

Charmonium and Bottomonium Spectroscopy at Belle II

02.09.2019 | Elisabetta Prencipe on behalf of the Belle II Collaboration

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy PWA11/ATHOS6, Rio de Janeiro

Outline

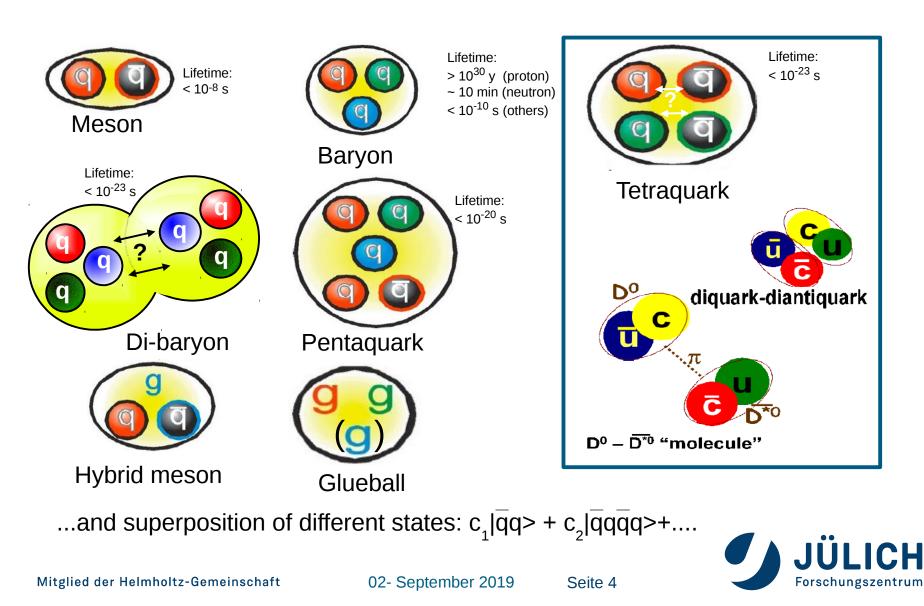
- Introduction
- Motivation
 - how can we improve the B-factories achievements?
 - open questions
 - new and unique opportunities at Belle II
- The Belle II experiment
- Perspectives in search for exotics at Belle II
 - Charmonium
 - Bottomonium
 - "re-discovery" channels with Phase 3 data
- Summary

Introduction

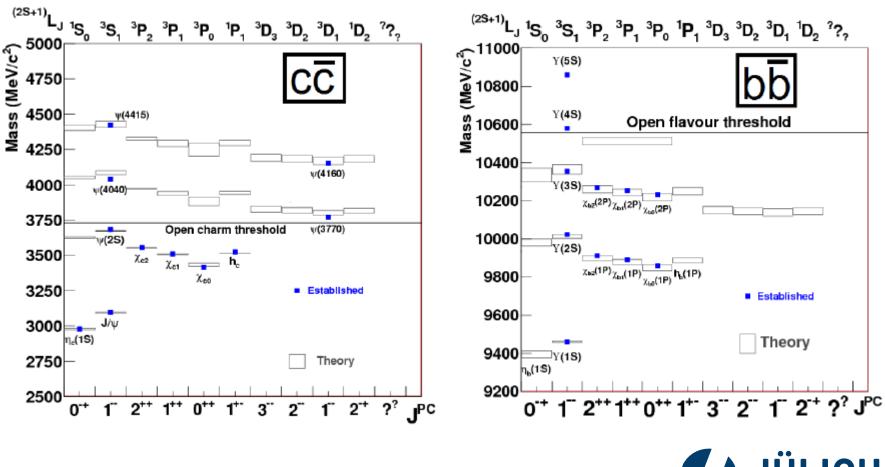
Gell-Mann Zweig idea: Constituent Quark Model

Still valid for half century \rightarrow it classifies all known hadrons

- QCD-motivated models predict the existence of hadrons with more complex structures than simple qq (mesons) or qqq (baryons) \rightarrow the so-called XYZ "charmonium"-like states
- Lot of experimental effort to prove the existence of XYZ!
- No unambiguous evidence for hadrons with non-CQM-like structures has been found
- New possibilities, started with the observation of the X(3872):
 - tetraquarks
- molecular states
- pentaquarks glueballs

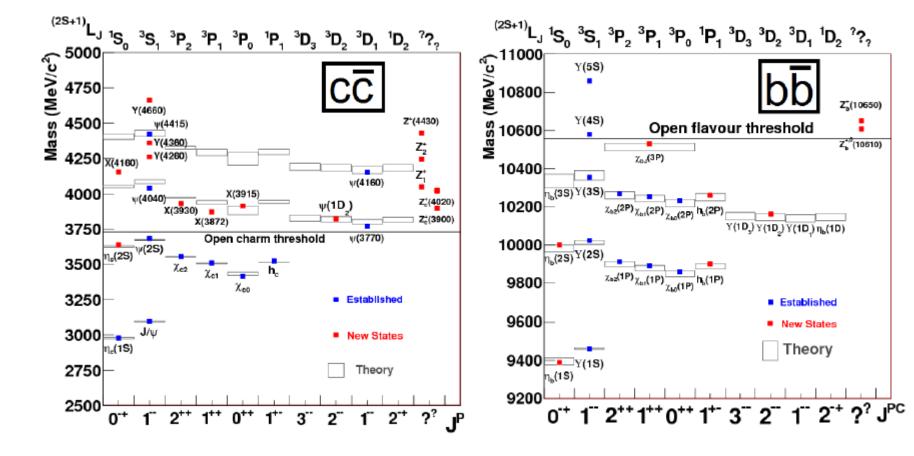

- hybrids
- hadrocharmonium
- hexaquarks cusps...
- Evidence that there is more than mesons and baryons!

Substantial contribution from B-factories (1999-2010) into the field


Quark Bound States

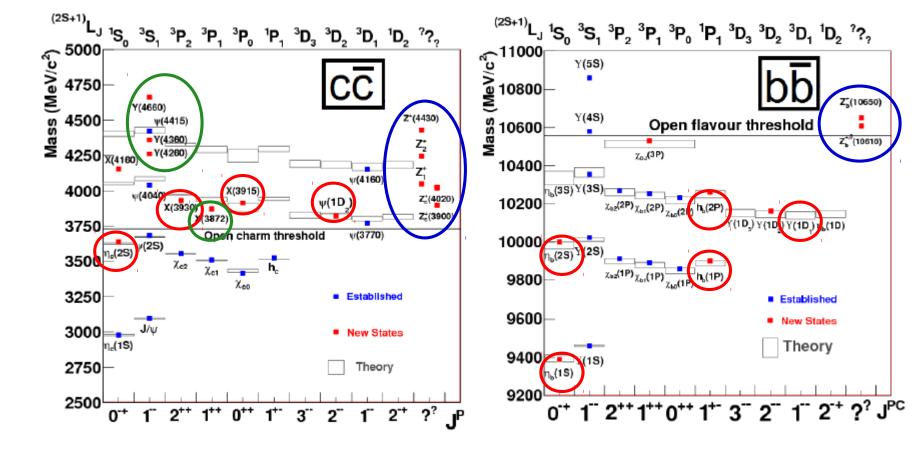
-Onia (conventional and exotics)

- Belle II
- States described by potential models, NRQCD,..., <u>before</u> B-factories era



-Onia (conventional and exotics)

States described by potential models, NRQCD,..., <u>after</u> B-factories era



-Onia (conventional and exotics)

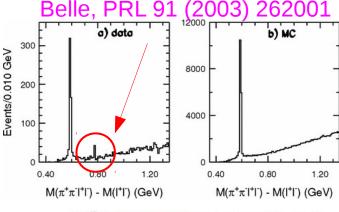
States described by potential models, NRQCD,..., after B-factories era

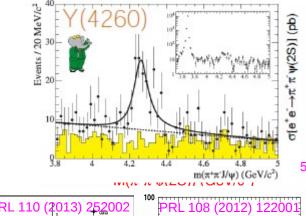
Nomenclature

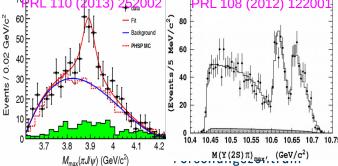
X, such as the X(3872)

- consistent with $D^0\overline{D}^{*0}$ molecular state
- found in B decays, large production also in pp
- no partners found

Y, such as the Y(4260), Y(4330), Y(4660)


- produced in initial state radiation and $\mathrm{E}_{\mathrm{c.m.}}$ scan
- J^{PC} = 1⁻⁻
- overpopulated for charmonium


Z, such as the $Z_c(3900)$ and the $Z_b(10610)$


- seen in decays of $q\overline{q}$ and B decays
- charged states: cannot be charmonia
- b- and c- onia: similarities

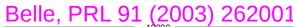
Nomenclature

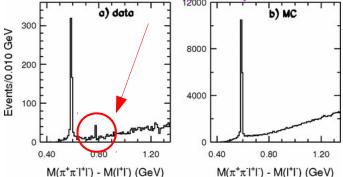
X, such as the X(3872)

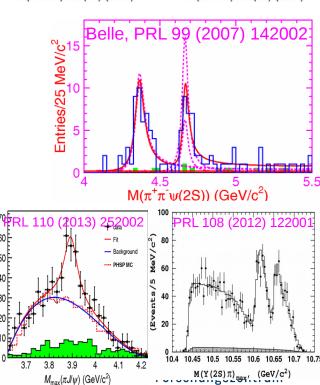
- consistent with $D^0\overline{D}^{*0}$ molecular state
- found in B decays, large production also in pp
- no partners found

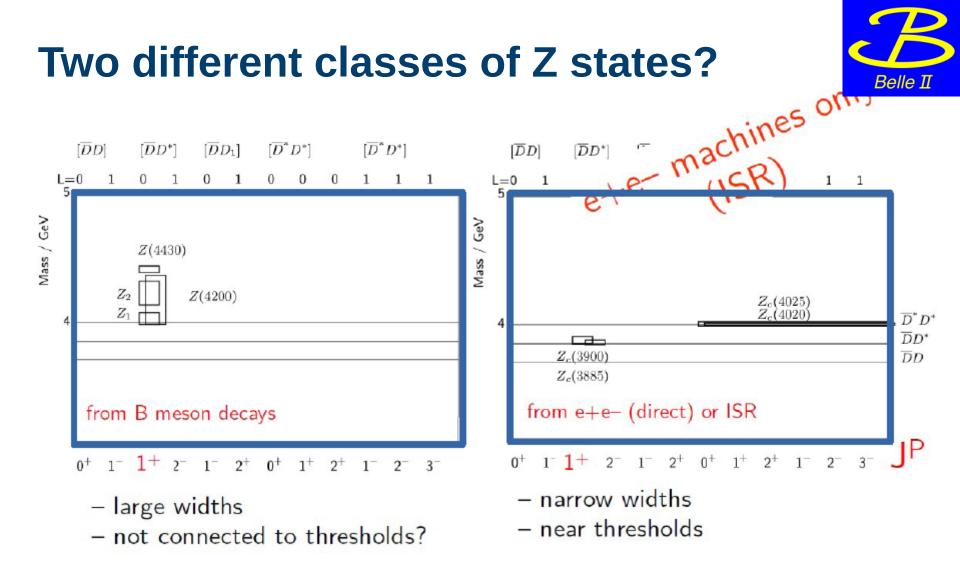
Y, such as the Y(4260), Y(4330), Y(4660)

- produced in initial state radiation and $\mathrm{E}_{\mathrm{c.m.}}$ scan
- J^{PC} = 1⁻⁻
- overpopulated for charmonium


Z, such as the $Z_c(3900)$ and the $Z_b(10610)$

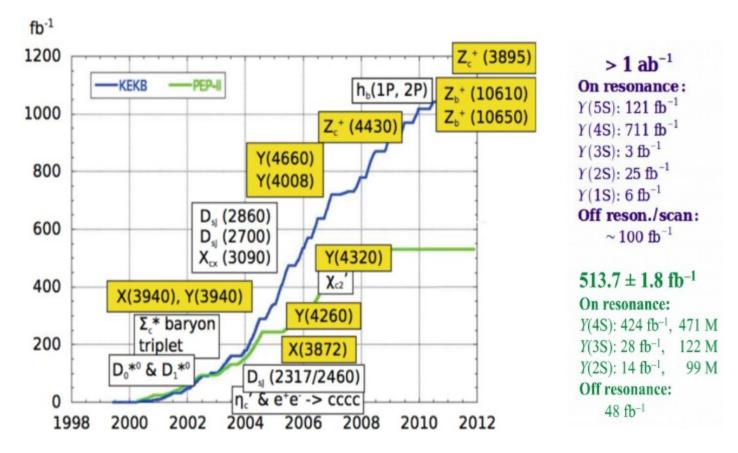

- seen in decays of $q\overline{q}$ and B decays
- charged states: cannot be charmonia
- b- and c- onia: similarities



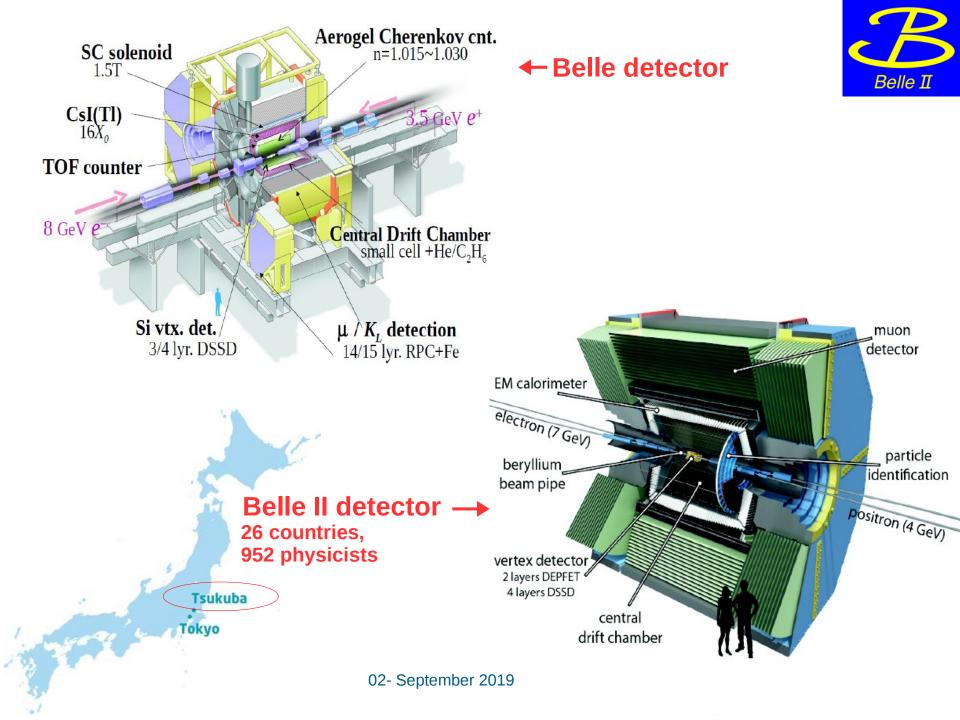


GeV/c²

- Belle II is in a unique position to look for both Z types:
 - through B decays (LHCb, no BES III)
 - threshold state (BES III, no LHCb)



Forschungszentrum


BaBar + Belle:

>1.5 ab⁻¹ integrated luminosity - triumph in the history of B-factories!

- Not only B-factory, but $\overline{c}c$ -factory with so high luminosity
- Still statistics limitation in spectroscopy for rare processes (BR<10⁻⁵)
- Upgrade needed!

Mitglied der Helmholtz-Gemeinschaft

From Belle to Belle II

What has been changed?

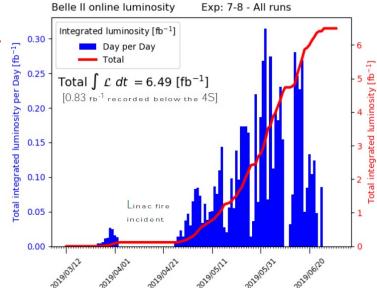
PXD, vertex resolution in z direction (beam direction) will be factor 2 better than before:

50 μ m (Belle) \rightarrow 25 μ m (Belle II)

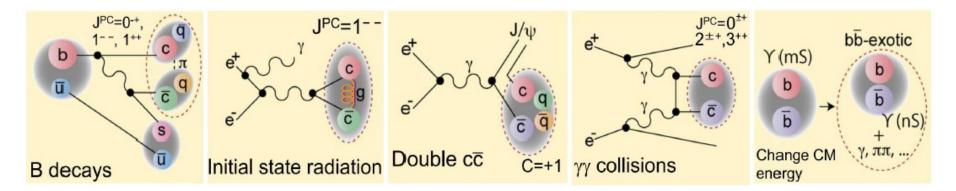
- TOP: no TOF (time-of-flight) detector anymore, but TOP (time-ofpropagation) will do the timing of the Cerenkov light. Time resolution ~50 ps. TOP detector surface is polished to nanometer precision for total reflection of Cerenkov light
- KLM: inner 2 layers of barrel + all layers in the endcap replaced by scintillators, because of large background
- ECL readout electronics exchanged, fast FADC sampling for identify pileup of pulses
- Huge gain in luminosity in Belle II compared to Belle: factor x40. How?

- factor 2 by beam current: 1.64/1.19 A (Belle) \rightarrow 3.6/2.6 A for e^+(e^-) beam in Belle II

- factor 20 by "nano-beam" principle (collision point in vertical direction will be only 59 nm)

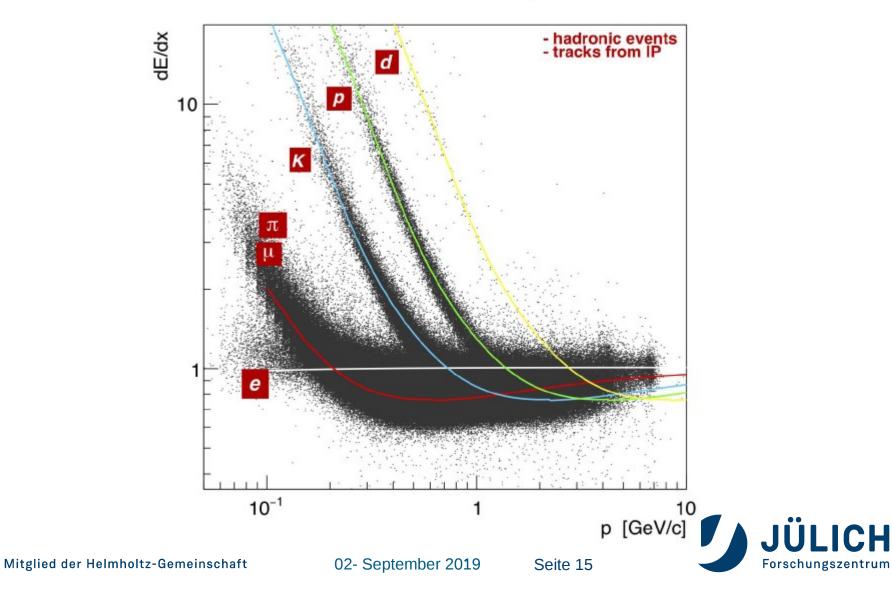

 $\beta^*_{_{\rm V}}$ function: 5.9 mm (Belle), 0.27 mm (Belle II)

 $\beta_{y}(z) = \beta_{y}^{*}(1 + \frac{(z - Z_{0})^{2}}{\beta_{y}^{*2}})$ $\sigma_{y}(z) \propto \sqrt{\beta_{y}(z)}$ Seite 13 **JÜLIO** Forschungsze


02- September 2019

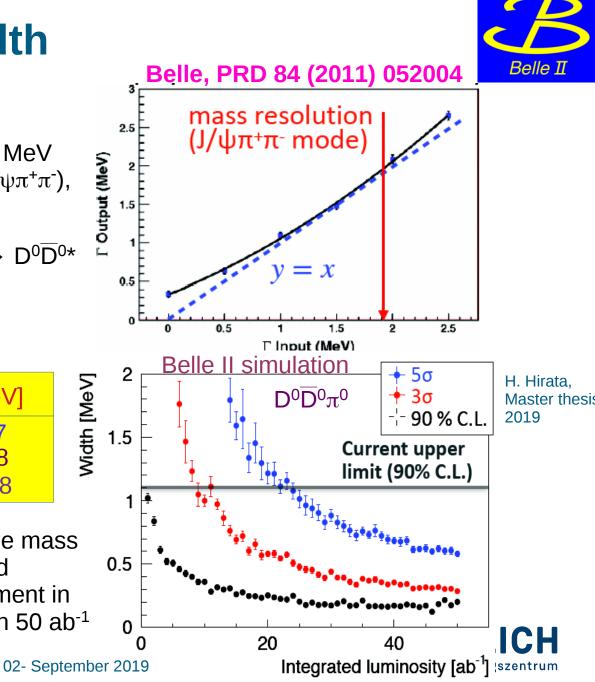
Luminosity and long term perspectives

- Phase 2, concluded on 17.07.2018: L = 504.9 pb⁻¹
- Phase 3, concluded on 01.07.2019: L = 6.5 fb⁻ 1
- Summer 2020, expected up to 200 fb⁻¹
- By 2026, expected up to 50 ab⁻¹


Belle II

Belle II is performing well!

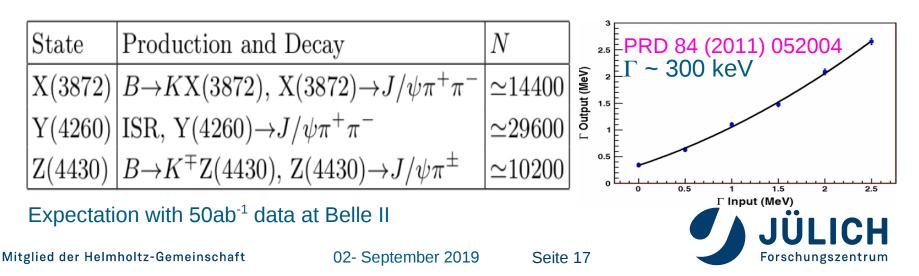
CDC-dE/dx distribution and predictions



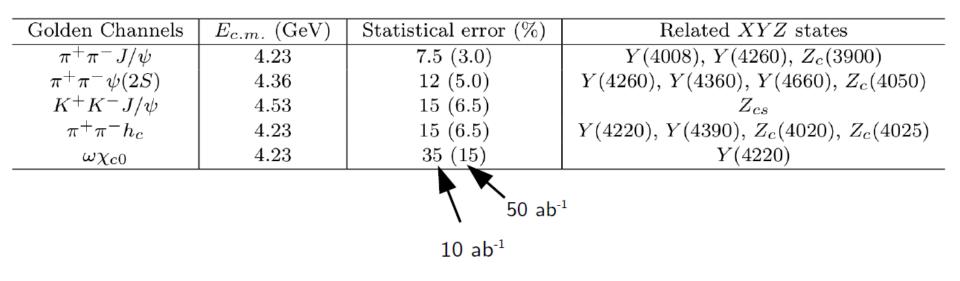
X(3872) total width

- Known upper limit: $\Gamma < 1.2 \text{ MeV}$ (estimated from X(3872) $\rightarrow J/\psi \pi^+\pi^-$), on full Belle data sample
- Very promising: X(3872) $\rightarrow D^0 \overline{D}^{0*}$

mode	Q value [MeV]
J/ψ <u>π</u> ⁺π⁻	495.65±0.17
$D^0\overline{D}^0\pi^0$	7.05±0.18
D^0D^0*	0.01±0.18


Due to very low Q value, the mass resolution is extremely good
 → expected great improvement in the width measurement with 50 ab⁻¹

XYZ Expectations at Belle II


- Yield of X(3872)→J/ $\psi\pi^+\pi^-$ in 2021 will be about Belle yield of $\psi' \rightarrow J/\psi\pi^+\pi^-$
- Radiative decay X(3872) \rightarrow J/ $\psi\gamma$: expected yield N \approx 350 in 2021
- The width of the X(3872) could be measured with a systematic error of ±0.11 MeV in radiaive X decay
 Dependent of the temperature provides deconstraint fit (AE/E, 206)
 - \rightarrow monoenergetic photon provides 4 constraint fit ($\Delta E/E \sim 2\%$)
 - \rightarrow systematic error on width may be ~110 keV
- Search for exotics at D^{*}D^{*} threshold (better slow pion detection at Belle II) slow pions reconstruction efficiency >60%(L. Koch, Master Thesis 2016)

Charmonium in ISR: Perspectives

- Line shape of the Y(4260)
- Strange partner of Z(3900) in KKJ/ ψ
- Cross sections of exclusive (cc) + hadrons

Why Bottomonium at Belle II?

- Bottomonium spectrum is significantly different from charmonium spectrum
 - n=3 state (^{3}P) is below the threshold
 - L=2 state (^{1}D) is below the threshold
- ${\scriptstyle \bullet}$ Z $_{_{\rm b}}$ states were only found so far in Y(5S) decays
- SuperKEKB can reach E_{c.m.} ≈11 GeV
 - $\Rightarrow \Upsilon$ (6S) running possible unique possibility!
- With the high luminosity, for the 1st time study radiative transitions between bottomonia states possible (suppressed by 1/137). Marginal statistics so far at Belle, <u>big advantage at Belle II</u>

Seite 19

Expectations on Z_b states at Belle II

- If Z_b is a loosely-bound state, several new molecular states should appear
- Υ (6S) and Υ (5S): conventional state search
- Belle II goals:
 - search for new, predicted, resonances
 - use both, single transitions and double cascade
 - fill the remaining spectrum to measure the effect of the coupled channel xm To contribution

- Belle II goals:
 - $\Upsilon(6S)$: 100 fb⁻¹ exploratory run $\Upsilon_{\pi, h_b \pi, \eta_b \rho}$
 - Y(5S): 1 ab⁻¹ high statistics run

Υ (6S) and Υ (5S): scan BB

- Belle II goals:
 - Y(6S) and Y(5S) behave differently in $\pi\pi\gamma$ and $\pi\pi\eta\pi$. To
 - → hint of a non-bb nature of $\Upsilon(5S)$?
 - investigate an extra resonance around 10.750 $\mbox{MeV/}c^2$

 $1^{-}(2^{+})$

Settle the nature of

 $\chi_b \pi, \Upsilon \rho$

Y(5S)

Wb0

Y(3S): Opportunities at Belle II

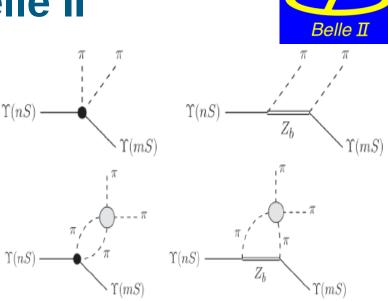
- Exotic states contribute to the hadronic and radiative transitions from narrow quarkonia
 - → complementary approach to the direct search from Y(5S) and Y(6S)

Υ (3S): exotics in transitions

- Belle II goals:
 - $\Upsilon(3S) \rightarrow \pi \pi \Upsilon(1S, 2S)$ still limited by statistics
 - perform full amplitude analysis
 - search for missing $\pi\pi/\eta$ transitions to constraint further theoretical models
 - study hindered radiative transitions

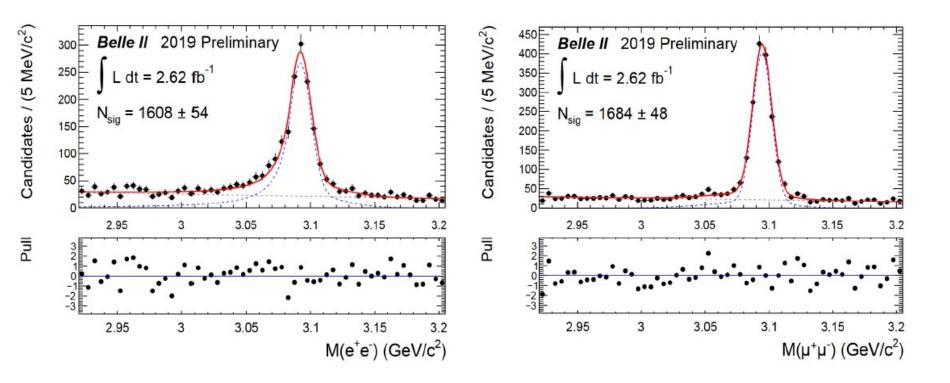
Υ(3S): charmonia in production

- Belle II goals with 300 fb⁻¹:
 - up to 5x sensitivity in inclusive production from $\Upsilon(3S)$
 - up to 15x in double charmonium
 - inclusive rate of X(3872)
 - $D\overline{D}^*$ correlation in $\Upsilon(3S) \rightarrow D\overline{D}^*$ + hadron to test the nature of the X(3872)


 Υ (3S): rare χ_b decays

Υ (3S): deuteron production mechanism

Mitglied der Helmholtz-Gemeinschaft



"Re-discovery" with Phase 3 Data

J/ψ

3.9

3.71

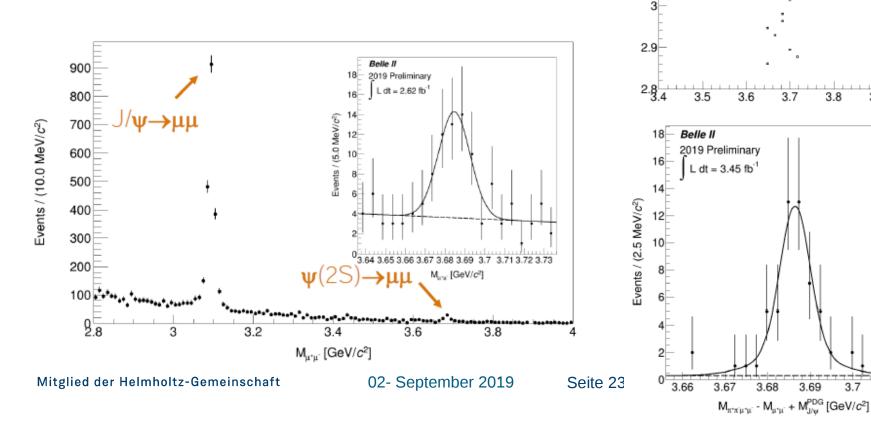
Belle II 2019 Preliminary L dt = 3.45 fb⁻¹

ψ(2S)**→**ππJ/ψ

3.4

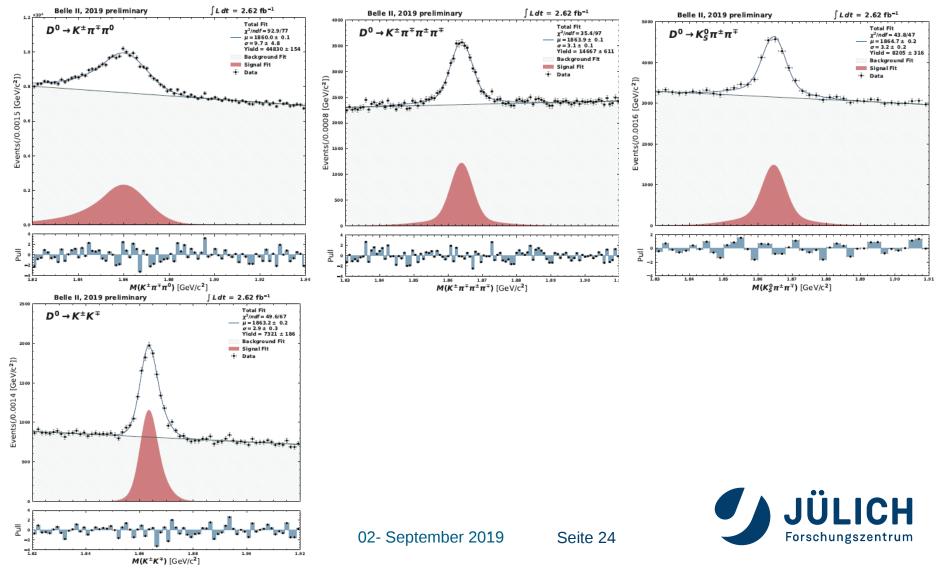
3.3

3.2

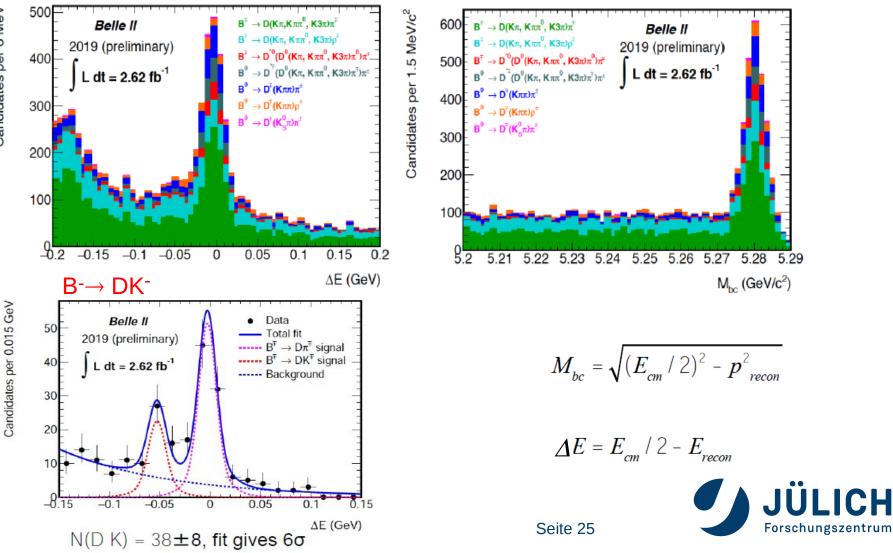

3.1

M_{µ'µ} [GeV/c²]

"Re-discovery" with Phase 3 Data

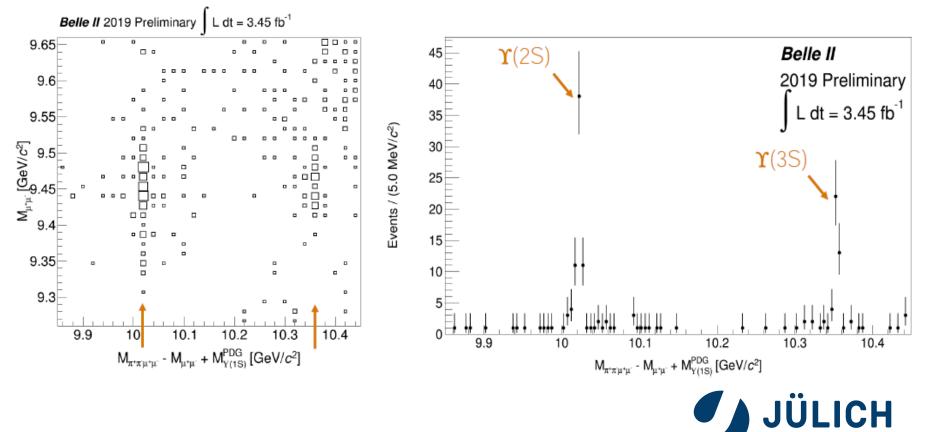

ψ**(2S)**

- Inclusive $\mu^+\mu^-$ search
- Isolate $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ from ISR production


"Re-discovery" with Phase 3 Data D⁰ meson

"Re-discovery" with Phase 3 Data

Fully hadronic B event reconstruction



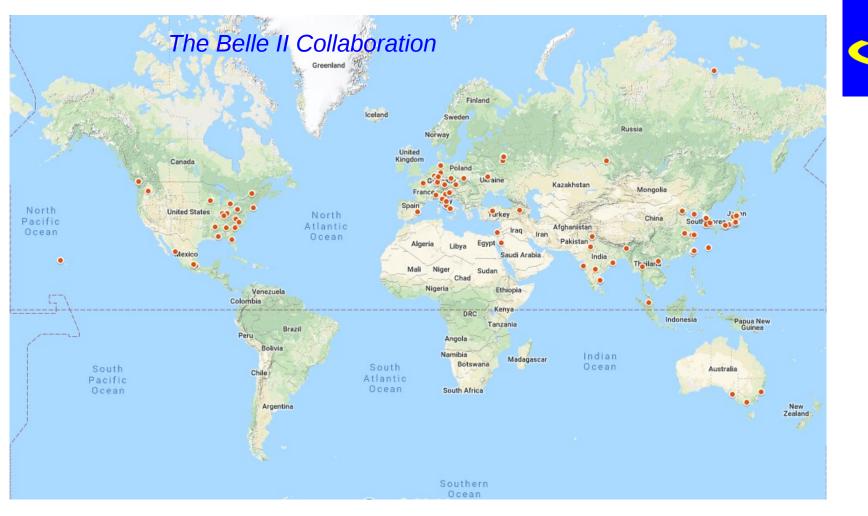
Forschungszentrum

"Re-discovery" with Phase 3 Data

Υ**(1S, 2S, 3S)**

ISR process: $\Upsilon(2S,3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$

Mitglied der Helmholtz-Gemeinschaft


Seite 26

Summary

- Great achievements with Belle (~ 1 ab⁻¹) in spectroscopy, but still opportunities for <u>unique physics with the new upgrade Belle II</u>!
- In SuperKEKB e^+e^- collisions will reach unprecedented instantaneous
- Iuminosity: 8×10³⁵ cm⁻² s^{-1.}
- Improved tracking and PID in Belle II
- Phase 2 and 3 in Belle II completed!
- Expected by summer 2020: 200 fb⁻¹
- Expected 50 ab⁻¹ integrated luminosity at Belle II in 7 years
- With x50 more data than Belle, expected in Belle II great achievements in hadron spectroscopy:
 - ISR analysis as unique case
 - favorite Bottomonium search through $\Upsilon(6S)$ compared to Belle
 - good slow pion reconstruction to search for $D^*\overline{D}^{(*)}$ threshold exotic states

Thank you for your kind attention! e.prencipe@fz-juelich.de

Belle II

Mitglied der Helmholtz-Gemeinschaft

02- September 2019

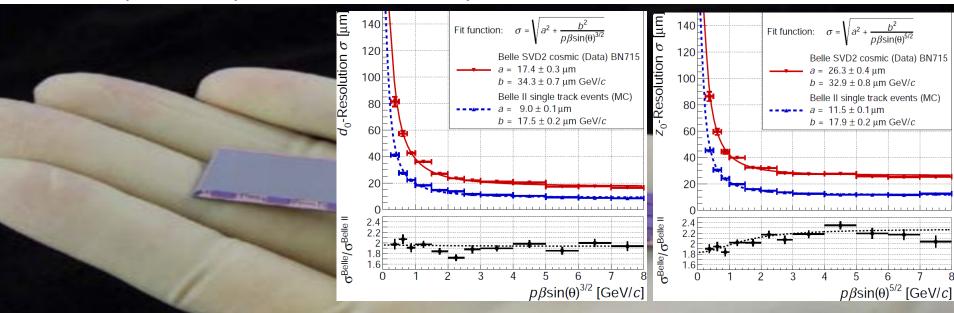
Seite 28

Backup slides

Mitglied der Helmholtz-Gemeinschaft

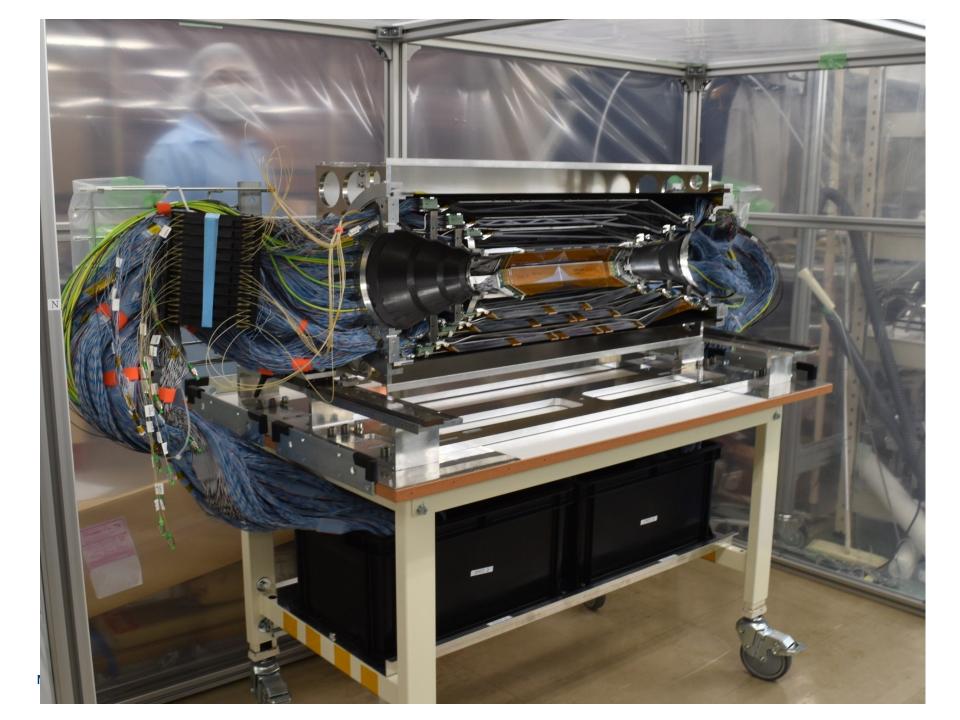
Seite 29

How can Belle II perform these challenging measurements?


- most powerful e+e- collider in the world
- x40 more luminosity than Belle
- high vertex resolution
- excellent tracking perfomance
- improved slow pion detection

Vertex Pixel Detector (PXD)

VXD consists of 2 layers of DEPFET (Pixel Detector) and 4 layers of double-sided silicon microstrip sensors (Silicon Vertex Detector), assembled over carbon fiber ribs.

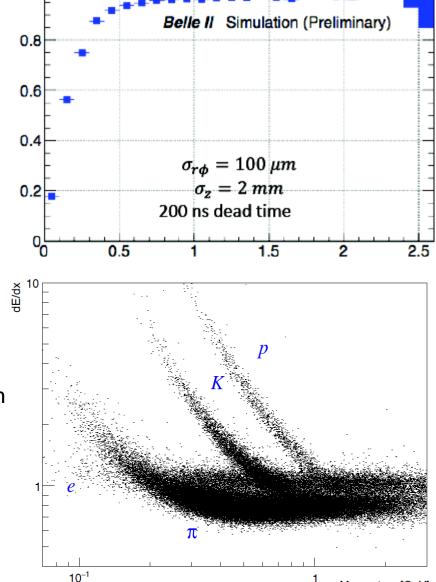

One of the 40 sensor modules which are being installed in the pixel-vertex detector

Mitglied der Helmholtz-Gemeinschaft

02- September 2019

Seite 31

Central Drift Chamber (CDC)


Momentum [GeV]

VXD + CDC hits in EventDisplay

Jan 16, 2019: First global SVD cosmic run

Exp. 5, Run 690, Evt. 14110 (Jan 27, 2019)

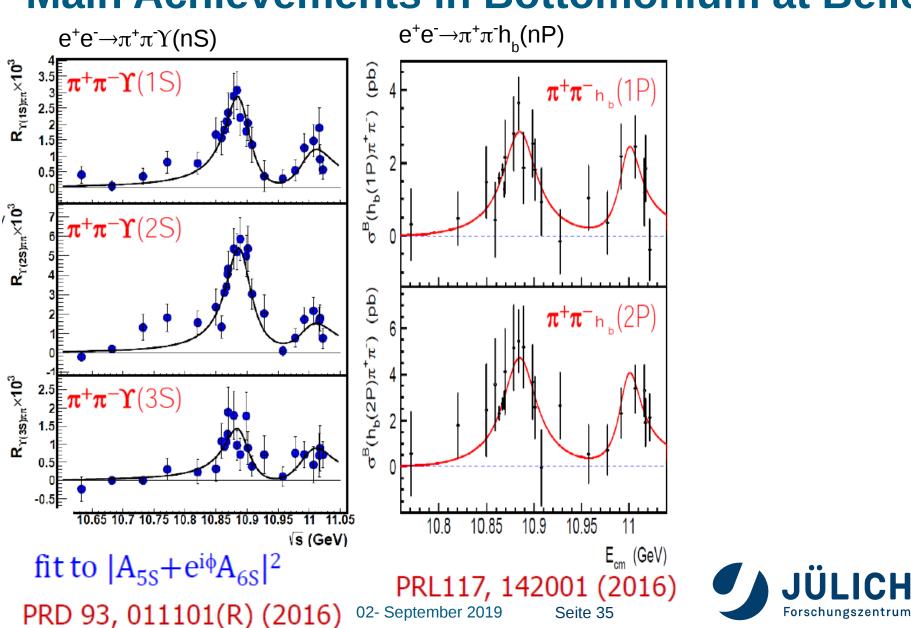
02- September 2019

Track Efficiency

Cerenkov detector, laser in TOP module

Particle Identification

(<u>Time-of-propagation</u>, t \leq 50 ps) Photo: K. Inami (Nagoya) L~ 2.5m, 16 barrels

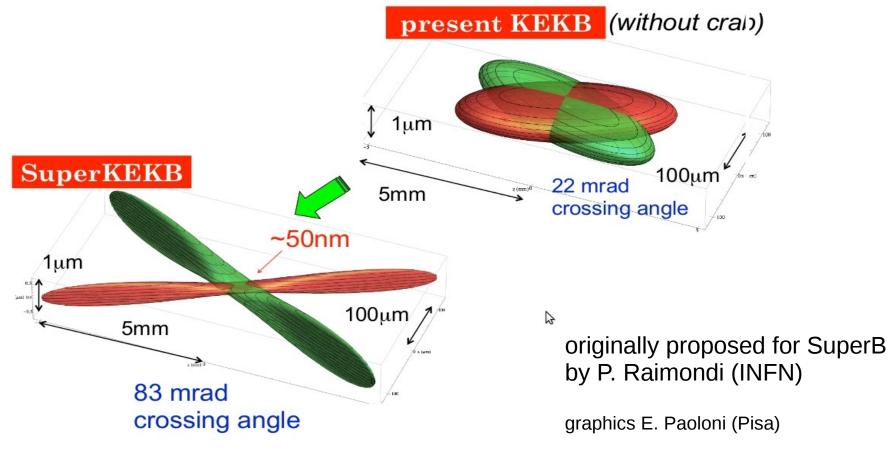


Mitglied der Helmholtz-Gemeinschaft

02- September 2019

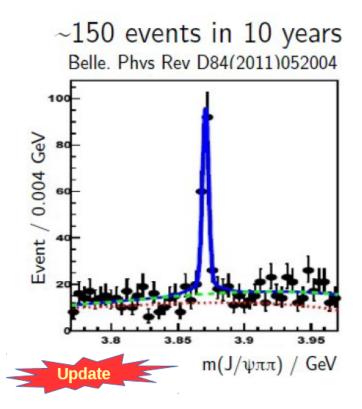
Seite 34

Main Achievements in Bottomonium at Belle

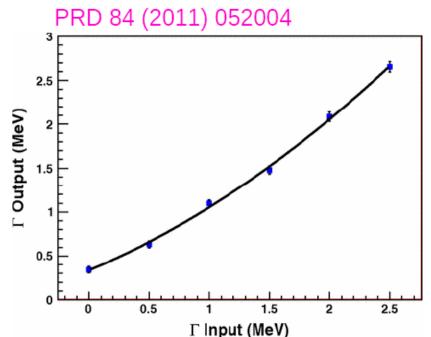

Main Achievements in Bottomonium at Belle Z_{b} in Y(5S) $\rightarrow \pi^{+}\pi^{-}Y(nS)$

Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z,\mp(10610)\pi^{\pm}},\%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0 \pm 6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$\begin{array}{c} 10607.4 \pm 1.5 \substack{+0.8 \\ -0.2 \\ 18.7 \pm 3.4 \substack{+2.5 \\ -1.3 \end{array}} \end{array}$
$Z_b(10610)$ width, MeV/ c^2	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7 \pm 3.4^{+2.5}_{-1.3}$
$f_{Z_2^{\mp}(10650)\pi^{\pm}},\%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV/ c^2	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2 \pm 3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67 \pm 36^{+24}_{-52}$	$-10 \pm 13^{+34}_{-12}$	$-5 \pm 22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40 \pm 0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07 \substack{+0.32 \\ -0.11}$	$0.69 \pm 0.09 \substack{+0.18 \\ -0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-0.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	—
$f_{\Upsilon(nS)(\pi^+\pi^-)_S}, \%$	$86.5 \pm 3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+6.5}_{-3.5}$	$44.0 \pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9 \pm 1.6^{+0.8}_{-2.8}$	_	_
	1.05		. 14

$$\begin{split} \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 109 \pm 27^{+35}_{-10} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 20 \pm 7^{+4}_{-3} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 737 \pm 126^{+188}_{-85} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 165 \pm 49^{+43}_{-20} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 438 \pm 92^{+92}_{-114} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 194 \pm 53^{+43}_{-25} \quad \text{fb} \end{split}$$



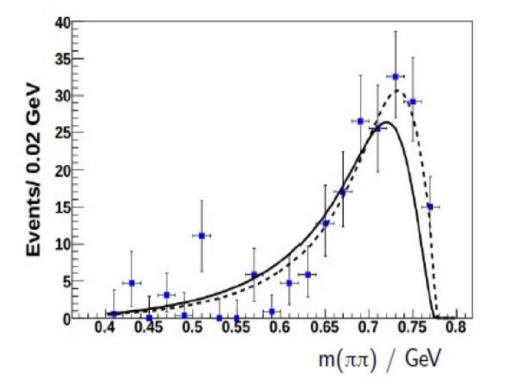
X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE


 $M_{X(3872)} = (3871.85\pm0.27(stat)\pm0.19(syst)) \text{ MeV}$ $B(B^+ \to K^+X(3872)) \times B(X(3872) \to \pi^+\pi^-J/\psi) =$ (8.63±0.82(stat)±0.52(syst))×10⁻⁶ $B(B0 \to K^0X(3872))/B(B^+ \to K^+X(3872)) =$ 0.50±0.14(stat)±0.04(syst) ΔM_{X[B0-B+]} = (-0.71±0.96(stat)±0.19(syst)) MeV.

- X(3872) observed in different decay modes, and <u>different production mechanisms</u>
- At $D\overline{D}^*$ threshold $E_B = 160\pm330$ keV, but no threshold effect
- $\Gamma \leq 1.2 \text{ MeV} \rightarrow \text{ too narrow!}$ Bugg, JPHG35 (2008) 075005
- The DD* decay of the X(3872) is dominant
 - ~ x10 than other X(3872) decay modes \rightarrow a molecule?
- Isospin-violating decay: $B(X(3872) \rightarrow J/\psi\rho)$, ~10² too large

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

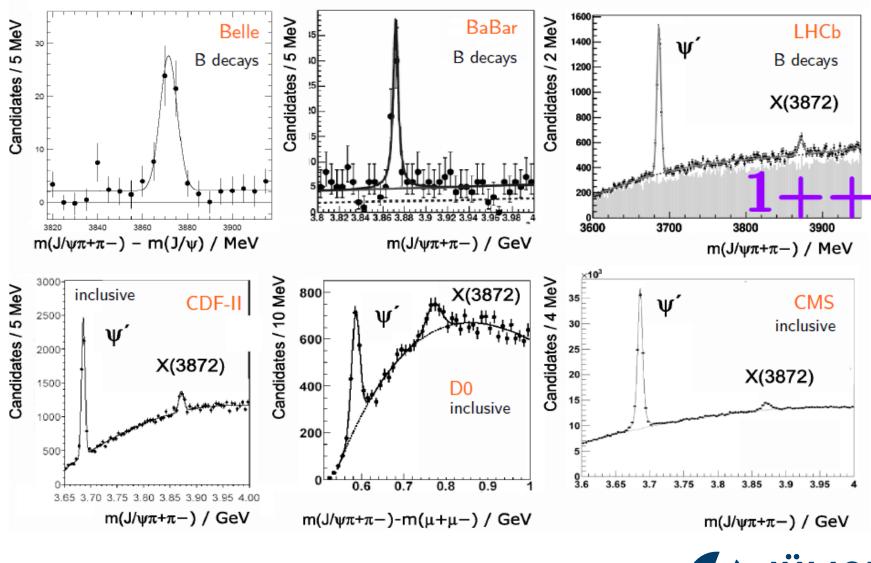
- Correlation function from MC
 Γ (output) = f(Γ (input))
- 3-dim fits validated with ψ width Γ_{ψ} =0.52±0.11 MeV (PDG: 0.304±0.009 MeV) \rightarrow bias 0.23±0.11 MeV
- procedure for upper limit: width in 3-dim fit fixed n_{signal} and n_{BG} floating → calculate likelihood
- Γ_{X(3872)} < 0.95 MeV + bias</p>



Reference channel: $B \rightarrow \psi(2s)\pi^+\pi^-$

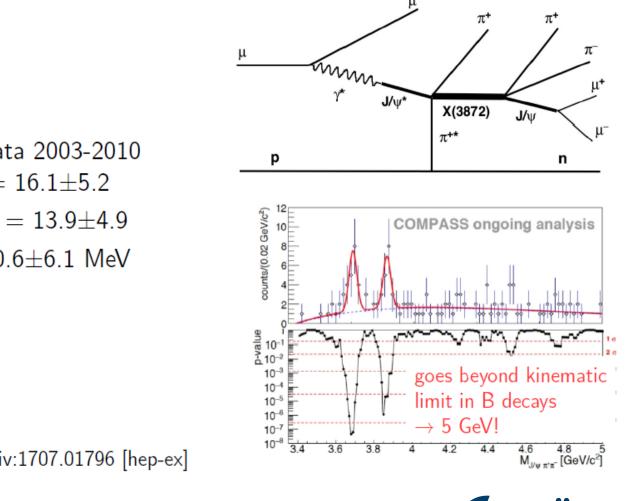
Mitglied der Helmholtz-Gemeinschaft

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE



- Isospin-violating decay: $B(X(3872) \rightarrow J/\psi\rho), \text{ factor } 10^2 \text{ too large}$ $J^{PC} = 1^{++}, \text{ predicted nearby } \chi_{c1}$
 - Barnes et al, PRD72 (2005) 054026
- Mass ≥50 MeV higher
- Width ≥100 larger

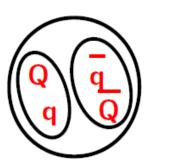
What can be done better to disclose the nature of the X(3872)?


X(3872)

Mitglied der Helmholtz-Gemeinschaft

Photoproduction of X(3872)

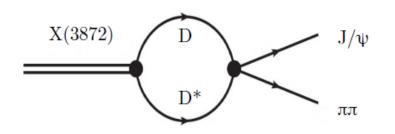
Muon data 2003-2010 $N_{\psi(2S)} = 16.1 \pm 5.2$ $N_{X(3872)} = 13.9{\pm}4.9$ $\sigma_M=20.6{\pm}6.1~\text{MeV}$


COMPASS, arXiv:1707.01796 [hep-ex]

Mitglied der Helmholtz-Gemeinschaft

Is the X(3872) exotic ?

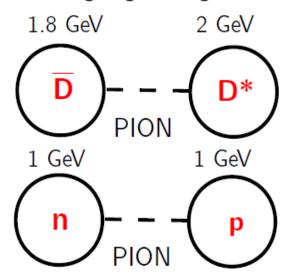
TETRAQUARK



 $[qQ]_8[qQ]_8$ Diquarks

are colored

Maiani, Riquer, Piccinini, Polosa, Burns; Ebert, Faustov, Galkin; Chiu, Hsieh; Ali, Hambrock, Wang


THRESHOLD CUSP

Bugg; Swanson

MOLECULE

Intriguing Analogon

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Guo, Hanhart, Meissner


courtesy of J.S. Lange, HIRSCHEGG2018

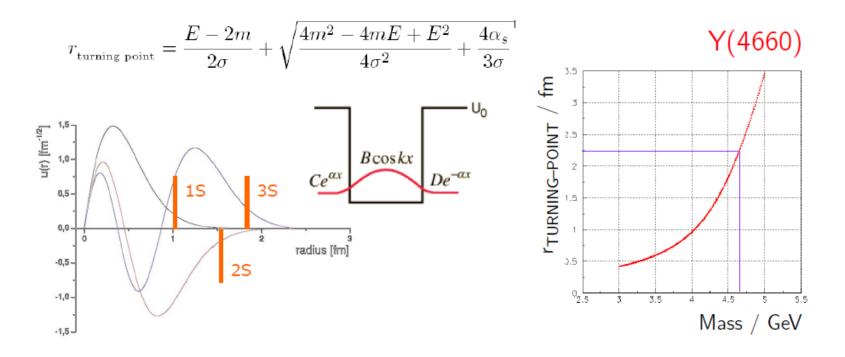
Mitglied der Helmholtz-Gemeinschaft

02- September 2019

Y STATES

Cornell–Potential

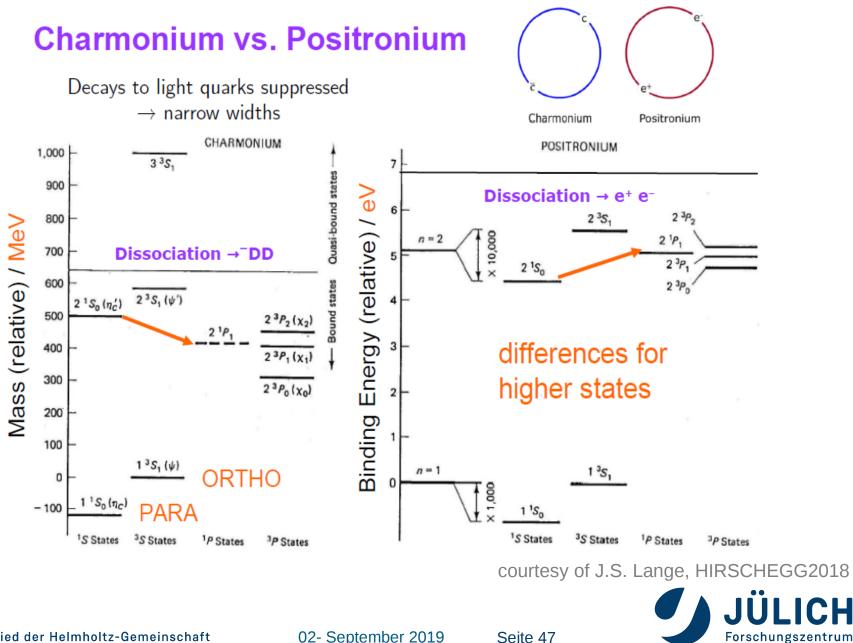
Eichten, Gottfried, et al. PRD 17(1978)3090 Barnes, Godfrey, Swanson, PRD 72(2005)054026


Coulomb-Potential *k*=0 5 GeV/fm + Confinement-Term $V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$ V(r) [GeV] spin-spin $+\frac{32\pi\alpha_s}{9m^2}\delta_r\vec{S_c}\vec{S_c}$ *k*=1.5 GeV/fm 0 spin-orbit $+\frac{1}{m^2}(\frac{2\alpha_s}{r^3}-\frac{k}{2r})\vec{L}\vec{S}$ $-\frac{4 \alpha_s}{3 r}$ V(r)tensor $+\frac{1}{m^2}\frac{4\alpha_s}{r^3}(\frac{3\vec{S_c}\vec{r}\cdot\vec{S_c}\vec{r}}{r^2}-\vec{S_c}\vec{S_c})$ solve Schrödinger equation (quark mass heavy \rightarrow \on-relativistic) -3 0,5 10 Notation →states r [fm] $n^{2S+1}L_{1}$ $\Psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$ $\left[-\frac{1}{m_a}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{m_a r^2} + V(r)\right)\right]R_{nl}(r) = E_{nl}R_{nl}(r)$ IPC

Mitglied der Helmholtz-Gemeinschaft

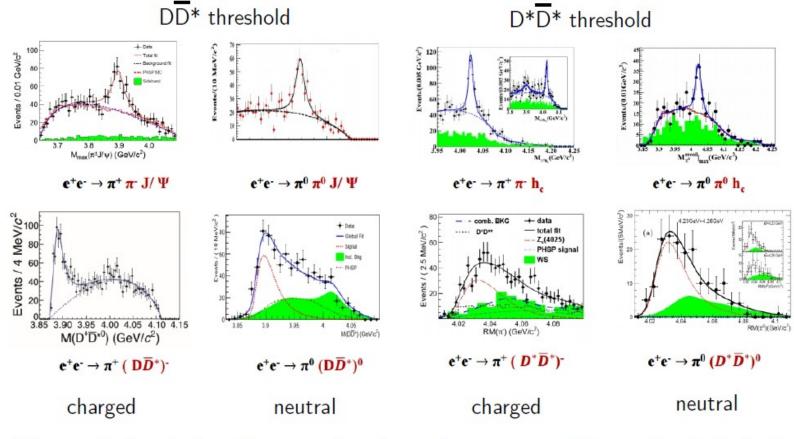
Seite 45

Forschungszentrum


Cornell potential: Wronski-Determinant must be zero at turning point

- m=4.660 GeV → turning point of wave function is 2.2 fm!
- large fraction of wave function in string breaking regime r>1.4 fm

courtesy of J.S. Lange, HIRSCHEGG2018



Mitglied der Helmholtz-Gemeinschaft

02- September 2019

Z STATES AT BESIII

Recent hot topic: neutral partners \rightarrow isospin triplets All of them 1+, whereever tested.

Mitglied der Helmholtz-Gemeinschaft

Z states and "confinement" ? All measured Z_c^+ masses are <u>above</u> $D^{(*)}\overline{D}^{(*)}$ thresholds

State	$m \; ({\rm MeV})$	Threshold	$\Delta m \; ({\rm MeV})$
$Z_{c}(3900)$	$3899.0{\pm}3.6{\pm}4.9$	$D^+\overline{D}^{0*}$	+22.4
$Z_{c}(3900)$	$3899.0{\pm}3.6{\pm}4.9$	$D^0\overline{D}^{+*}$	+23.9
$Z_{c}(3900)$	$3894.5{\pm}6.6{\pm}4.5$	$D^+\overline{D}^{0*}$	+17.9
$Z_{c}(3900)$	$3894.5{\pm}6.6{\pm}4.5$	$D^0\overline{D}^{+*}$	+19.4
$Z_{c}(3900)$	$3885 \pm 5 \pm 1$	$D^+\overline{D}^{0*}$	+8.4
$Z_{c}(3900)$	$3885{\pm}5{\pm}1~{\rm MeV}$	$D^0\overline{D}^{+*}$	+9.9
$Z_c(3885)$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$D^+\overline{D}^{0*}$	+7.4
$Z_c(3885)$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$D^0\overline{D}^{+*}$	+8.8
$Z_{c}(4020)$	$4022.9{\pm}0.8{\pm}2.7$	$D^{0*}\overline{D}^{\pm *}$	+5.6
$Z_c(4025)$	$4026.3 {\pm} 2.6 {\pm} 3.7$	$D^{0*}\overline{D}^{\pm *}$	+9.0
$Z_c(4032)^+$	$\simeq 4032.1{\pm}2.4$	$D^{0*}\overline{D}^{\pm *}$	+15.0

	possible?
threshold CUSP	no (must be @ threshold)
tetraquark	yes (spin–spin forces)
molecules	no, if bound state (pole below threshold, $E_B^{>0}$)

Mitglied der Helmholtz-Gemeinschaft