Amplitude analysis in baryon spectroscopy at Belle and J-PARC

Kiyoshi Tanida

(Advanced Science Research Center, Japan Atomic Energy Agency)
PWA/ATHOS2019@Rio de Janeiro
02 Sep. 2019

The two major facilities in Japan

- KEKB/Belle \& J-PARC
- Complementary: $\mathrm{e}^{+} \mathrm{e}^{-}$collider vs proton + fixed-target
- High-intensity (luminosity) frontier

Contents

I. Baryon spectroscopy at Belle

- $\Lambda_{c} / \Sigma_{c}(2765)$
- Recent results on other baryons
\& perspective for PWA
II. Baryon spectroscopy at J-PARC
- Search for new hyperon resonance around the $\Lambda \eta$ threshold
- $\quad \mathrm{N}^{*} / \Delta^{*}$ spectroscopy using $\mathrm{p}(\pi, 2 \pi)$ reactions
- Other experiments
III. Summary

Part I.

Baryon spectroscopy at Belle

Aerogel Cherenkov cnt.

- Vs~10.6 GeV
- Integrated Luminosity
$>1 \mathrm{ab}^{-1}$
TOF counter

8 GeV e

Central Drift Chamber small cell $+\mathrm{He} / \mathrm{C}_{2} \mathrm{H}_{6}$

14/15 lyr. RPC+Fe
Almost 4π, good momentum resolution ($\Delta \mathrm{p} / \mathrm{p} \sim 0.1 \%$), EM calorimeter, PID \& Si Vertex detector

PWA for baryons?

- Not very active in Belle \Leftrightarrow c.f. for meson see presentation by D. Greenwald on Thursday.
- PWA more complicated - spin degree of freedom.
- Yet, PWA is eventually necessary to determine J ${ }^{\text {P }}$, and to identify the nature
- A trial on $\Lambda_{c} / \Sigma_{c}(2765)$, possibility to apply for other baryons.

$\Lambda_{c} / \Sigma_{c}(2765)$

First observation by CLEO

$\Lambda_{c}(2765)^{+}$
 or $\sum_{c}(2765)$

$I\left(J^{P}\right)=?\left(?^{?}\right) \quad$ Status: *

CLEO[PRL86(2001)4479]

- B decay $\rightarrow \Lambda_{c}{ }^{*} \rightarrow \Lambda_{c} \pi \pi$ ($\Sigma_{c} \pi, \Sigma_{c}{ }^{*} \pi$ included)
- Width~50 MeV (no uncertainty given)

Known things

- Experimentally - very poor
-I(J^{P}) not determined yet
- No uncertainty on width from CLEO
- Theoretically - so many
- Quark models: six (or more) states in this mass region $I\left(\mathrm{~J}^{\mathrm{P}}\right)=0\left(1 / 2^{-}\right), 0\left(3 / 2^{+}\right), 1\left(1 / 2^{-}\right), 1\left(1 / 2^{-}\right), 1\left(3 / 2^{-}\right), 1\left(3 / 2^{-}\right), \ldots$
- Including other models, any combination of $\mathrm{I}=0$ or $1, \mathrm{~J}=1 / 2$ or $3 / 2$, and $\mathrm{P}=+$ or - seems possible
- Experimental determination of $\mathrm{I}\left(\mathrm{J}^{\mathrm{P}}\right)$ is necessary to identify the nature of $\Lambda_{c} / \Sigma_{c}(2765)$

How to determine I(J $\left.{ }^{\mathrm{P}}\right)$?

- Isospin (I): Search for possible isospin partners ($\left.\Sigma_{\mathrm{c}}(2765)^{++/ 0}\right)$ by $\Sigma_{c}(2765)^{++/ 0} \rightarrow \Sigma_{c}^{++/ 0} \pi^{0} \rightarrow \Lambda_{c}(2765)^{+} \pi^{ \pm} \pi^{0}$

Reference mode: $\Lambda_{c} / \Sigma_{c}(2765)^{+} \rightarrow \Sigma_{c} \pi$

(a) Inclusive $\Lambda_{c} \pi^{+} \pi^{-}$
(b) With Σ_{c} selection

- Analyzed with full data of Belle (980 fb ${ }^{-1}$)
- Clear peaks are observed
- Fit with Breit-Wigner functions to extract yield.

$$
\Sigma_{\mathrm{c}}(2765)^{++/ 0} \rightarrow \Sigma_{\mathrm{c}}^{++/ 0} \pi^{0}
$$

[Belle-Conf-1905, ArXiv:1908.06235]

- No peak seen \rightarrow Isospin is not 1 , but 0 .

The name is indeed Λ_{c} (2765)

How to determine I(J $\left.{ }^{P}\right)$?

- Spin (J): angular distribution of the decay $\left.\Lambda_{c} / \Sigma_{c}(2765) \rightarrow \Sigma_{c}{ }_{c}{ }^{*}\right) \pi \&$ angular correlation of two pions in $\Lambda_{c} / \Sigma_{c}(2765) \rightarrow \Sigma_{\mathrm{c}}{ }^{*} \pi_{1} \rightarrow \Lambda_{c} \pi_{1} \pi_{2}$
- Parity (P): Use branching ratio (used for $\Lambda_{c}(2880)$)

$$
\mathrm{R}=\frac{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Sigma_{c}^{*} \pi\right)}{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Sigma_{c} \pi\right)}
$$

- Isospin (I): Search for possible isospin partners ($\left.\Sigma_{\mathrm{c}}(2765)^{++/ 0}\right)$ by $\Sigma_{c}(2765)^{++/ 0} \rightarrow \Sigma_{c}^{++/ 0} \pi^{0} \rightarrow \Lambda_{c}(2765)^{+} \pi^{ \pm} \pi^{0}$

Angular distributions and PWA

- $\Lambda_{c} / \Sigma_{c}(2765) \rightarrow \Sigma_{c}{ }^{(*)} \pi$: The same method used to determine Λ_{c} (2880) spin. ٌㅠㅇ
- $\Sigma_{c}{ }^{*} \rightarrow \Lambda_{c} \pi$: expected angular distribution:
$-1-\cos ^{2} \theta$ for $\left|j_{2}\right|=1 / 2$
$-1+3 \cos ^{2} \theta$ for $\left|\mathrm{j}_{2}\right|=3 / 2$
- We see an evidence that other partial waves than
 $\mathrm{P}_{3 / 2}$ interfere \rightarrow PWA ongoing
- Details \& result coming soon.

GeV

Recent results on other baryons \& perspective for PWA

$\Xi_{c}(2930)^{0}$ and $\Xi_{c}(2930)^{+}$

Babar observation is now confirmed by Belle
[EPJC 78, 928 and 78, 252]

- $\Xi_{c}(2930)^{0}: 5.1 \sigma$ significance, $M=2928.9 \pm 3.0_{-12.0}^{+0.9} \mathrm{MeV}$
- $\Xi_{c}(2930)^{+}:>3.5 \sigma$ significance, $M=2942.3 \pm 4.4 \mathrm{MeV}_{18}$

$\Xi(1620)$ and $\Xi(1690)$

- Search for $\Xi^{* 0} \rightarrow \Xi^{-} \pi^{+}$in $\Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+}$

- Siginificance:
25σ for $\Xi(1620)$
4.5 σ for $\Xi(1690)$
- $\mathrm{M}=1610.4 \pm 6.0 \mathrm{MeV}$, $\Gamma=60.0 \pm 4.8 \mathrm{MeV}$ near the ΛK threshold
- Not expected in quark models. Exotic?
- Analog of $\Lambda(1405)$?

Two poles in $J^{\mathrm{P}}=1 / 2^{-}$?

$\Omega^{*}(2012)$

- Very few Ω^{*} was discovered so far
- Search Ω^{*-} by ΞK decay in inclusive $\Upsilon(n S)$ decays

Belle:PRL $121052003^{\text {ME }}$

A new Λ^{*} in $\Lambda_{\mathrm{c}}^{+} \rightarrow p K^{-} \pi^{+}$?

■ 1D projection -- $M\left(p K^{-}\right)$

Spin-parity — PWA?

- Spin could be determined from angular distribution, if we have enough statistics...
\rightarrow We have to wait for Belle II data
- Parity needs even more (polarization, ...)
- PWA would be necessary to take interference with background into account.
- If a peak is found in S-wave, we also have to consider possibility of a threshold cusp
- Especially for $\Xi(1620)$ (on ΛK threshold) and $\Lambda(1665)$ (on $\Lambda \eta$ threshold)
- We are trying fits with Flatte amplitude.

Part II.

Baryon spectroscopy at J-PARC

Nuclear \& Hadron Physics in J-PARC

Experiments at a glance (not all)

Baryon Spectroscopy at J-PARC

- Past
- E19 (Search for pentaquark Θ^{+})
- In analysis
- E31 (Hyperon Resonances Below $\bar{K} N$ Threshold)
- Near future
- E42 (H-dibaryon Search)
- E45 (N $\pi \rightarrow \mathrm{N} \pi \pi$)
- E50 (Charmed Baryon)
- E72 (Search for new narrow Λ^{*})

Baryon Spectroscopy at J-PARC

- Past
- E19 (Search for pentaquark Θ^{+})
- In analysis
- E31 (Hyperon Resonances Below $\bar{K} N$ Threshold)
- Near future
- E42 (H-dibaryon Search)
- E45 ($\mathrm{N} \pi \rightarrow \mathrm{N} \pi \pi$)
- E50 (Charmed Baryon)
- E72 (Search for new narrow Λ^{*})

J-PARC E45 experiment

~Baryon spectroscopy

by using $p(\pi, 2 \pi)$ reaction~

Missing resonances

- A lot of states are predicted by QM, but not observed
- Measured by using mainly $\pi N \rightarrow \pi N, \gamma N \rightarrow \pi N$ reactions

Importance of $\pi \pi \mathrm{N}$ (Width of N^{*} resonances)

Over half of the decay branchig fraction goes into 2π channel.

E45 setup

Measure $(\pi, 2 \pi)$ in large acceptance TPC in dipole magnetic field

$$
\begin{aligned}
& \pi p \rightarrow \pi^{+} \pi n, \pi^{0} \pi p \\
& \pi^{+} p \rightarrow \pi^{0} \pi^{+} p, \pi^{+} \pi^{+} n \\
& \pi N \rightarrow K Y(2 \text {-body reaction }) \\
& \pi p \rightarrow K^{0} \Lambda, \\
& \pi^{+} p \rightarrow K^{+} \Sigma^{+} \quad\left(l=3 / 2, \Delta^{*}\right)
\end{aligned}
$$

$$
2 \text { charged particles + } 1 \text { neutral particle }
$$

$$
\rightarrow \text { missing mass technique }
$$

π^{+-}beam on liquid-H target ($p=0.73-2.0 \mathrm{GeV} / \mathrm{c}$ $\mathrm{W}=1.5-2.15 \mathrm{GeV}$)
x100 more statistics than ever

PWA on $(\pi, 2 \pi)$ reaction

- Model independent PWA - impossible
- Spin observables are not measured
- Double partial-wave expansion is necessary
- Need theory help for model dependent analysis
- Model used for ($\gamma, 2 \pi$) analysis@JLAB may be interesting
- Global analysis with one-pion and two-pion reactions

J-PARC E72 experiment

~Search for new \wedge^{*}
by using $K-p \rightarrow \wedge \eta$ reaction~

Dalitz plot: $\Lambda_{\mathrm{C}}^{+} \rightarrow p K^{-} \pi^{+}{ }_{\text {[PRL117.011801] }}$

■ 1D projection -- $M\left(p K^{-}\right)$

What's this?

- The peak position is $\sim 1663 \mathrm{MeV}$, near the $\Lambda \eta$ threshold (1663.5 MeV)
- Width is $\sim 10 \mathrm{MeV}$, significantly narrower than Λ, Σ resonances in this region
$-\Lambda(1670): 25-50 \mathrm{MeV}$
$-\Sigma(1660): 40-200 \mathrm{MeV}$
$-\Sigma(1670): 40-80 \mathrm{MeV}$
$-\Lambda(1690): \sim 60 \mathrm{MeV}$
- No such narrow states are theoretically predicted in this region - exotic?

An idea

- 2 independent groups claim there is a new narrow Λ^{*} resonance at this energy with $\mathrm{J}=3 / 2$
- Kamano et al. [PRC90.065204, PRC92.025205] $J^{P}=3 / 2^{+}\left(P_{03}\right), M=1671+2-8 \mathrm{MeV}, \Gamma=10+22-4 \mathrm{MeV}$
- Liu \& Xie [PRC85.038201, PRC86.055202] $J^{P}=3 / 2^{-}\left(D_{03}\right), M=1668.5 \pm 0.5 \mathrm{MeV}, \Gamma=1.5 \pm 0.5 \mathrm{MeV}$
- The reason is the same
- From $\mathrm{K}^{-} \mathrm{p} \rightarrow \Lambda \eta$ measurement near the threshold by Crystal Ball collaboration at BNL [PRC64.055205]
- Model independent

Differential cross sections (1)

Differential cross sections (2)

- Flat near the threshold
- Expected for J=1/2 (S-wave)
- Concave-up around $p_{K}=734$ $\mathrm{MeV} / \mathrm{c}(\mathrm{Vs}=1669 \mathrm{MeV}$)
- Flat again for $\mathrm{p}_{\mathrm{K}}>750$ MeV/c ($V \mathrm{~s}=1677 \mathrm{MeV}$)
- Concave shape requires $\mathrm{J}=3 / 2$ amplitude \rightarrow reason for a narrow resonance; model independent

What can it be?

- The experimental data suggest the existence of a new Λ^{*} resonance with spin $3 / 2\left(P_{03}\right.$ or $\left.D_{03}\right), \Lambda(1665)$:
Q: What is the nature of $\Lambda(1665)$, if it really exists?
A: We have few ideas at the moment, aside from that it must be exotic, and thus very interesting.
- It is near the $\Lambda \eta$ threshold, but threshold cusp is unlikely.
- Visible cusp appears only in S wave
- A molecular state in P or D ? Then, where is the S state?
- Cf. X(3872) \& $\Lambda(1405)$ are in S wave.
\rightarrow It may be a new type of exotic state!
- Mixture of a molecular state and a 3-quark state???
- udsss̄ pentaquark???

J-PARC E72

- Repeat the $\mathrm{Kp} \rightarrow \Lambda \eta$ experiment again with a large acceptance detector, i.e., TPC (HypTPC)
- Confirm angular distribution \& the new resonance
- Determine parity by Λ polarization measurement
- Principle
- K beam momentum: 720-770 MeV/c
- Momentum resolution: $1 \mathrm{MeV} / \mathrm{c}$ or better
\rightarrow Can identify narrow resonance of $\Gamma=1.5 \mathrm{MeV}$ or cusp
- Detect $\Lambda \rightarrow p \pi^{-}$, identify η by missing mass
- Also take other reactions as well - PWA.
$-K^{-} p \rightarrow K^{-} p, K^{0} n, \pi^{ \pm} \Sigma^{\mp}, \Lambda \pi \pi, \ldots$

Identify parity

- Angular distribution is the same for $3 / 2^{+}$(P wave) and $3 / 2^{-}$(D wave)
- Again, we need polarization of the final Λ
- Crystal-Ball data is very poor for polarization
- Support for new resonance is not obtained

Polarization - Parity in CB data

- Crystal ball data is average of 722-750 MeV/c \& 750-770 MeV/c, not for each momentum.
\Leftrightarrow Meanwhile, calculations are done on the points.

Identify parity

- Angular distribution is the same for $3 / 2^{+}$(P wave) and $3 / 2^{-}$(D wave)
- Again, we need polarization of the final Λ
- Crystal-Ball data is very poor for polarization
- Support for new resonance is not obtained
- How we can distinguish P\&D?
- P wave - no node, D wave - node
- We need $\delta p^{\sim} 0.05$ for each momentum/angle bin
\rightarrow Large statistics needed
$\mathrm{x} 16: \delta \mathrm{P} 0.2 \rightarrow 0.05$
$x 10$: binning $2 \rightarrow 20$
\rightarrow Need ${ }^{\sim} 2$ weeks of beamtime.

Summary

- Baryon spectroscopy with PWA
- Spin-parity determination
- Belle
$-\Lambda_{c}(2765)$ isospin is determined to be 0 PWA result for spin-parity coming soon
- Many others found: JP? Resonance or cusp?
\rightarrow Need amplitude analysis
- J-PARC
- E45: $\mathrm{N}^{*} / \Delta^{*}$ spectroscopy with $\mathrm{p}(\pi, 2 \pi)$ reaction
- E72: New Λ^{*} search by $p\left(K^{-}, \Lambda\right) \eta$ reaction

Backup

Baryon production in B factory

Baryons produced via fragmentation

- Charmed baryons - rather direct
- Hyperons - later stage of fragmentation

B is efficiently produced via Y(4s)

Once bottom is produced, it favorably decays into charm.

Huge statistics

Huge statistics, good quality

SuperKEKB and Belle II

Upgrade for SuperKEKB and Belle II to achieve 40 x peak \mathcal{L} under 20 x bkgd

- Reduction in the beam size by $1 / 20$ at the IP.
- Doubling the beam currents.
$L=\frac{\gamma_{e \pm}}{2 e r_{e}}\left(1+\frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}\right)\left(\frac{I_{e \pm} \xi_{y}^{e \pm}}{\beta_{y}^{*}}\right)\left(\frac{R_{L}}{R_{\xi_{y}}}\right)$

- First turns achieved Feb. 2016
- Beam-background studies ongoing

Goal: x50 more statistics than Belle

The Belle II detector

(intensity rather than energy frontier; $\mathrm{e}^{+} \mathrm{e}^{-}$rather than pp)

Belle II today

Belle II roll-in (April 11)

Global cosmic run (August)

Luminosity projection

```
BEASTII Phase 1
w/o QCS/Belle II
```

 BEASTII Phase 2
 Collision + partial Belle II
 Physics run

J-PARC E50: Missing mass spectroscopy by $p\left(\pi^{-}, D^{*-}\right)$

- Analogous to $\mathrm{p}(\pi, \mathrm{K}) \mathrm{Y}$ reaction
- Direct reaction
- possibility to produce resonances not made in fragmentation
- Production cross section gives valuable information
- No bias on decays
\rightarrow Absolute branching ratio can be measured
- Cross Section: $\sigma \sim 1 \mathrm{nb}$
- Intense Beam at J-PARC is indispensable.
$>10^{7} \mathrm{~Hz}$ at $15 \mathrm{GeV} / \mathrm{c}$ pions

High momentum beam line

- High-intensity secondary beam (unseparated)
$-2 \mathrm{msr} \%$, $1.0 \times 10^{7} \mathrm{~Hz} @ 15 \mathrm{GeV} / \mathrm{c} \pi$
- High-resolution beam: $\Delta \mathrm{p} / \mathrm{p}^{\sim} 0.1 \%$
- Momentum dispersion and eliminate $2^{\text {nd }}$ order aberrations

- Large Acceptance, Multi-Particle
- K, π from D^{0} decays
- Soft π from D^{*-} decays
- (Decay products from $Y_{c}{ }^{*}$)
- High Resolution
- High Rate
- SFT/SSD: >10M/spill at K1.8

Charmed Baryon Spectrometer

Large acceptance $\sim \mathbf{6 0 \%}$ (for D^{*}), $\Delta p / p \sim 0.2 \%$ at $\sim 5 \mathrm{GeV} / c$

Expected spectrum: $\sigma_{G S}=1 \mathrm{nb}$

$\mathrm{N}\left(\mathrm{YC}^{*}\right)^{\sim} 1000$ events/1nb/100 days Better mass resolution: $\sim 10 \mathrm{MeV} / \mathrm{c}^{2}$ Sensitivity: ~0.1 nb (3б, $\Gamma \sim 100 \mathrm{MeV}$)

Measurement@Belle (II)

- The peak in the $\mathrm{M}\left(\mathrm{pK}^{-}\right)$spectrum in $\Lambda_{\mathrm{c}} \rightarrow \mathrm{pK} \pi^{+}$decay is due to the new Λ^{*} resonance?
- If yes, key measurements are
- J=3/2 - angular distribution (correlation) between π^{+}and K^{-} $1+3 \cos ^{2} \theta$ for pure $\mathrm{J}=3 / 2$ amplitude flat for pure $\mathrm{J}=1 / 2$ amplitude
- I=0, strongly couples to $\Lambda \eta$ channel \rightarrow Important to see $\Lambda \eta$ channel
- Width
- Parity is also important, but...
- Needs measurement of polarization of Λ in the $\Lambda \eta$ channel.
- In principle possible, but needs very high statistics
- Impossible @Belle, difficult even at Belle2

Yield estimation

- Beam intensity: $30 \mathrm{k} / \mathrm{spill}$
- Target: Liq. $\mathrm{H}_{2} 5 \mathrm{~cm}\left(0.35 \mathrm{~g} / \mathrm{cm}^{2}\right.$ or $\left.2.1 \times 10^{23} / \mathrm{cm}^{2}\right)$
- Reaction rate: 6.3/spill for 1 mb
- Acceptance \& efficiency: 0.3?
\leftarrow need a simulation
- Event rate: $1200 / \mathrm{h}$
\rightarrow 200k events in a week.
Cf. Crystal Ball: 2700 events in total

HypTPC
 The common detector for E45 \& E72

Schematic view

The Superconducting magnet

- Helmholz type, design maximum field : 1.5 T
- Conduction cooling with 2 GM cryocoolers
- Coil diameter : 1.0m
- Field uniformity : $\mathrm{Br} / \mathrm{By}<1 \%$ in the TPC volume to achieve the good momentum resolution

- High rate capability
- GEM ($100 \mu \mathrm{~m}+50 \mu \mathrm{~m}+50 \mu \mathrm{~m}$)
- Gating grid
- Target inside the drift volume through the target holder
- Large acceptance
- Drift field parallel to Bfield
- Good position resolution

Gating grid wires
GEMs
Pad plane

More info on HypTPC

OOctagonal prism field cage O5768 readout pads

- Inner(10 rows): 2.1-2.7×9 mm²
- Outer(22 rows): $2.3-2.4 \times 12.5 \mathrm{~mm}^{2}$

O Gating grid: $\phi 50 \mu \mathrm{~m}, 1 \mathrm{~mm}$ space

O Gas: P-10 ($\mathrm{v}_{\max } \sim 5.3 \mathrm{~cm} / \mathrm{s}$)
O Gain ~ 10^{4}
O Position resolution < $300 \mu \mathrm{~m}$
$\bigcirc \Delta p / p=1-3 \%$ for π and p

