The Jülich-Bonn coupled-channel model and the \wedge decay parameter α

Michael Döring, Deborah Rönchen, H. Haberzettl, J. Haidenbauer, U.-G. Meißner, K. Nakayama; D. Ireland, D. Glazier, Maxim Mai

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC
Jefferson Lab

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy, PWA11/ATHOS6

Supported by

DOE DE-AC05-06OR23177
\& DE-SC0016582
[several slides by
D. Rönchen and M. Mai]

Degrees of freedom: Quarks or hadrons?

The Missing Resonance Problem

- above 1.8 GeV much more states are predicted than observed, "Missing resonance problem"

Lattice calculation (single hadron approximation):

[Edwards et al., Phys.Rev. D84 (2011)]

- only 15 established N^{*} states (PDG 2015)
- $\sim 48 \%$ of the states have ${ }^{* * * *}$ or ${ }^{* * *}$ status (PDG 1982: 58% with ${ }^{* * * *}$ or ${ }^{* * *}$)
N^{*} spectrum in a relativistic quark model:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000
Overviews: Crede, Roberts, Rep. Prog. Phys. 76 (2013) Aznauryan et al., Int. J. Mod. Phys. E 22 (2013)

Hybrid Baryons

[parts of slide courtesy of \underline{V}. Burkert]

- QCD at low energies
- Non-perturbative dynamics

Q1: how many are there?
Q2: what are they?
\rightarrow mass generation \& confinement
\rightarrow rich spectrum of excited states (missing resonance problem)
(2-quark/3-quark, hadron molecules, exotics,...)

New results in dynamical quark picture

```
Quark-diquark with reduced pseudoscalar + vector diquarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)
```


Poincaré-covariant analysis of heavyquark baryons, Qin, Roberts, Schmidt, PRD (2018)
Spectrum of light- and heavy-baryons, Qin, Roberts, Schmidt, Few Body Syst. 60 (2019)

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution
 [Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]

Gauge invariance

- Exact unitary meson-baryon scattering amplitude T with parameters, fixed to reproduce:
- πN-partial wave S_{11} and S_{31} for $\sqrt{s}<1560 \mathrm{MeV}$

Arndt et al. (2012)

- $\pi^{-} p \rightarrow \eta n$ differential cross sections

Prakhov et al. (2005)

\rightarrow Making the "Missing resonance problem" worse ?!

Phenomenology

Resonances or not?

$\pi N \rightarrow \pi N$
EPECUR/SAID PRC 93 (2016)

[CBELSA/TAPS EPJA 53 (2017)]

Current state in η photoproduction: Multipoles from different groups

From: EtaMAID2018
[Tiator et al., EPJA54 (2018)] Analyzes:

$$
\begin{gathered}
\gamma p \rightarrow \eta p \\
\gamma p \rightarrow \eta^{\prime} p \\
\gamma n \rightarrow \eta n \\
\gamma n \rightarrow \eta^{\prime} n
\end{gathered}
$$

EtaMAID2018
BnGa [PLB 772 (2017)]
JuBo (dotted) [EPJA 54 (2018)] KSU [1804.06031]

Review: Krusche, Wilkins, [Prog.Part.Nucl.Phys. 80 (2014)]

The Julich-Bonn Dynamical Coupled-Channel Approach

e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions
The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

JuBo: Channels and Analytic Structure

Channels included:

- (2-body) unitarity and analyticity respected

- 3-body $\pi \pi N$ channel:
- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
\square branch points move into complex plane

JuBo: Data base

- $\pi N \rightarrow X:>7,000$ data points $(\pi N \rightarrow \pi N:$ GW-SAID WI08 (ED solution))
- $\gamma N \rightarrow X$:

Reaction	Observables (\# data points)	p./channel
$\gamma p \rightarrow \pi^{0} p$	$d \sigma / d \Omega$ (18721), $\Sigma(2927), P(768), T(1404), \Delta \sigma_{31}(140)$,	
	G (393), H (225), E (467), F (397), $C_{x_{x_{L}^{\prime}}}(74), C_{z_{L}^{\prime}}$ (26)	25,542
$\gamma p \rightarrow \pi^{+} n$	$d \sigma / d \Omega$ (5961), $\Sigma(1456), P(265), T$ (718), $\Delta \sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\begin{aligned} & \gamma p \rightarrow \eta p \\ & \gamma p \rightarrow K^{+} \boldsymbol{\Lambda} \end{aligned}$	$d \sigma / d \Omega$ (9112), $\Sigma(403), P(7), T$ (144), F (144), E (129)	9,939
	$d \sigma / d \Omega$ (2478), P (1612), $\Sigma(459), T$ (383),	
	$C_{x^{\prime}}(121), C_{z^{\prime}}(123), O_{x^{\prime}}(66), O_{z^{\prime}}(66), O_{x}(314), O_{z}(314)$,	5,936
$\gamma p \rightarrow K^{+} \Sigma^{0}$	$d \sigma / d \Omega$ (4271), P (422), Σ (280), T (127), $C_{x^{\prime}, z^{\prime}}(188), O_{x, z}(254)$	5,542
$\gamma p \rightarrow K^{0} \Sigma^{+}$	$d \sigma / d \Omega$ (242), P (78)	320
	in total	57,027

Selected Fit Results (I)

- $\gamma p \rightarrow K^{+} \Lambda:$
http://collaborations.fz-juelich.de/ikp/meson-baryon/main

data: Paterson (CLAS) PRC 93, 065201 (2016), red line: fit JüBo2019

Selected Fit Results (II)

- $\gamma p \rightarrow K^{+} \Lambda:$
http://collaborations.fz-juelich.de/ikp/meson-baryon/main

data: Paterson (CLAS) PRC 93, 065201 (2016), red line: fit JüBo2019

Fit to world data on $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$ ($\sim 10^{5}$ exp. points) [Rönchen, M.D. et al., EPJA 49 (2013)]

Selected results for $\pi^{-} p \rightarrow K^{0} \Lambda$ [almost complete experiment]

Re-measuring hadron-induced reactions

Fits: D. Rönchen, M.D., et al., EPJ A49 (2013)

Resonance Couplings

Resonance states: Poles in the T-matrix on the $2^{\text {nd }}$ Riemann sheet

- $\operatorname{Re}\left(E_{0}\right)=$ "mass", $-2 \operatorname{lm}\left(E_{0}\right)=$ "width"
- elastic πN residue $\left(\left|r_{\pi N}\right|, \theta_{\pi N \rightarrow \pi N}\right)$, normalized residues for inelastic channels $\left(\sqrt{\Gamma_{\pi N} \Gamma_{\mu}} / \Gamma_{\text {tot }}, \theta_{\pi N \rightarrow \mu}\right)$
- photocouplings at the pole: $\tilde{A}_{\text {pole }}^{h}=A_{\text {pole }}^{h} e^{i \vartheta^{h}}, h=1 / 2,3 / 2$

Inclusion of $\gamma p \rightarrow K^{+} \Lambda$ in JüBo ("JuBo2017-1"): 3 additional states

	$z_{0}[\mathrm{MeV}]$	$\frac{\Gamma_{\pi N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{\eta N}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Lambda}}{\Gamma_{\text {tot }}}$	$\frac{\Gamma_{K \Sigma}}{\Gamma_{\text {tot }}}$
$\mathrm{N}(1900) 3 / 2^{+}$	$1923-i 108.4$	1.5%	0.78%	2.99%	69.5%
$\mathrm{~N}(2060) 5 / 2^{-}$	$1924-i 100.4$	0.35%	0.15%	13.47%	27.02%
$\Delta(2190) \mathbf{1} / 2^{+}$	$2191-i 103.0$	33.12%			3.78%

- $N(1900) 3 / 2^{+}$: s-channel resonances, seen in many other analyses of kaon photoproduction (BnGa), 3 stars in PDG
- $N(2060) 5 / 2^{-}$: dynamically generated, 2 stars in PDG, seen e.g. by BnGa
- $\Delta\left(21901 / 2^{+}\right.$: dyn. gen., no equivalent PDG state

Resonances and other structures

CLAS/JuBo (M. D., D. Rönchen), Phys.Lett. B755 (2016)

- First-ever measurement of observable E in η photoproduction, enabled through the CLAS FROST target

Is this a new narrow baryonic resonance?
\rightarrow Conventional explanation in terms of interference effects. Systematic elimination of resonance through model selection \rightarrow Talk by K. Nakayama on Friday [PRD99 (2019)]

Ireland, M.D., Glazier, Haidenbauer, Mai, Murray-Smith, D.~Rönchen, arXiv:1904.07616 [nucl-ex]
$\bigcirc \Lambda$ decays weakly to $\boldsymbol{p} \boldsymbol{\pi}^{+}$
○ The decay parameter: α_{-}

- essential for many modern experiments
- affects decay parameters of other hyperons

```
    \Xi }\mp@subsup{}{}{0}\mathrm{ DECAY PARAMETERS
    See the "Note on Baryon Decay Parameters" ir
\alpha(\mp@subsup{\Xi}{}{0})}\mp@subsup{\alpha}{-}{\prime}(\boldsymbol{\Lambda}
This is a product of the }\mp@subsup{\Xi}{}{0}->\Lambda\mp@subsup{\pi}{}{0}\mathrm{ and }\Lambda->p\mp@subsup{\pi}{}{-}\mathrm{ as!
VALUE
-0.261 }\pm0.00
                                    EVTS
                                    OUR AVERAGE
```

- impacts LO parameters of SU(3) baryon ChPT
- essential for ($\gamma p \rightarrow K^{+} \Lambda$) - new measurement by (CLAS)

THIS TALK: ESTIMATE α_{-}

Where a matters (1):

Baryon spectroscopy

Where a matters (2):
$\mathrm{p} \overline{\mathrm{p}} \rightarrow \wedge \bar{\wedge}$

Klempt et al., Phys. Rept. (2002)

Where a matters (3):
 Global \wedge polarization in nuclear collisions

STAR Au-Au collision

Average $\Lambda(\bar{\Lambda})$ polarization in collisions...

Where a matters (4):
$\wedge(\bar{\Lambda})$ Transverse polarization with ATLAS

ATLAS coll., PRD (2015)

Measurements of α

Recent press coverage

BES III: Direct measurement

$\Lambda \bar{\Lambda}$ production process.

$$
\begin{aligned}
& \mathcal{W}\left(\xi ; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}\right) \\
& =1+\alpha_{\psi} \cos ^{2} \theta_{\Lambda}+\alpha_{-} \alpha_{+}\left[\sin ^{2} \theta_{\Lambda}\left(n_{1, x} n_{2, x}-\alpha_{\psi} n_{1, y} n_{2, y}\right)\right. \\
& \left.+\left(\cos ^{2} \theta_{\Lambda}+\alpha_{\psi}\right) n_{1, z} n_{2, z}\right] \\
& +\alpha_{-} \alpha_{+} \sqrt{1-\alpha_{\psi}^{2}} \cos (\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda}\left(n_{1, x} n_{2, z}+n_{1, z} n_{2, x}\right) \\
& +\sqrt{1-\alpha_{\psi}^{2}} \sin (\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda}\left(\alpha_{-} n_{1, y}+\alpha_{+} n_{2, y}\right) \\
& \wedge \bar{\Lambda} \text { intensity distribution }
\end{aligned}
$$

BES III: Direct measurement

Table 1 | Summary of the results

Parameters	This work (BES III)	Previous results (PDG)
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	$0.469 \pm 0.027\left(\right.$ ref. $\left.^{14}\right)$
$\Delta \Phi$	$42.4 \pm 0.6 \pm 0.5^{\circ}$	-
α_{-}	$0.750 \pm 0.009 \pm 0.004$	$0.642 \pm 0.013\left(\right.$ ref. $\left.^{6}\right)$
α_{+}	$-0.758 \pm 0.010 \pm 0.007$	$-0.71 \pm 0.08\left(\mathrm{ref.}^{6}\right)$
$\bar{\alpha}_{0}$	$-0.692 \pm 0.016 \pm 0.006$	-
$A_{C P}$	$-0.006 \pm 0.012 \pm 0.007$	$0.006 \pm 0.021\left(\mathrm{ref.}^{6}\right)$
$\bar{\alpha}_{0} / \alpha_{+}$	$0.913 \pm 0.028 \pm 0.012$	-

$>5 \sigma$ difference between new result and PDG ${ }^{12}$.

Kaon photoproduction (this work)

Experimental setup

Intensity

$$
\begin{aligned}
(L P): & 1+\alpha_{-} \cos \theta_{y} \mathbf{P} \\
& \quad-p_{L}^{\gamma} \cos 2 \phi \mathbf{\Sigma} \\
& -\alpha_{-} p_{L}^{\gamma} \cos 2 \phi \cos \theta_{y} \mathbf{T} \\
& -\alpha_{-} p_{L}^{\gamma} \sin 2 \phi \cos \theta_{x} \mathbf{O}_{\mathbf{x}} \\
& -\alpha_{-} p_{L}^{\gamma} \sin 2 \phi \cos \theta_{z} \mathbf{O}_{\mathbf{z}}
\end{aligned}
$$

$$
(C P): 1+\alpha_{-} \cos \theta_{y} \mathbf{P}
$$

$$
+p_{C}^{\gamma} \alpha_{-} \cos \theta_{x} \mathbf{C}_{\mathbf{x}}
$$

$$
+p_{C}^{\gamma} \alpha_{-} \cos \theta_{z} \mathbf{C}_{\mathbf{z}}
$$

- Kinematic variables: θ_{i}, W_{i}
- 1 fundamental: α_{-}, and 2 calibration parameters: $p_{L}^{\gamma}, p_{C}^{\gamma}$

$$
\text { BUT: observables are not independent } \longrightarrow \text { FIERZ IDENTITIES }
$$

Kaon photoproduction and Fierz identities

- Helicity space maps on Clifford algebra > Fierz identities:

$$
\boldsymbol{\Sigma} \mathbf{P}-\mathbf{C}_{\mathbf{x}} \mathbf{O}_{\mathbf{z}}+\mathbf{C}_{\mathbf{z}} \mathbf{O}_{\mathbf{x}}-\mathbf{T}=0 \& \mathbf{O}_{\mathbf{x}}^{2}+\mathbf{O}_{\mathbf{z}}^{2}+\mathbf{C}_{\mathbf{x}}^{2}+\mathbf{C}_{\mathbf{z}}^{2}+\boldsymbol{\Sigma}^{2}-\mathbf{T}^{2}+\mathbf{P}^{2}=1
$$

- A-priori:
\Rightarrow Observables are not independent
\Rightarrow determine $\boldsymbol{\alpha}_{-}$such that FI are fulfilled
\Rightarrow statistically non-trivial question

Statistical Analysis

Definition of Fierz value and its distribution

○ Define random variables:

$$
\mathcal{N}\left[\mu, \sigma^{2}\right] \text { from CLAS measurements }
$$

$$
\mathscr{F}_{i}^{(1)}=a^{2} l^{2}\left(\widehat{O}_{x, i}^{2}+\mathcal{O}_{z, i}^{2}-\mathscr{T}_{i}^{2}\right)+a^{2} c^{2}\left(\mathscr{C}_{x, i}^{2}+\mathscr{C}_{z, i}^{2}\right)+l^{2} \Sigma_{i}^{2}+a^{2} \mathscr{P}_{i}^{2}
$$

...similarly for second F.I.

- FV, a, l, c become random variables, but:
A. Scaling: $\left\{\begin{array}{l}\text { Data and errors are scaled with a, I, c } \\ \text { Normalization of } \operatorname{PDF}\left[a^{2} \mathscr{P}_{i}^{2}\right]\end{array}\right.$
B. Most "observables" and scale parameters enter quadratically \& Is there a closed form of PDF[$\left.\mathscr{F}_{i}\right]$?

Statistical challenges (1)

A. Scaling

Imagine linear case: $\mathscr{F}:=a \mathcal{O}=1$ $\mathcal{O}=\mathcal{N}\left[\mu, \sigma^{2}\right]$

$$
p_{\mathscr{F}}(f, a)=\int d O p(O) \delta(a O-f)
$$

$$
p_{\mathscr{F}}(1, a)=\frac{1}{a \sqrt{2 \pi} \mu \sigma} e^{-\frac{(1-a \mu)^{2}}{2(a \sigma)^{2}}}
$$

PDF of O suggests $a=2$

PDF of \mathscr{F} peaks at $a<2$

\Longrightarrow remove a-dependence from the normalization

Statistical challenges (1)

A. Scaling

Imagine linear case: $\mathscr{F}:=a \mathcal{O}=1$
$\mathcal{O}=\mathcal{N}\left[\mu, \sigma^{2}\right]$

$$
p_{\mathscr{F}}(f, a)=\int d O p(O) \delta(a O-f)
$$

PDF of O suggests $a=2$

$$
p_{\mathscr{F}}(1, a)=\frac{1}{a \sqrt{2 \pi} \mu \sigma} e^{-\frac{(1-a \mu)^{2}}{2(a \sigma)^{2}}}
$$

conditional probability

PDF of \mathscr{F} peaks at $a<2$

\Longrightarrow remove a-dependence from the normalization

Statistical challenges (2)

B. Non-linearity

$$
\mathcal{O} \sim \mathscr{N}\left[\mu, \sigma^{2}\right] \Longrightarrow y=\mathcal{O}^{2} \sim N C_{\chi^{2}}
$$

non-central chi squared distribution

$$
\mu_{\mathscr{Y}}=\mu_{\overparen{O}}^{2}+\sigma_{\overparen{O}}^{2}, \quad \sigma_{\mathscr{Y}}^{2}=2 \sigma_{\overparen{O}}^{2}\left(2 \mu_{\mathscr{O}}^{2}+\sigma_{\overparen{O}}^{2}\right)
$$

\Longrightarrow Expectation value of Fierz identity $\neq 1$

Ultimately-blind test on synthetic data

re-sampling test of both Fierz identities:

- 300 kin. points
- 200000 samples
- $a_{\text {test }}=0.55$

Results

Overall result

Summary

- Complicated phenomenology of excited baryons through coupled-channel and three-body effects
\rightarrow Conceptual progress needed to connect to lattice QCD calculations.
\rightarrow D. Wilson's talk on Thursday

- Global analyses of pion and photon-induced reactions
\rightarrow Jülich-Bonn analysis finds/confirms new states in analysis of photoproduction data
- Data-driven new value for α_{-}determined. Changes polarization measurements at CLAS (baryon spectroscopy) but has impact in wide areas of hadron physics

Spare slides

Spectrum of N* resonances

- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction

Spectrum of N* resonances

- Most new resonances by Bonn-Gatchina group; [Slide: V. Crede/Nstar 2017, slight modifications]
- Many from kaon photoproduction
[See also: Crede, Roberts, Rep. Prog. Phys. 76 (2013)]

Visible influence of new states

$N(1900) 3 / 2^{+}, N(2060) 5 / 2^{-}$in $\sigma_{\text {tot }}$ in $\pi^{-} p \rightarrow K^{+} \Sigma^{-}$

