - further systematic checks of fitting procedure with different parametrizations of form factor
 - fit-range dependence
 - build and test trigger stations in particle beam

Thank you for your attention!

