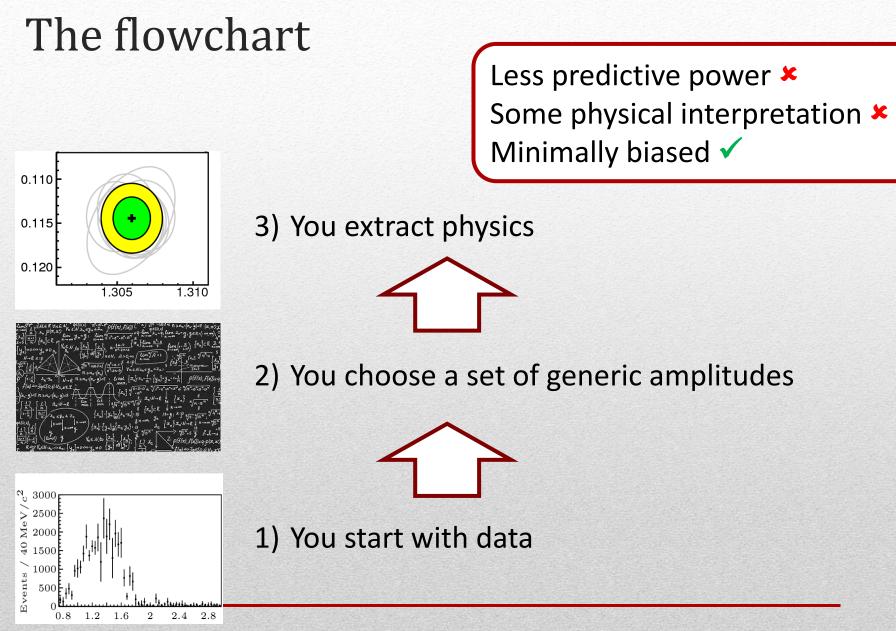
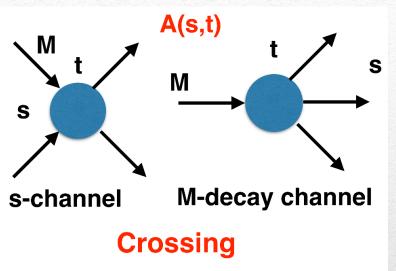
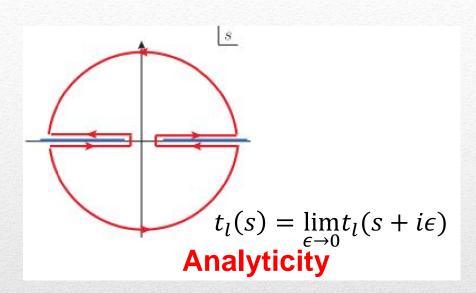
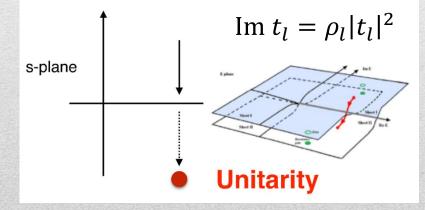
Dispersive constraints on amplitude determination


Alessandro Pilloni

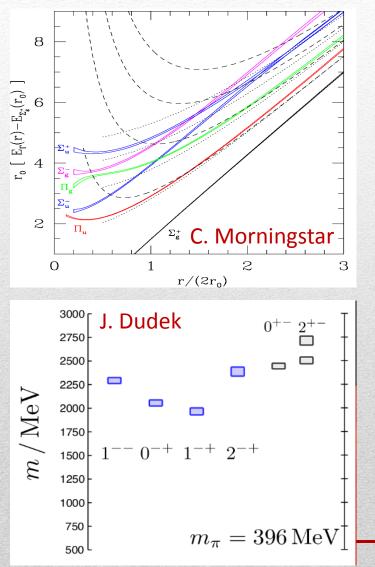
PWA/ATHOS, Rio de Janeiro, September 5th, 2019





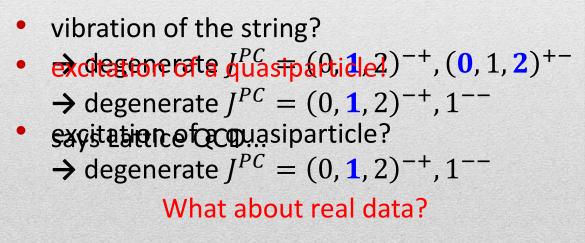

In life and physics you need a bit of luck....

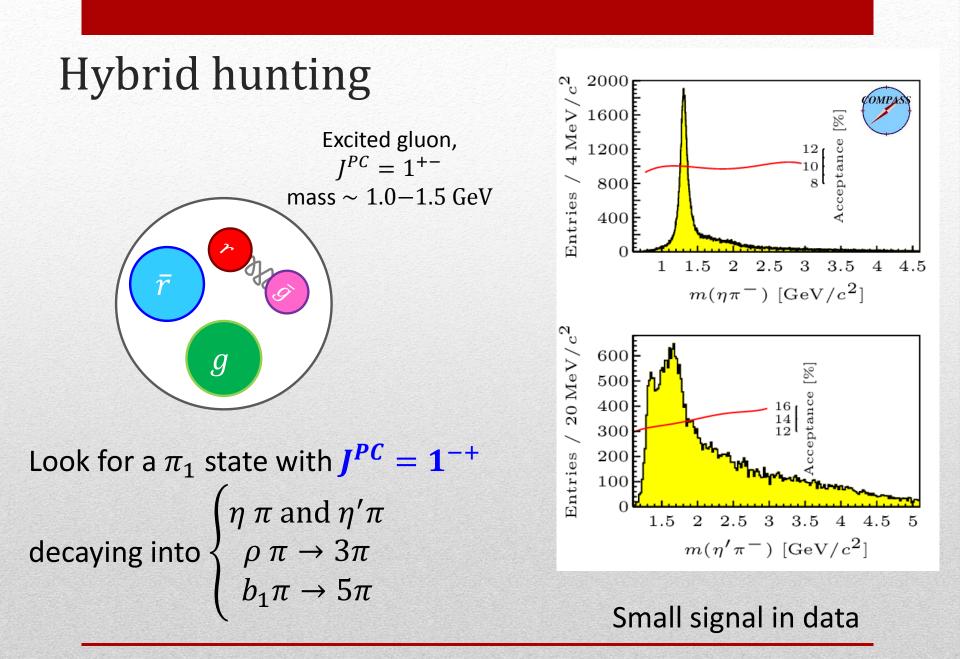
S-Matrix principles

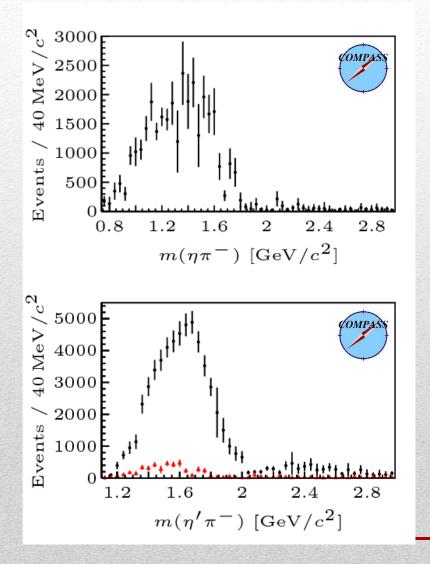

+ Lorentz, discrete & global symmetries

These are constraints the amplitudes have to satisfy, but do not fix the dynamics

They can be imposed with an increasing amount of rigor, to extract robust physics information


The «background» phenomena can be effectively parameterized in a controlled way


Learning about confinement

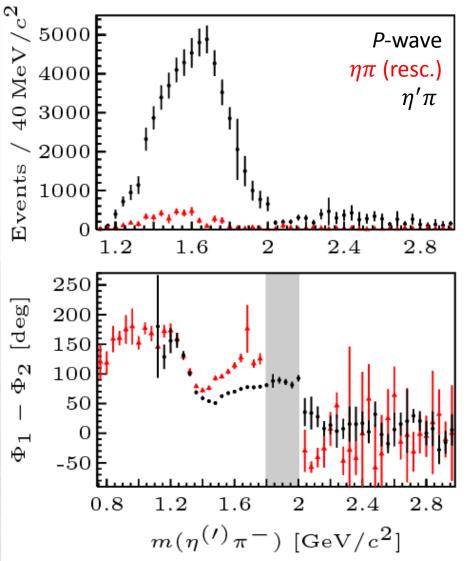

If quarks were infinitely heavy, gluonic field is confined in a string

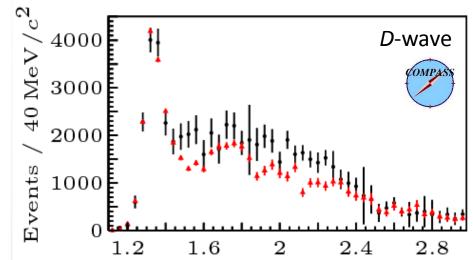
What is a constituent gluon?

Two hybrid states???

$\pi_1(1400)$ $I^G(J^{PC}) = 1^-(1^{-+})$

See also the mini-review under non- q q candidates in PDG 2006, Journal of Physics G33 1 (2006).


	00) MASS 00) WIDTH	1354 ± 25 MeV (S = 1.8) 330 ± 35 MeV				
	Modes	555 <u>T</u> 55 MO 1				
Mode		Fraction (Γ_i / Γ)	Scale Factor Conf. Level			
Γ_1	$\eta \pi^0$	seen				
Γ ₂	$\eta \pi^-$	seen				
Γ3	n' π					


Neither lattice nor models predict two 1^{-+} states in this region!

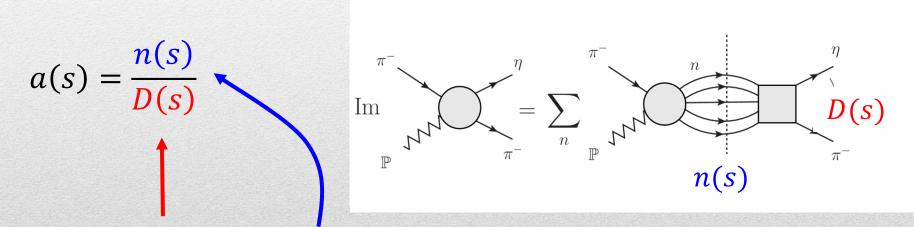
$\pi_1(160)$	00) MASS	1662 ⁺⁸ ₋₉ MeV				
$\pi_1(160)$	00) WIDTH	241 ± 40 MeV (S = 1.4)				
Decay	Modes					
Mode		Fraction (Γ_i / Γ)	Scale Factor Conf. Level			
Γ_1	πππ	seen				
Γ ₂	$ ho^0 \pi^-$	seen				
Γ ₃	$f_2(1270)\pi^-$	not seen				
Γ ₄	$b_1(1235)\pi$	seen				
Γ ₅	$\eta'(958)\pi^{-}$	seen				
Γ_6	$f_1(1285)\pi$	seen				

Data

COMPASS, PLB740, 303-311

A sharp drop appears at 2 GeV in *P*-wave intensity and phase

No convincing physical motivation for it


It affects the position of the $a'_2(1700)$

We decided to fit up to 2 GeV only

Amplitudes for $\eta^{(\prime)}\pi$

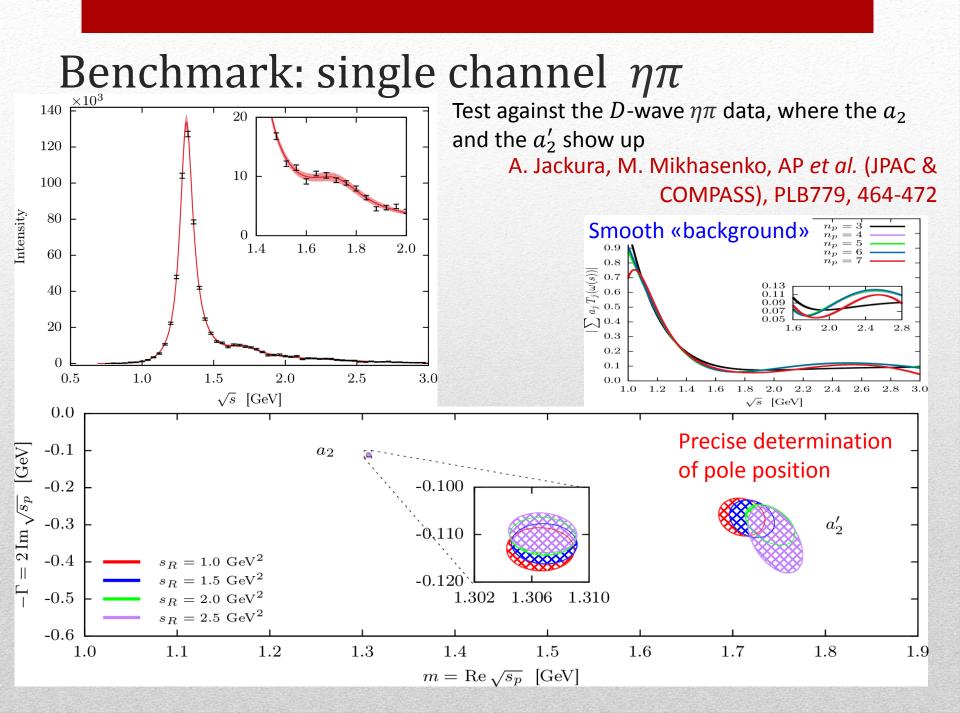
We build the partial wave amplitudes according to the N/D method

Jackura, Mikhasenko, AP *et al.* (JPAC & COMPASS), PLB Rodas, AP *et al.* (JPAC), PRL

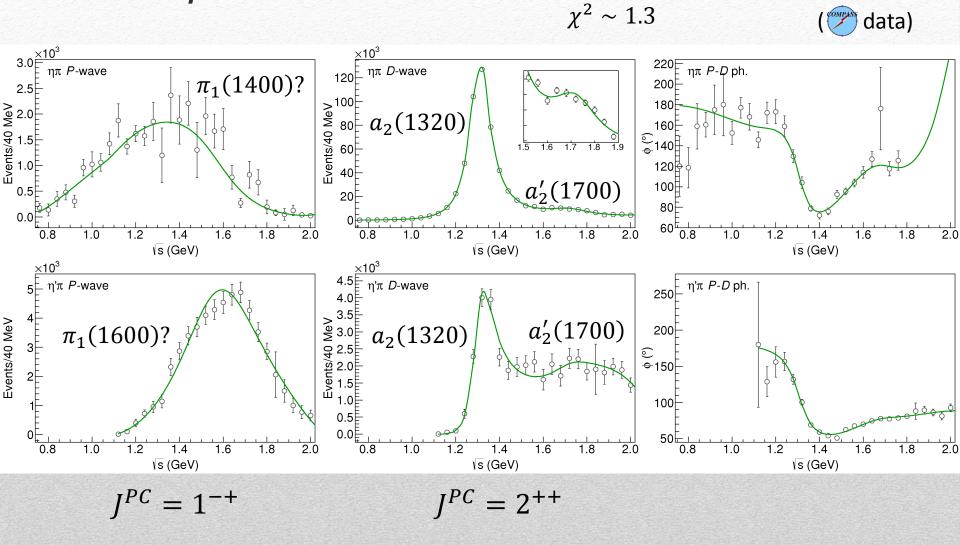
The $\mathcal{D}(s)$ contains all the Final State Interactions end, smooth constrained by unitarity \rightarrow universal

Coupled channel: the model

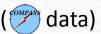
Two channels, $i, k = \eta \pi, \eta' \pi$ Two waves, J = P, D 37 fit parameters

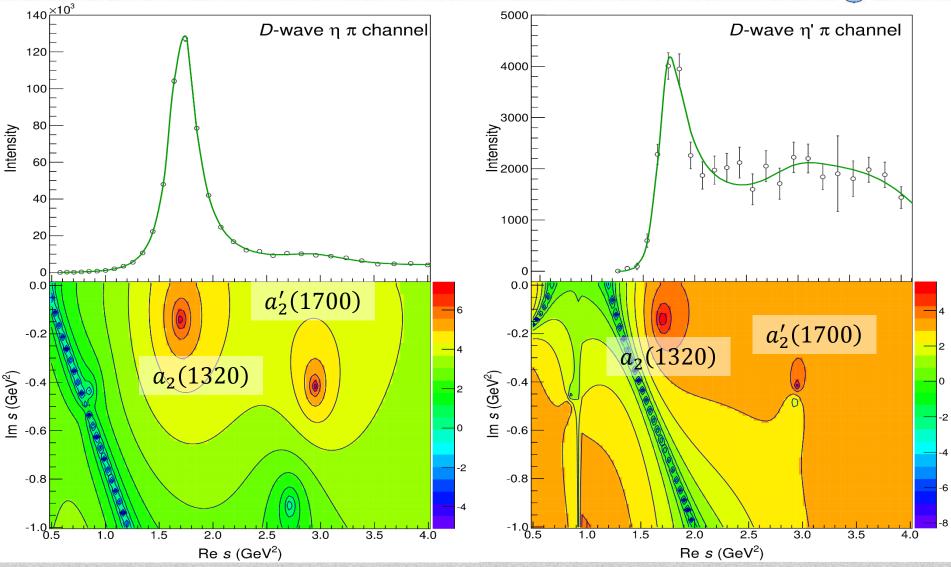

$$D_{ki}^{J}(s) = \left[K^{J}(s)^{-1}\right]_{ki} - \frac{s}{\pi} \int_{s_{k}}^{\infty} ds' \frac{\rho N_{ki}^{J}(s')}{s'(s'-s-i\epsilon)}$$

$$K_{ki}^{J}(s) = \sum_{R} \frac{g_{k}^{(R)} g_{i}^{(R)}}{m_{R}^{2} - s} + c_{ki}^{J} + d_{ki}^{J} s$$

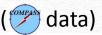

1 *K*-matrix pole for the P-wave 2 *K*-matrix poles for the D-wave

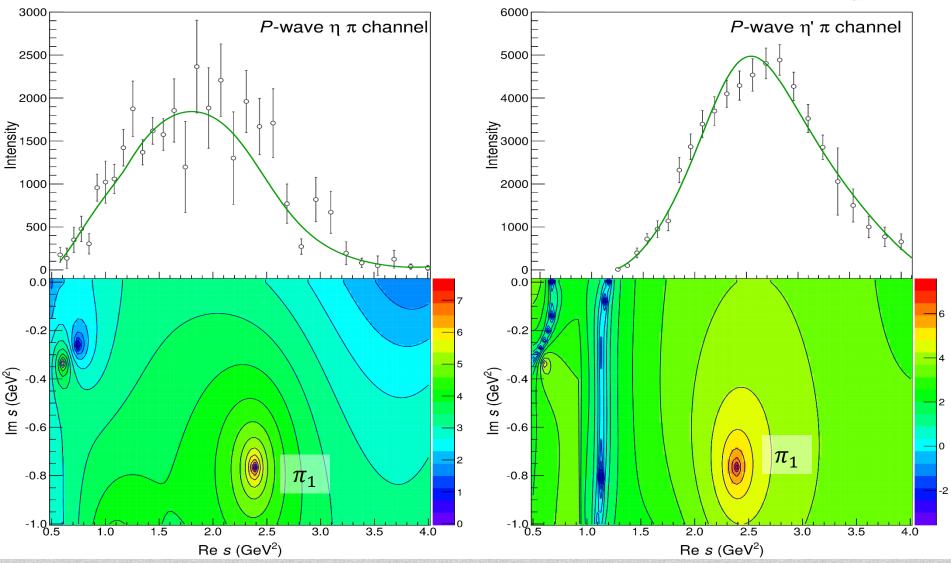
$$oN_{ki}^{J}(s') = \delta_{ki} \frac{\lambda^{J+1/2} \left(s', m_{\eta^{(\prime)}}^{2}, m_{\pi}^{2}\right)}{\left(s'+s_{R}\right)^{2J+1+\alpha}} \qquad n_{k}^{J}(s) = \sum_{n=0}^{3} a_{n}^{J,k} T_{n}\left(\frac{s}{s+s_{0}}\right)$$

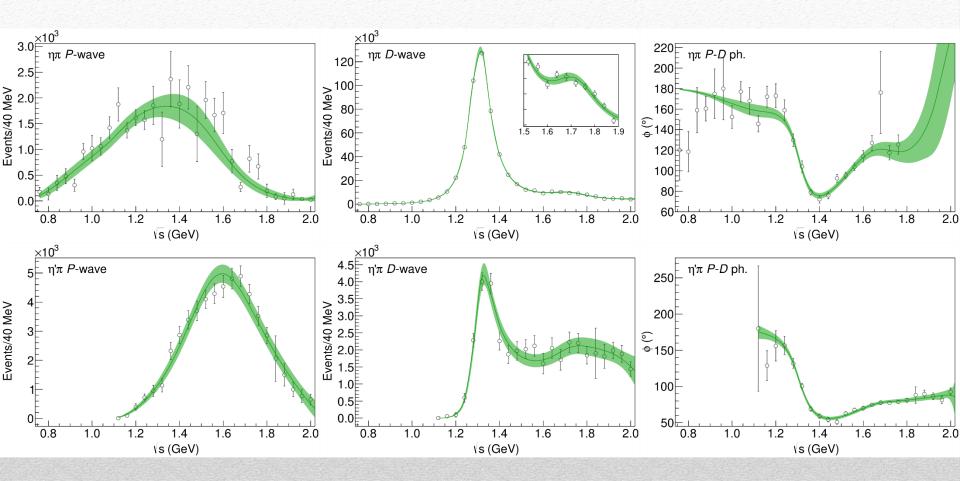

Left-hand scale (Blatt-Weisskopf radius) $s_R = s_0 = 1 \text{ GeV}^2$ $\alpha = 2$, 3rd order polynomial for $n_k^J(s)$



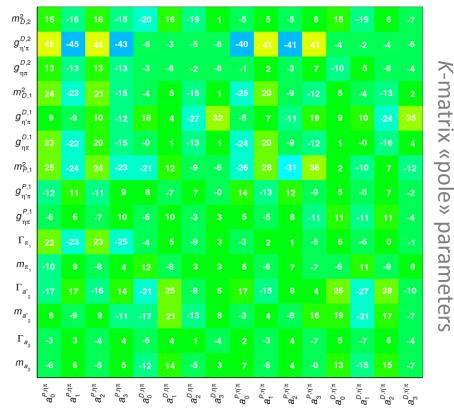
Fit to $\eta^{(\prime)}\pi$



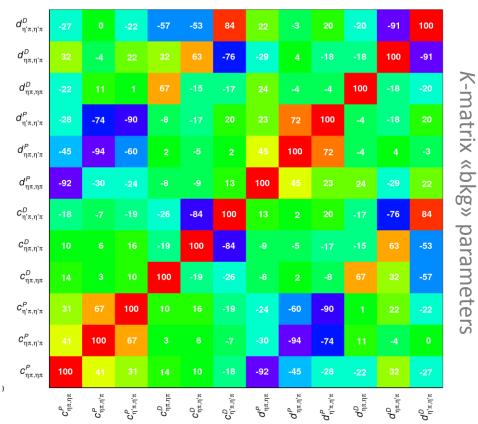

Pole hunting



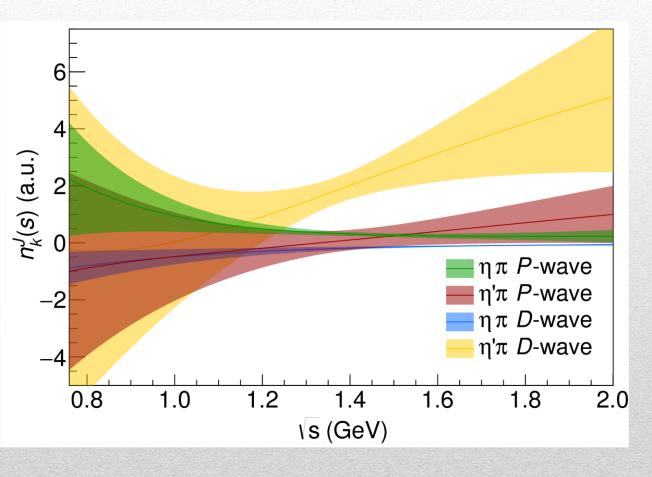
Pole hunting


Statistical Bootstrap

Correlations

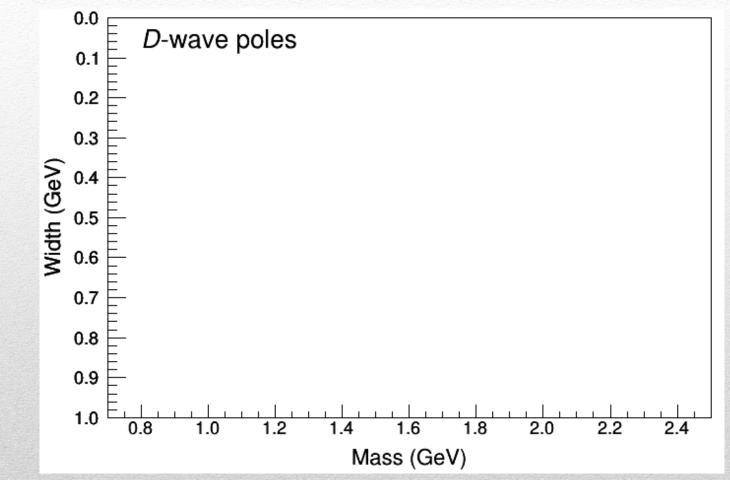

Denominator parameters uncorrelated with the numerator ones \checkmark

Production (numerator) parameters

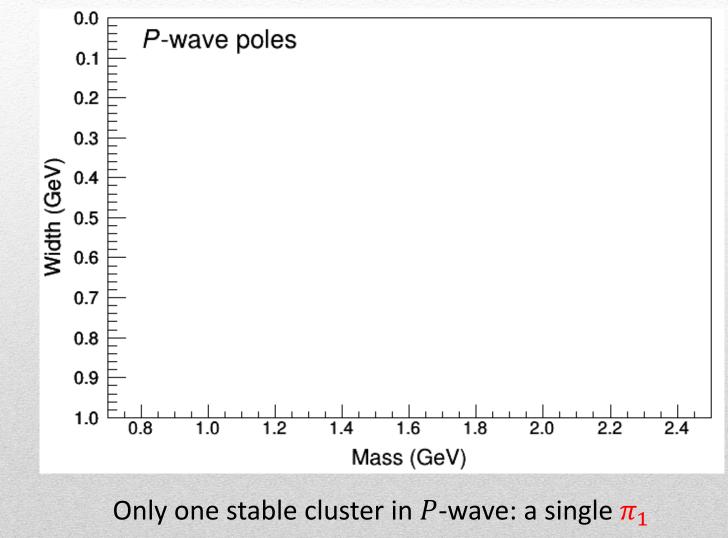


Denominator parameters uncorrelated between *P*- and *D*-wave ✓

K-matrix «bkg» parameters


Polynomial in the numerator

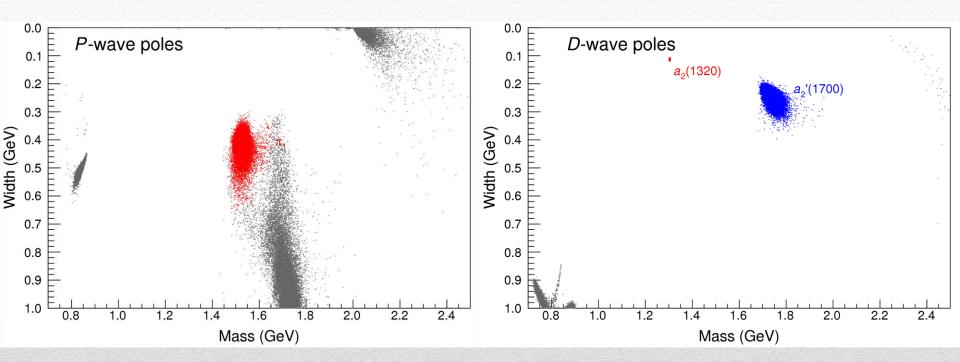
The numerator should be smooth and have variation milder that the typical resonance width


This happens indeed

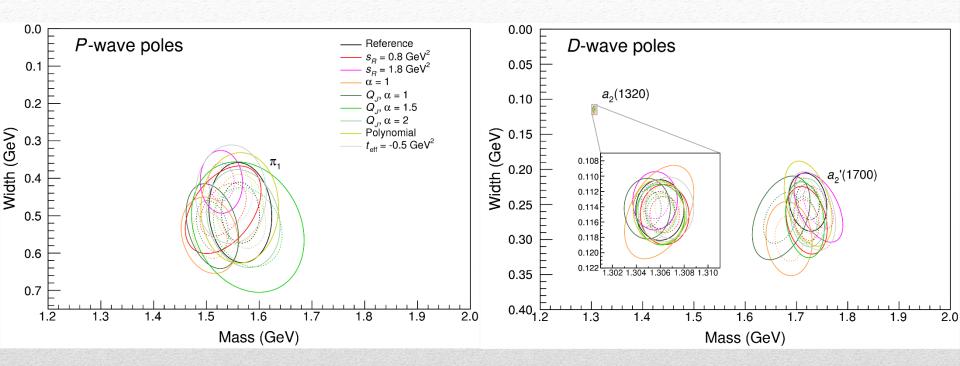
Statistical Bootstrap

For each fit, we search poles: two clusters in *D*-wave: $a_2(1320)$ and $a'_2(1700)$

Statistical Bootstrap

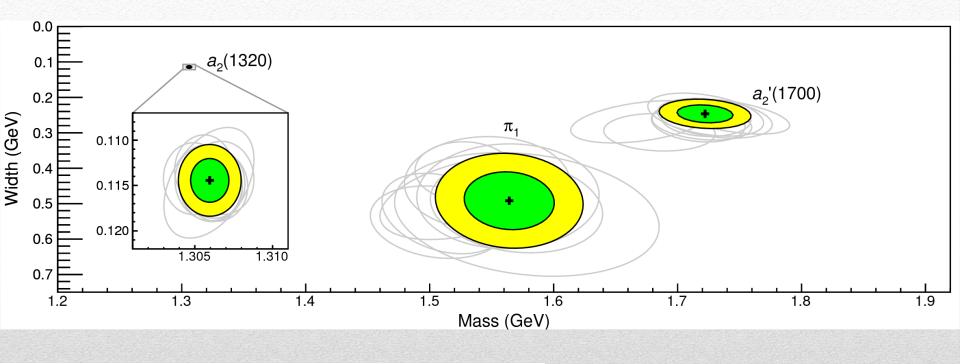


Change of functional form and parameters in the denominator


$$\rho N_{ki}^{J}(s') = g \,\delta_{ki} \,\frac{\lambda^{J+1/2} \left(s', m_{\eta^{(\prime)}}^2, m_{\pi}^2\right)}{\left(s'+s_R\right)^{2J+1+\alpha}}$$

- Default: $s_R = 1 \text{ GeV}^2$. We try $s_R = 0.8$, 1.8 GeV²
- Default: $\alpha = 2$. We try $\alpha = 1$
- We also try a different function: $\rho N_{ki}^J(s') = g \,\delta_{ki} \, \frac{Q_J(z_{s'})}{s'^{\alpha} \lambda^{1/2}(s', m_{n'}), m_{\pi})}$ with $\alpha = 2, 1.5, 1$
- Change of parameters in the numerator
 - Default: $t_{eff} = -0.1 \text{ GeV}^2$. We try $t_{eff} = -0.5 \text{ GeV}^2$
 - Default: 3rd order polynomial. We try 4th

Bootstrap for $s_R = 1.8 \text{ GeV}^2$



Our skepticism about a second pole in the relevant region is confirmed: It is unstable and not trustable

For each class, the maximum deviation of mass and width is taken as a systematic error Deviation smaller than the statistical error are neglected Systematic of different classes are summed in quadrature

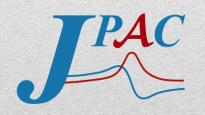
Final results

Poles	Mass (MeV)	Width (MeV)	Ag
$a_2(1320)$	$1306.0 \pm 0.8 \pm 1.3$	$114.4 \pm 1.6 \pm 0.0$	
$a_2'(1700)$	$1722\pm15\pm67$	$247 \pm 17 \pm 63$	Th
π_1	$1564 \pm 24 \pm 86$	$492\pm54\pm102$	of

Agreement with theory is restored

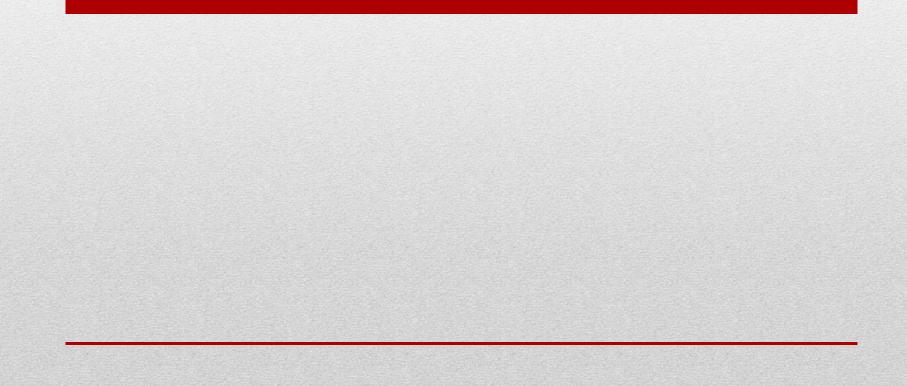
That's the most rigorous extraction of an exotic meson available so far!

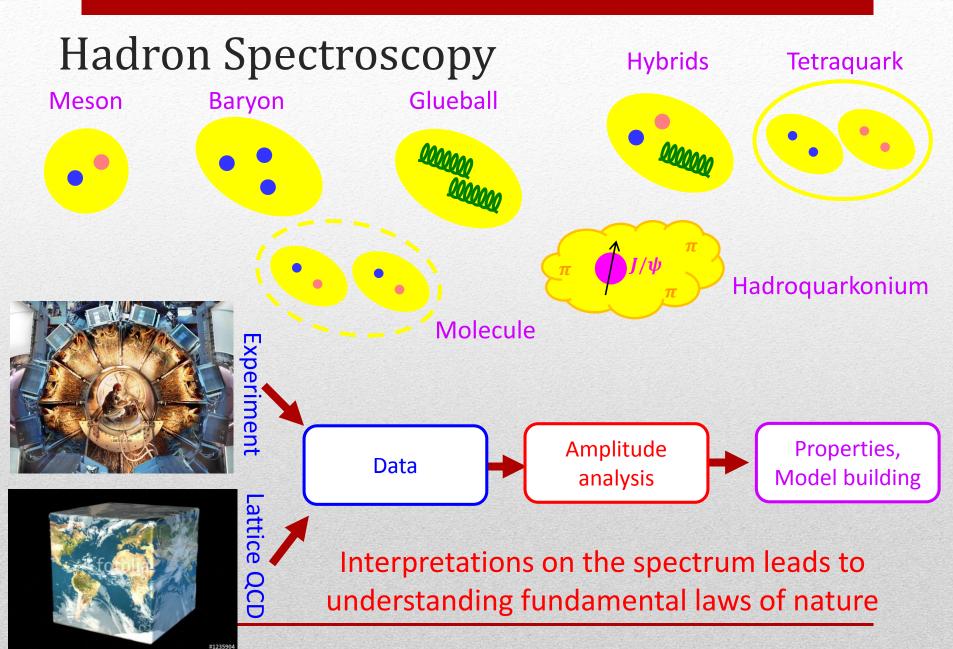
Conclusions

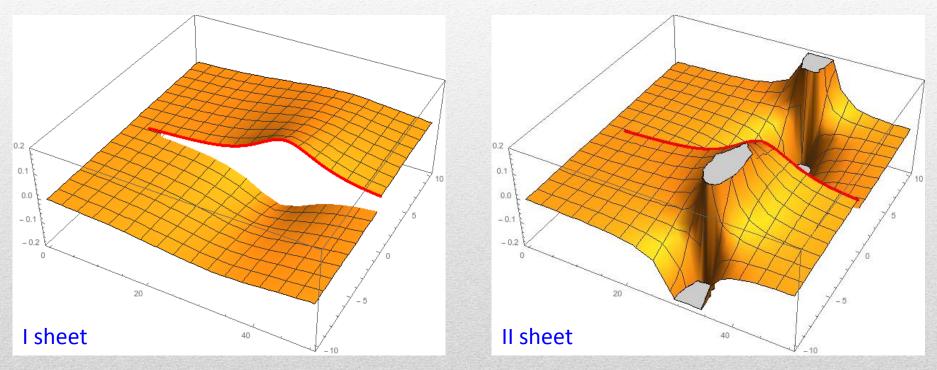

Bottom-up approaches are important!

- They allow us to get the most out of high statistics data!
- The study of analytic stuctrures offer insights ino the nature of resonances
- Dispersive methods can improve the rigour and robustness in the extraction of the spectrum

Thank you!


Joint Physics Analysis Center




BACKUP

Unitarity & Pole hunting

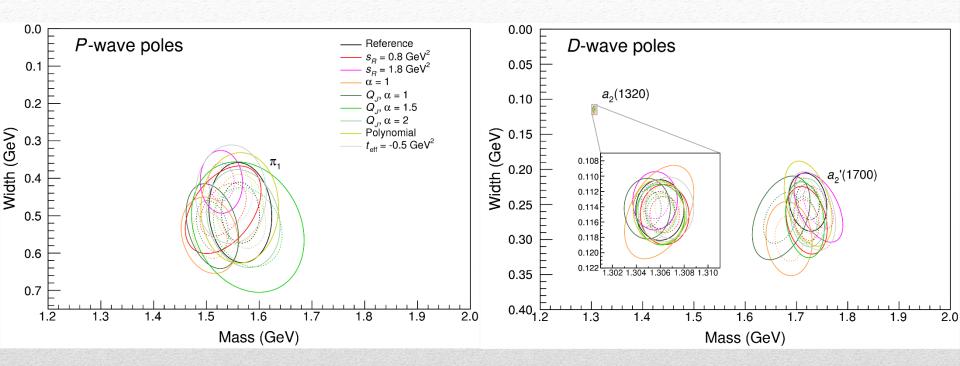
Unitarity creates a branch cut on the real axis, two sheets continuosly connected

Finding resonances means writing analytic amplitude, and hunting for poles in the complex plane

Correlations

Production (numerator) parameters

				. 00			(100
$d^D_{\eta'\pi,\eta'\pi}$	53	-52		-50	-15	7	-17	-4	-38		-37		6	-11	-3	-6	100
$d^{D}_{\eta\pi,\eta'\pi}$	-46	45	-44	41	24	-19	22	1	40	-39		-31	-18	23	-5	9	
$d^D_{\eta\pi,\eta\pi}$	1	-0	-1	4	-19	32	-21	14	-10	7	-1	-11	34	-30	15	-1	60
$d^P_{\eta'\pi,\eta'\pi}$	6	-6	5	-4	-6	4	-4	-0	-17	19	-23	30	4	-6	4	-3	-40
$d^P_{\eta\pi,\eta'\pi}$	-13	13	-13	11	3	-0	-0	4	-4	6	-12	22	1	2	-0	4	
$d^P_{\eta\pi,\eta\pi}$	15	-14	13	-10	-2	9	-19	10	-25	23	-17	4	9	-4	-12	9	20
$\mathcal{C}^{D}_{\eta'\pi,\eta'\pi}$	51	-51		-51	-2	-4	-8	-2	-39	40	-41	42	-2	0	-8	0	
$\mathcal{C}^{D}_{\eta\pi,\eta'\pi}$	-35		-35		8	-5	5	1	37	-38		-39	-5	8	-4	4	20
$c^D_{\eta\pi,\eta\pi}$	-11	11	-11	11	-2	14	-1	10	2	-2	2	-3	16	-11	13	2	
$\mathcal{C}^{\mathcal{P}}_{\eta'\pi,\eta'\pi}$	-8	8	-6	4	8	-6	6	0	24	-25	28	-30	-1	2	1	1	
$\mathcal{C}^{\mathcal{P}}_{\eta\pi,\eta'\pi}$	12	-11	10	-8	-5	3	-1	-3	6	-8	15	-26	3	-6	4	-6	-80
$c^P_{\eta\pi,\eta\pi}$	-19	18	-17	14	-2	-5	20	-10	30	-27	21	-8	-5	-0	18	-12	
	$a_0^{P,\eta\pi}$	$a_1^{P,\eta\pi}$	$a_2^{P,\eta\pi}$	$a_3^{P,\mathfrak{n}\pi}$	$a_0^{D,\eta\pi}$	$a_1^{D,\eta\pi}$	$a_2^{D,\eta\pi}$	$a_3^{D,\eta\pi}$	$a_{_0}^{P,\mathfrak{n}'\pi}$	$a_1^{P,\eta'\pi}$	$a_2^{P, \eta' \pi}$	$a_3^{P,\mathfrak{n}'\pi}$	$a_0^{D,\eta'\pi}$	$a_1^{D,\eta'\pi}$	$a_2^{D,\eta'\pi}$	$a_3^{D,\eta'\pi}$	


Denominator parameters not very correlated with the numerator ones ✓

Correlations

K-matrix «bkg» parameters

$m_{D,2}^{\circ}$ -10 5 -12 -77 13 21 12 .4 13 20 .55 61 $g_{\eta,2}^{\circ,2}$ -20 -6 -21 -30 -35 96 15 2 19 18 -81 86 $g_{\eta,1}^{\circ,2}$ -6 -3 .11 .98 18 26 4 -11 11 -66 .34 .59 $m_{D,1}^{\circ,1}$ -58 277 4 -13 .1 9 45 .26 .15 37 .34 .25 $g_{\eta,1}^{\circ,1}$ -16 -9 .32 .18 31 -0 11 10 .35 .14 .29 $g_{\eta,1}^{\circ,1}$ -16 .9 .32 .18 .31 .0 .11 .10 .32 .14 .29 $g_{\eta,1}^{\circ,1}$.10 .23 .49 .43 .35 .50 .7 .17 .39 .23 .32 .32 .32 .33 $g_{\eta,1}^{\circ,1}$.10 .23 .41 .19 .4	100
$g_{\eta\pi}^{D,2}$ -6-3-11-9818264-111-66-3459 $m_{D,1}^{2}$ -58274-13-1945266-15373425 $g_{\eta\pi}^{D,1}$ -1-16-9-32-1831-01110-35-1429 $g_{\eta\pi}^{D,1}$ -1-16-9-32-1831-01110-35-1429 $g_{\eta\pi}^{D,1}$ -54308-14-1941-29-1932-32-3224 $g_{\eta\pi}^{D,1}$ -54308-14-1941-29-1932-32-3224 $g_{\eta\pi}^{D,1}$ -54308-14-11941-29-1932-32-32-24 $g_{\eta\pi}^{D,1}$ -10-2349-43-35507173923-5260 $g_{\eta\pi}^{P,1}$ -10-2349-43-3550721-12-16302516-1821 $g_{\eta\pi}^{P,1}$ -144224242114-1812-11-42521-22 $f_{\eta\pi}^{A}$ -23-37-31177-127-25-26-393-16-31 $g_{\eta\pi}^{P,1}$ -31-37-32-31-31-31	100
$m_{D,1}^2$ -58274-13-1945-26-1537-3425 $g_{\eta_{\pi}}^{D,1}$ -1-16-9-32-1831-01110-35-1429 $g_{\eta_{\pi}}^{D,1}$ -54308-14-1941-29-1932-3224 $g_{\eta_{\pi}}^{D,1}$ -54308-14-1941-29-1932-3224 $m_{P_1}^2$ -10-23-49-43-355071739-23-5260 $g_{\eta_{\pi}}^{P,1}$ -7-1518209-18827221218-23 $g_{\eta_{\pi}}^{P,1}$ 1442224216-172112-1817715 Γ_{π_1} 206864-13681519682566661821 m_{π_1} 22-63911142821163025102121 $\Gamma_{a_2}^2$ 26636413232121212121212121212121 $m_{\pi_1}^2$ 29-27-1714211-16302516312121 $m_{a_2}^2$ 21-1127-113322638238	
$m_{D,1}^2$ -58274-13-1945-26-1537-3425 $g_{\eta_{\pi}}^{D,1}$ -1-16-9-32-1831-01110-35-1429 $g_{\eta_{\pi}}^{D,1}$ -54308-14-1941-29-1932-3224 $g_{\eta_{\pi}}^{D,1}$ -54308-14-1941-29-1932-3224 $m_{P_1}^2$ -10-23-49-43-355071739-23-5260 $g_{\eta_{\pi}}^{P,1}$ -7-1518209-18827221218-23 $g_{\eta_{\pi}}^{P,1}$ 1442224216-172112-1817715 Γ_{π_1} 206864-13681519682566661821 m_{π_1} 22-63911142821163025102121 $\Gamma_{a_2}^2$ 26636413232121212121212121212121 $m_{\pi_1}^2$ 29-27-1714211-16302516312121 $m_{a_2}^2$ 21-1127-113322638238	
$g_{\eta\pi}^{D,1}$ -54308-14-1941-29-1932-3224 $m_{P,1}^2$ -10-23-49-43-355071739-23-5260 $g_{\eta\pi}^{P,1}$ -7-1518209-18882722121823 $g_{\eta\pi}^{P,1}$ 1442242166-172112-1817715 Γ_{π_1} 206864-1368151968-5666-1821 m_{π_1} -22-6391114-181211-42521-22 $\Gamma_{a'_2}$ 29-2717142-11-16302519-5-6 $m_{a'_2}$ 3731177-127-25-2693-1612 Γ_{a_2} -11-7-13-2682-815-9 m_{a_2} 11-8-750-4-6109-686	⁶⁰ K-r
$m_{P,1}^2$ -10-23-49-43-355071739-23-5260 $g_{\eta\pi}^{P,1}$ -7-1518209-18882722121823 $g_{\eta\pi}^{P,1}$ 1442242166-1721-12-18177-15 Γ_{π_1} 206864-13.8815-19-68-56-66-1821 m_{π_1} -22-66391114-1812-11-425321-23 $m_{\pi_1}^2$ 29-271771422-11-16302519-5526 $m_{a_2'}^2$ -27-1177-1277-25-2693-1612 $m_{a_2}^2$ -11-7-13-22682-815-9 $m_{a_2}^2$ -11-8-750-44-66109-668-6	-40 nat
$m_{P,1}^2$ -10-23-49-43-355071739-23-5260 $g_{\eta\pi}^{P,1}$ -7-1518209-18882722121823 $g_{\eta\pi}^{P,1}$ 1442242166-1721-12-18177-15 Γ_{π_1} 206864-13.8815-19-68-56-66-1821 m_{π_1} -22-66391114-1812-11-425321-23 $m_{\pi_1}^2$ 29-271771422-11-16302519-5526 $m_{a_2'}^2$ -27-1177-1277-25-2693-1612 $m_{a_2}^2$ -11-7-13-22682-815-9 $m_{a_2}^2$ -11-8-750-44-66109-668-6	40 40 40 40 40 40 40 40 40 40 40 40 40 4
$g_{\eta\pi}^{P,1}$ 144224216-1721-12-18177-15 Γ_{π_1} 206864-13-815-19-68-56-6-1821 m_{π_1} -22-6391114-1812-1-42521-22 $\Gamma_{a'_2}$ 29-27-17142-11-16302519-5-6 $m_{a'_2}$ 3731177-12725-26931612 Γ_{a_2} -12-11-7-13-2682-815-9 m_{a_2} 11-8-750-4-6109-68-6	²⁰ «po
Γ_{π_1} 206864-13-815-19-68-56-6-1821 m_{π_1} -22-6391114-181211-42521-22 Γ_{a_2} 29-2717142-11-16302519-5-6 m_{a_2} 3731177-127-25-26933-1612 Γ_{a_2} -12-11-7-13-2682-815-9 m_{a_2} 11-8-75044-6109-686	0 ex
Γ_{π_1} 206864-13-815-19-68-56-6-1821 m_{π_1} -22-6391114-181211-42521-22 Γ_{a_2} 29-2717142-11-16302519-5-6 m_{a_2} 3731177-127-25-26933-1612 Γ_{a_2} -12-11-7-13-2682-815-9 m_{a_2} 11-8-75044-6109-686	
$\Gamma_{a_{2}^{\prime}}$ 29-27-17142-11-16302519-5-6 $m_{a_{2}^{\prime}}$ 3731177-127-25-26-933-1612 $\Gamma_{a_{2}}$ -12-1137272682-815-9 $m_{a_{2}}$ 11-8-750-4-6109-68-6	-20 -20 -40 ters
$m_{a'_2}$ 3731177-127-25-26-93-1612 Γ_{a_2} -12-11-7-13-2682-815-9 m_{a_2} 11-8-750-4-6109-68-6	-40 Pet
Γ_{a_2} -12-11-7-13-2682-815-9 m_{a_2} 11-8-750-4-6109-68-6	
m _{a2} 11 -8 -7 5 0 -4 -6 10 9 -6 8 -6	-60
K	100
$c_{\eta,\pi,\eta,\pi}^{P}$ $c_{\eta,\pi,\eta,\pi}^{P}$ $c_{\eta,\pi,\eta,\pi}^{P}$ $c_{\eta,\pi,\eta,\pi}^{P}$ $c_{\eta,\pi,\eta,\pi}^{P}$ $d_{\eta,\pi,\eta,\pi}^{P}$ $d_{\eta,\pi,\eta,\pi}^{P}$ $d_{\eta,\pi,\eta,\pi}^{P}$ $d_{\eta,\pi,\eta,\pi}^{P}$	

Denominator parameters uncorrelated between *P*- and *D*-wave ✓

For each class, the maximum deviation of mass and width is taken as a systematic error Deviation smaller than the statistical error are neglected Systematic of different classes are summed in quadrature

Systematic	Poles	Mass (MeV)	Deviation (MeV) $ $	Width (MeV)	Deviation (MeV)
		Variation of t	he function $\rho N(s')$		
	$a_2(1320)$	1306.4	0.4	115.0	0.6
$s_R = 0.8 { m GeV}^2$	$a_2'(1700)$	1720	-3	272	26
	π_1	1532	-33	484	-8
	$a_2(1320)$	1305.6	-0.4	113.2	-1.2
$s_R = 1.8 \mathrm{GeV}^2$	$a_2'(1700)$	1743	21	254	7
	π_1	1528	-36	410	-82
	$a_2(1320)$		0.0		0.0
Systematic assigned	$a_2'(1700)$		21		26
	π_1		36		82
	$a_2(1320)$	1305.9	-0.1	114.7	0.3
$\alpha = 1$	$a_2'(1700)$	1685	-37	299	52
	π_1	1506	-58	552	60
	$a_2(1320)$		0.0		0.0
Systematic assigned	$a_2'(1700)$		37		52
	π_1		58		60
	$a_2(1320)$	1304.9	-1.1	114.2	-0.2
$Q_J, \alpha = 1$	$a_2'(1700)$	1670	-52	269	22
	π_1	1511	-53	528	36
	$a_2(1320)$	1306.0	0.1	115.0	0.6
$Q_J, \alpha = 1.5$	$a_2'(1700)$	1717	-5	272	25
	π_1	1578	14	530	39
	$a_2(1320)$	1306.2	0.2	114.7	0.3
$Q_J, \alpha = 2$	$a_2'(1700)$	1723	1	261	15
	π_1	1570	6	508	16
	$a_2(1320)$		1.1		0.0
Systematic assigned	$a_2'(1700)$		52		25
	π_1		53		0

Variation of the numerator function $n(s)$						
$a_2(1320)$	1305.9	-0.1	114.7	0.3		
$a_2'(1700)$	1723	1	249	2		
π_1	1563	-1	479	-13		
$a_2(1320)$		0.0	and the second second	0.0		
$a_2'(1700)$		0		0		
π_1		0		0		
$a_2(1320)$	1306.8	0.8	114.1	-0.3		
$a_2'(1700)$	1730	8	259	13		
π_1	1546	-18	443	-49		
$a_2(1320)$		0.8		0.0		
$a_2'(1700)$		0		0		
π_1		0		0		
	$\begin{array}{c c} a_2'(1700) \\ \hline \pi_1 \\ \hline a_2(1320) \\ a_2'(1700) \\ \hline \pi_1 \\ \hline a_2(1320) \\ a_2'(1700) \\ \hline \pi_1 \\ \hline a_2(1320) \\ a_2'(1700) \\ \hline a_2'(1700) \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		