GlueX Experimental Efforts

Alexander Austregesilo for the GlueX Collaboration

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy (PWA11/ATHOS6)

> CBPF, Rio de Janeiro, Brazil September 2nd, 2019

Introduction

- Motivation
- GlueX Status

Early Results

- Beam Asymmetries for Pseudoscalar Meson Production
- Spin-Density Matrix Elements for Vector Mesons
- J/ ψ Cross Section and the Search for LHCb Pentaquarks

Ongoing Efforts

- Search for Exotic Hybrids
- The Future of GlueX

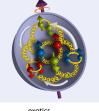
Introduction

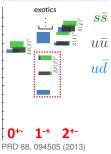
Carnegie Mellon University

Gluons: the central theme of nuclear physics

- Gluons are an essential part of hadronic matter
- Major contributions to mass and spin of hadron
- Underlying degree of freedom in the hadronic spectrum?

Introduction

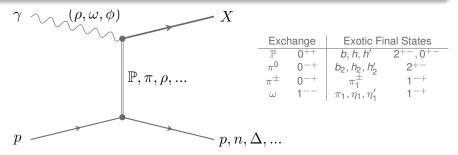

Gluons: the central theme of nuclear physics


- Gluons are an essential part of hadronic matter
- Major contributions to mass and spin of hadron
- Underlying degree of freedom in the hadronic spectrum?

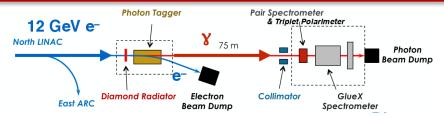
Meson Spectroscopy

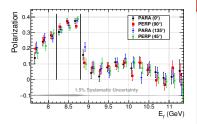
- Constituent quark model describes conventional mesons
- Exotic states: quantum numbers forbidden by qq̄
- Lattice QCD suggests several exotic nonets
- Sound experimental evidence for one single state: $\pi_1(1600)$
- Where are the other states?

 \Rightarrow Gluon Excitation Experiment part of global program



Photoproduction

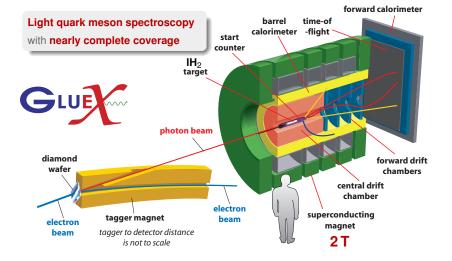



Complementary Production Mechanism

- Photon coupling via vector meson dominance
- Wide variety of quantum numbers I^GJ^{PC} accessible
- Photon polarization provides constraints on produced systems
- Understanding of **production mechanism** is prerequisite for interpretation
- Very limited photoproduction data existing at these energies

Photon Beam Line

Carnegie Mellon University



9 GeV Polarized Photon Beam

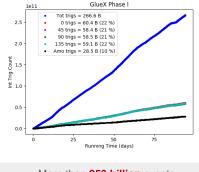
- Coherent Bremsstrahlung on thin diamond
 - Energy tagged by scattered electrons
- Collimator to suppress incoherent part
- Linear polarization in peak $P_{\gamma} \sim 40\%$, measured by Triplet polarimeter: $\gamma e^- \rightarrow e^- e^+ e^-$
- Rotate polarization into 4 different orientations
- Beam intensity: $1 5 \cdot 10^7 \gamma/s$ in peak

GlueX Detector

Carnegie Mellon University

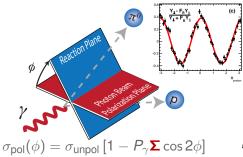
GlueX Data Taking

Spring 2016: GlueX Engineering Run

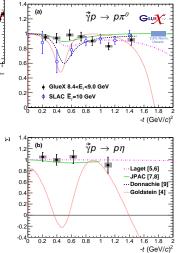

- Initial physics data (\approx 80 h, 2 pb⁻¹)
- First publication

Spring 2017

- Luminosity: 21 pb⁻¹
- Most results presented here


Spring + Fall 2018

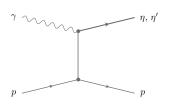
- Luminosity ≈90 pb⁻¹
- Completes first stage of GlueX
- Majority of data set processed, analysis started


More than 250 billion events and over 5 PB of data!

Pseudoscalar Beam Asymmetry First GlueX Publication: PRC 95, 042201 (2017)

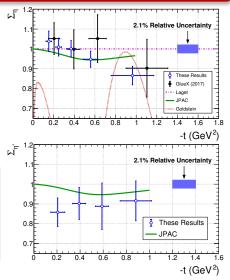
π^0 and η from 2016 Data

- Modeling production mechanism necessary for hybrid search
- Σ sensitive to exchanged J^{PC}
- Cancel systematic effects by rotating polarization plane by 90°
- First measurement for η in this energy



Carnegie

Mellon University


$\eta ~ {\rm and} ~ \eta' ~ {\rm Beam} ~ {\rm Asymmetries} \\ {\rm arXiv:1908.05563, ~ submitted ~ to} ~ {\rm PRC}$

Carnegie Mellon University

η and η' from 2017 Data


- Significantly higher precision for η
- First measurement for η' in this energy
- Dominated by natural-parity exchanges
- Weak dependence on -t
- Ratio sensitive to ss exchange

Charged Pseudoscalar Mesons Publications in Preparation

 $\gamma p \rightarrow K^+ \Sigma^0$

 $\gamma p \rightarrow \pi^- \Delta^{++}$

Charge Exchange Processes

- $\pi^{-}\Delta^{++}$ production: unnatural exchange favored for small -t
- No visible -t-dependence for $K^+\Sigma^0$, but significant contribution from *u*-channel

Vector Meson Photoproduction Spin-Density Matrix Elements

Carnegie Mellon University

- Full angular distribution of vector meson production and decay is described by spin-density matrix elements ρ^k_{ii}
- Linear beam polarization provides access to nine linearly independent SDMEs
- Intensity W is expressed as function of angles cos θ, φ, Φ and degree of polarization P_γ

$$P_{7}$$

Ť

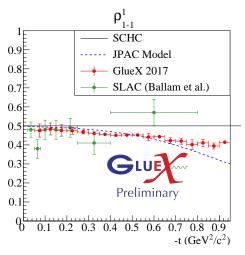
$$\begin{split} & \mathcal{W}(\cos\vartheta,\varphi,\Phi) = \mathcal{W}^{0}(\cos\vartheta,\varphi) - \mathcal{P}_{\gamma}\cos(2\Phi)\mathcal{W}^{1}(\cos\vartheta,\varphi) - \mathcal{P}_{\gamma}\sin(2\Phi)\mathcal{W}^{2}(\cos\vartheta,\varphi) \\ & \mathcal{W}^{0}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\frac{1}{2}(1-\rho_{00}^{0}) + \frac{1}{2}(3\rho_{00}^{0}-1)\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{0}\sin2\vartheta\cos\varphi - \rho_{1-1}^{0}\sin^{2}\vartheta\cos2\varphi \right) \\ & \mathcal{W}^{1}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\rho_{11}^{1}\sin^{2}\vartheta + \rho_{00}^{1}\cos^{2}\vartheta - \sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin2\vartheta\cos\varphi - \rho_{1-1}^{1}\sin^{2}\vartheta\cos2\varphi \right) \\ & \mathcal{W}^{2}(\cos\vartheta,\varphi) = \frac{3}{4\pi} \left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin2\vartheta\sin\varphi + \operatorname{Im}\rho_{1-1}^{2}\sin^{2}\vartheta\sin2\varphi \right) \end{split}$$

Schilling et al. [Nucl. Phy. B, 15 (1970) 397]

Extraction of SDMEs with Amplitude Analysis Technique

Carnegie Mellon University

Extended Maximum-Likelihood Fit

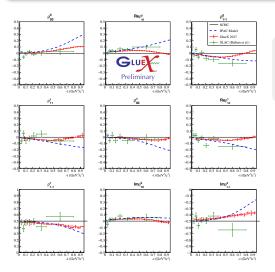

$$\ln L = \underbrace{\sum_{i=1}^{N} \ln l(\Omega_i)}_{\text{Signal Events}} - \underbrace{\sum_{j=1}^{M} \ln l(\Omega_j)}_{\text{Background}} - \underbrace{\int d\Omega \, l(\Omega) \, \eta(\Omega)}_{\text{Normalization Integral}}$$


- Maximize by choosing SDMEs such that the intensity fits the observed N events
- Background can be subtracted in likelihood
- Normalization integral evaluated by a phase-space Monte Carlo sample with the acceptance $\eta(\Omega) = 0/1$

Analysis Strategy

- Improve theoretical description of photoproduction process
- Understand and evaluate detector acceptance
- Both prerequisites for amplitude analysis of possible exotic signals

Result in Bins of Momentum Transfer t

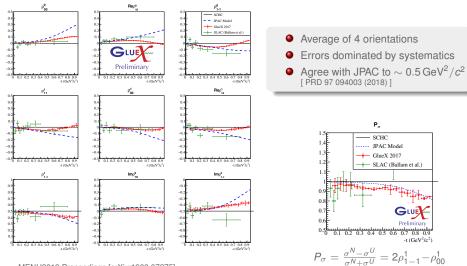


Carnegie Mellon

University

MENU2019 Proceedings [arXiv:1908.07275]

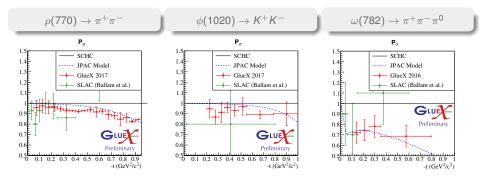
Result in Bins of Momentum Transfer $t_{\gamma p \rightarrow \rho(770)p}$


 Average of 4 orientations
 Errors dominated by systematics
 Agree with JPAC to ~ 0.5 GeV²/c² [PRD 97 094003 (2018)]

Carnegie

Mellon University

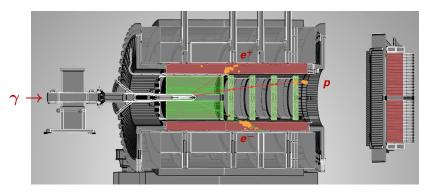
MENU2019 Proceedings [arXiv:1908.07275]


Result in Bins of Momentum Transfer $t_{\gamma p \rightarrow \rho(770)p}$

MENU2019 Proceedings [arXiv:1908.07275]

Carnegie Mellon

Parity Asymmetry

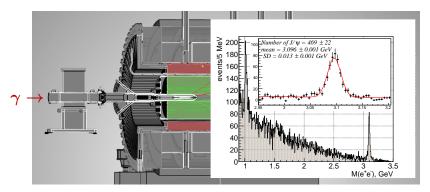

- Analysis in various stages, but all results improve previous measurements
- Generally good agreement with model predictions
- Natural-parity exchange dominates for all channels

MENU2019 Proceedings [arXiv:1908.07275]

Carnegie Mellon

Event Selection $\gamma p \rightarrow J/\psi p, J/\psi \rightarrow e^+e^-$

Threshold for J/ψ production: $E_{\gamma} = 8.22 \, {
m GeV}$

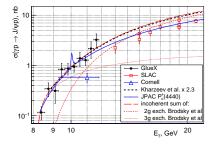


Electron identification: *E/p* in calorimeters, pion background suppression by 10⁻⁴
 Kinematic Fit with 0.1% precision on photon beam energy

Carnegie Mellon

Event Selection $\gamma p \rightarrow J/\psi p, J/\psi \rightarrow e^+e^-$

Threshold for J/ψ production: $E_{\gamma}=$ 8.22 GeV

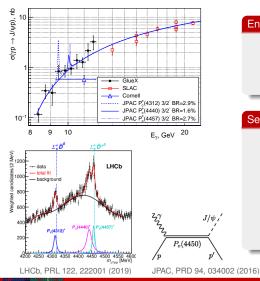


- Electron identification: E/p in calorimeters, pion background suppression by 10⁻⁴
- Kinematic Fit with 0.1% precision on photon beam energy
- Cross section normalized by non-resonant e⁺e⁻ production (Bethe-Heitler)

Carnegie Mellon

J/ ψ Cross Section at Threshold PRL 123, 072001 (2019): Editor's Suggestion!

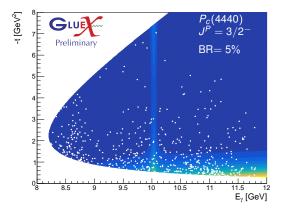
Carnegie Mellon University


Energy dependence probes

- Production dynamics
 Brodsky et al. [PRL 498 (2001)]
- Gluon distribution in proton Kharzeev et al. [NPA 661, 568 (1999)]

J/ψ Cross Section at Threshold PRL 123, 072001 (2019): Editor's Suggestion!

Carnegie Mellon University

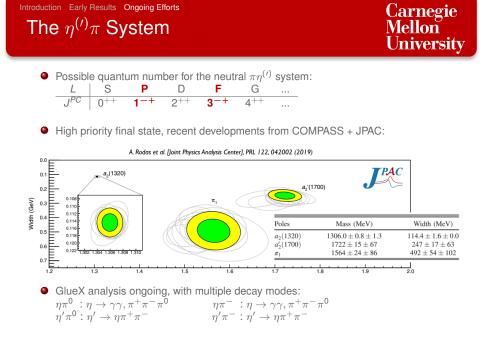


Energy dependence probes Production dynamics Brodsky et al. [PRL 498 (2001)] Gluon distribution in proton Kharzeev et al. [NPA 661, 568 (1999)] Search for Resonance in $J/\psi p$ No evidence for P⁺_c states • Upper limit for $J^{PC} = 3/2^{-1}$ State BR

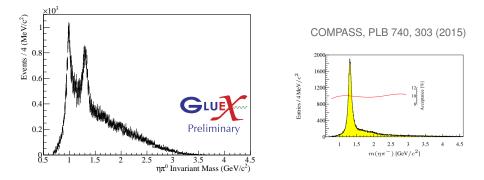
- $P_{c}^{+}(4312)3/2$ < 2.9% $P_{c}^{+}(4440)3/2-$ < 1.6% $P_{c}^{+}(4457)3/2-$ < 2.7%
- Disfavors hadrocharmonium and some molecular models

J/ ψ Cross Section at Threshold Search for LHCb P_c^+ states continued

- Beam energy resolution « energy bins
- 3x larger data set available
- Resonance has characteristic t distribution

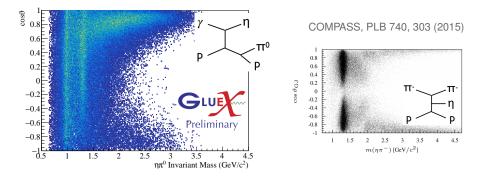

 \Rightarrow Unbinned analysis in E_{γ} and t


- Higher sensitivity
- Requirement: detailed understanding of beam spectrum and acceptance


Carnegie Mellon

University

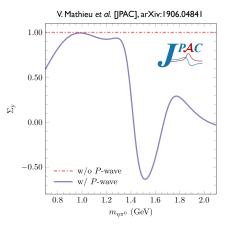
 No clear evidence for s-channel production



Comparable statistical precision, but different production and multiple decay modes

Carnegie Mellon

Comparable statistical precision, but different production and multiple decay modes


- Same exotic signal in presence of different backgrounds?
- Linear beam polarization provides enhanced sensitivity

Carnegie Mellon

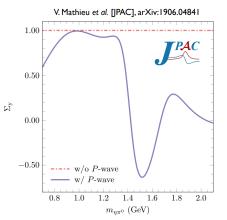
Analysis with Beam Polarization

Moment Analysis

- Model-independent
- Sensitive to exotic *P*-wave through interference
- Generalization of beam asymmetry

Carnegie Mellon

Analysis with Beam Polarization


Moment Analysis

- Model-independent
- Sensitive to exotic *P*-wave through interference
- Generalization of beam asymmetry

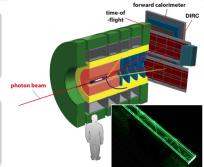
Amplitude Analysis

- Chung-Truman parametrization has to be extended with polarized beam [PRD 11, 633 (1975)]
- Collaboration with JPAC to develop new analysis techniques
- Test new methods on known systems (e.g. vector meson SDMEs)

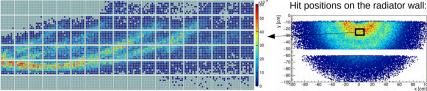
Carnegie

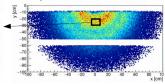
Mellon University

The Future of GlueX


Carnegie Mellon University

Detector Upgrade: GlueX DIRC


- Extend PID using 1/3 of BaBar DIRC
- New MAPMT photon cameras
- Partially commissioned in Spring 2019


Second data taking campaign

- Start Fall 2019, approved for at least 4 years
- Emphasis on final states with strangeness
- Higher luminosity: rare processes

Summary and Outlook

Carnegie Mellon University

Status

- Successful commissioning and early physics analyses
- Full data set for initial phase of GlueX taken
- Understanding of detector acceptance and systematics
 Comparison with previous measurements and models

Study production mechanism

- \Rightarrow Cross sections, beam asymmetries and spin-density matrix elements
- 2 paper published, 1 submitted, 2 more underway

Summary and Outlook

Carnegie Mellon University

Status

- Successful commissioning and early physics analyses
- Full data set for initial phase of GlueX taken
- Understanding of detector acceptance and systematics
 Comparison with previous measurements and models
- Study **production mechanism** ⇒ Cross sections, beam asymmetries and spin-density matrix elements
- 2 paper published, 1 submitted, 2 more underway

Ongoing Efforts

- Precise measurement of known resonances and ultimately hybrid candidates
- Robust analysis framework in collaboration with theory
- Second phase starts this fall: focus on meson spectrum with strangeness content

Carnegie Mellon University

Carnegie Mellon University

