Three-body Interactions in Lattice QCD and Phenomenology

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy, PWA11/ATHOS6

Supported by

Deutsche Forschungsgemeinschaft DFG

[Many slides from Maxim Mai]

MA 7156/1-1

- Three-body dynamics in infinite volume
- The Finite-volume problems (application: 2-body)
- Three-body dynamics in finite volume
 - The 3-pion system at maximal isospin:
 Interpretation of recent lattice QCD data

3-body dynamics for mesons and baryons

Light mesons

- Important channel in GlueX @ JLab
- Finite volume spectrum from lattice QCD: Lang, Leskovec, Mohler, Prelovsek (2014) Woss, Thomas et al. [HadronSpectrum] (2018) Hörz, Hanlon (2019), ...

- Roper resonance is debated for ~50 years in experiment. Can only be seen in PWA.
- 1st calculation w. meson-baryon operators on the lattice: Lang et al. (2017)

Three-body Interactions with Isobars

Mai, Hu, M. D., Pilloni, Szczepaniak

Eur. Phys. J. A53 (2017) 177

 $\begin{aligned} \langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle &= i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle \\ & \times \prod_{\ell=1}^3 \left[\frac{\mathrm{d}^4 k_\ell}{(2\pi)^4} (2\pi) \delta^+ (k_\ell^2 - m^2) \right] (2\pi)^4 \delta^4 \left(P - \sum_{\ell=1}^3 k_\ell \right) \end{aligned}$

delta function sets all intermediate particles on-shell

$\langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle = i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle$

General Ansatz for the isobar-spectator interaction \rightarrow **B** & τ are **new** unknown functions

$\langle q_1, q_2, q_3 | (\hat{T} - \hat{T}^{\dagger}) | p_1, p_2, p_3 \rangle = i \int_P \langle q_1, q_2, q_3 | \hat{T}^{\dagger} | k_1, k_2, k_3 \rangle \langle k_1, k_2, k_3 | \hat{T} | p_1, p_2, p_3 \rangle$

General Ansatz for the isobar-spectator interaction \rightarrow B & τ are new unknown functions

Scattering amplitude

 $3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of **B**, **S** are fixed by **unitarity/matching**

- For simplicity $v=\lambda$ (full relations available)

Disc
$$B(u) = 2\pi i \lambda^2 \frac{\delta \left(E_Q - \sqrt{m^2 + \mathbf{Q}^2}\right)}{2\sqrt{m^2 + \mathbf{Q}^2}}$$

• un-subtracted dispersion relation

$$\langle q|B(s)|p\rangle = -\frac{\lambda^2}{2\sqrt{m^2 + \mathbf{Q}^2}\left(E_Q - \sqrt{m^2 + \mathbf{Q}^2} + i\epsilon\right)} + C$$

- one- π exchange in TOPT \rightarrow *RESULT, NOT INPUT !*
- One can map to field theory, but does not have to. Result is a-priori dispersive.

Application: The a₁(1260) lineshape

Sadasivan, M.D., Mai, in preparation

• Recent efforts to study 3-body production beyond the "isobar approximation" (*)

P. Magalhães, A. C. dos Reis et al., PRD84 (2011); Khmechandani, Martinez, Oset, PRC77 (2008); <u>JPAC</u>: Mikhasenko, Wunderlich et. al., JHEP (2019); Mikhasenko, Pilloni et. al., PRD98 (2018); A. Jackura et al., EPJC79 (2019); <u>Jülich</u>: Janssen et al., PRL (1993)

• Here: Full solution of three-body equation with exact three-body unitarity

• S- and D-waves included

(*) here meant in the sense of "no rescattering", "no three-body unitarity"

From two to three particles in finite volume

The cubic lattice

- Side length L, periodic boundary conditions $\Psi(\vec{x}) \stackrel{!}{=} \Psi(\vec{x} + \hat{\mathbf{e}}_i L)$ \rightarrow finite volume effects \rightarrow Infinite volume $L \rightarrow \infty$ extrapolation
- Lattice spacing a
 → finite size effects
 Modern lattice calculat

Modern lattice calculations: $a \simeq 0.07 \text{ fm} \rightarrow p \sim 2.8 \text{ GeV}$ \rightarrow (much) larger than typical hadronic scales;

not considered here.

 Unphysically large quark/hadron masses
 → (chiral) extrapolation required.

GWU lattice group: All Isospins

[Culver et al., PRD100 (2019); Mai et al., arXiv:1908.01847 [hep-lat]]

- Simultaneous fit with Inverse Amplitude Method (more later)
- Including correlation between energy eigenvalues, pion masses and pion decay constants
- Including correlations across energy eigenvalues & isospins

GWU lattice group: Chiral Extrapolation

(Optional & model depedent)

[Mai et al., arXiv:1908.01847 [hep-lat]]

Scattering lengths and resonance poles:

$m_{\pi} \; [\text{MeV}] \; \mid$	~ 315	~ 224	139
$m_{\pi} a_0^{I=0}$	$+1.9008^{+0.0521}_{-0.0593}$	$+0.6985\substack{+0.0010\\-0.0015}$	$+0.2132^{+0.0008}_{-0.0009}$
$m_{\pi} a_0^{I=2}$	$-0.1538^{+0.0021}_{-0.0018}$	$-0.0952\substack{+0.0010\\-0.0009}$	$-0.0433\substack{+0.0002\\-0.0002}$
m_{σ} [MeV]	$+591^{+6}_{-5} - i109^{+4}_{-4}$	$+502^{+4}_{-4} - i175^{+6}_{-5}$	$+443^{+3}_{-3} - i221^{+6}_{-6}$
$g_{\sigma\pi\pi}$ [MeV]	533^{+2}_{-2}	426^{+2}_{-2}	$397.8^{+0.6}_{-0.6}$
$m_{\rho} [\text{MeV}] \mid$	$+789^{+1}_{-1} - i20^{+0}_{-0}$	$+738^{+2}_{-1} - i43^{+1}_{-1}$	$+724^{+2}_{-4} - i67^{+1}_{-1}$
$g_{\rho\pi\pi}$ [MeV]	226^{+2}_{-2}	282^{+3}_{-2}	323^{+5}_{-3}

THREE-BODY AMPLITUDE IN A BOX

M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]

Overview

Lüscher-like formalism in $3 \rightarrow 3$ case is under investigation

Polejaeva/Rusetsky (2012) Briceño/Hansen/Sharpe (2014-)

Non-relativistic approaches based on dimer picture & effective field theory

Kreuzer, Griesshammer(2012), Hammer et al. (2016)

F. Romero, Rusetsky, Urbach et. al. (2018)

Equivalence of various 3-body formalisms; three-body unitarity for Hansen/Sharpe

Requirements

Jackura et al. (2019) [JPAC], Briceño et al. (2019)

- 3-body systems involve (resonant) two-body sub-amplitudes: Construct such that 2body information can be included
- Need extrapolations between different energies (problem of underdetermination)
- Allow for systematic improvement by allowing more and more quantum numbers as lattice data improve (problem of underdetermination)
- At least, **all** possible intermediate on-shell configurations must be identified and included to ensure all power-law finite-volume effects are taken account of.

→ This work: Quantization condition from 3-body unitarity in isobar formulation

How to derive the 2-body quantization condition

Three-body? Analogously!

Only exact three-body unitarity guarantees the cancellation of unphysical 1st and 2nd order poles

A physical system: $\pi^+\pi^+\pi^+$

Mai, M.D., PRL 122 (2019), 062503

Three positive pions

- Maximal isospin: $\pi^+\pi^+\pi^+$
 - > Lattice QCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$

 l_1, l_2, l_3, l_4

Repulsive channel

NPLQCD, Detmold et al. (2008)

> $L=2.5 \text{ fm}, m_{\pi}=291/352/491/591 \text{ MeV}$

I. 2-body subchannel:

- > one-channel problem: $\pi\pi$ -system in S-wave, I=2
- > 2-body amplitude consistent with 3-body one

 $\frac{T_{\rm LO}^2}{T_{\rm LO} - T_{\rm NLO}}$

Truong(1988), Peláez (1999), Gómez Nicola, Peláez (2002),...

Inverse Amplitude method

- Maximal isospin: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$
 - Repulsive channel

NPLQCD, Detmold et al. (2008)

> $L=2.5 \text{ fm}, m_{\pi}=291/352/491/591 \text{ MeV}$

- Maximal isospin: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$
 - Repulsive channel

NPLQCD, Detmold et al. (2008)

> $L=2.5 \text{ fm}, m_{\pi}=291/352/491/591 \text{ MeV}$

First prediction of excited levels for physical system

- Maximal isospin: $\pi^+\pi^+\pi^+$
 - > LatticeQCD results for ground level available for $\pi^+\pi^+$ & $\pi^+\pi^+\pi^+$
 - Repulsive channel

NPLQCD, Detmold et al. (2008)

> $L=2.5 \text{ fm}, m_{\pi}=291/352/491/591 \text{ MeV}$

The Moving $\pi^+\pi^+\pi^+$ **System**

Mai, M.D., Alexandru, Culver (in preparation)

New Lattice Data

Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

- First lattice data on excited energy eigenvalues from multi-pion operators → More reliable extraction of scattering eigenvalues
- D200 CLS ensemble (2+1) with improved Wilson fermions and tree-level Lüscher–Weisz gauge action; stochastic LapH method; m₁=200 MeV; L=4.1 fm
- High number of Wick contraction (20,679,840 diagrams) managed with novel method from quantum chemistry

Two-body spectrum: D-wave (I)

Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

D-wave (II): prediction

DP: Dobado, Peláez (PRD 56 (1997))

See also [Nebreda, Peláez, Ríos, PRD83 (2011)]

IAM predictions 2-body spectrum

 \rightarrow We may consider this as any suitable 2-body Parametrization (like, e.g., K-matrix with conformal mapping)

IAM predictions: Different LECs

(D-wave set to zero)

- GW global (arXiv:1908.01847 [hep-lat])
- Gasser, Leutwyler (Annals Phys. 158, 1984)
- Robust predictions of the 2-body spectrum irrespective of used LECs
- No sign of D-wave up to very high energies in irreps with S&D-wave mixing
- Ignore the vanishing $\pi^+\pi^+$ D-wave, but keep the important π^+ isobar D-wave

3-body Spectrum: Predictions (I)

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

- S-wave prediction good at threshold (like for NPLQCD data)
- S-wave prediction good at high energies
 → Energy dependence matched
- No sign of 3-body force (like for NPLQCD data)
- D-wave prediction qualitatively good
 - → Relative* strength between S- and D-wave matched
 - → Consequence that 3-body interaction dominated by exchange
 - → Consequence of 3-body Unitarity
- Three-body unitarity directly visible in the eigenvalue spectrum of lattice QCD

Technical note: Projection technique for 3-body systems to irreps from M.D., Hammer, Mai, Pang, Rusetsky, Wu PRD97 (2018)

^{*}and absolute

3-body spectrum: Moving frames

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

 \rightarrow Need to develop a framework for moving 3-body systems!

Moving frames for 3-body systems

Usually: Explicit S- and D-wave projected parameterizations in coupled channels Here: Boost of unprojected 3-body amplitude. <u>A-posteriori</u> projections with suitable Clebsch-Gordan coefficients → Requires plane-wave solution of scattering

3-body spectrum: Complete Predictions

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

Summary

3-body Unitarity

- 3-body unitarity dictates on-shell condition (exchange term & isobar propagator)
- On-shell condition dictates leading, power-law finitevolume effects
- "Bare-bone"infinite-volume extrapolation tool (in spirit of Lüscher equation)
- Optional: Pion-mass extrapolation

The $\pi^+\pi^+\pi^+$ System

- First application to physical 3-body system [PRL 2019]
- NPLQCD threshold data well predicted, excited levels predicted
- First explanation of excited 3-body levels (data from Hörz/Hanlon)
- Consequences of three-body unitarity directly visible in data (S vs. D waves)
- First development and application of moving frames for 3-body systems

OUTLOOK

- $\rightarrow\,$ Implementation of spin isobars & multiple isobars
- → unequal masses
- → practical studies: $a_1(1260)$, Roper, exotics...

SPARES

I=2 D-wave at HadSpec Pion Masses

Perturbative O(p4), O(p^6) calculation

Figure from [Nebreda, Peláez, Ríos, PRD83 (2011)] Data: [Dudek, Edwards, Peardon, Richards, Thomas, PRD83 (2011)]

Scattering amplitude – analytic expression

The Power of Unitarity

The Power of Unitarity

Projection to irreps

[M.D., Hammer, Mai, Pang, Rusetsky, Wu (2018)]

• Lüscher formalism relies on regular $2 \rightarrow 2$ potentials

- Now: manifestly singular interactions
- Find generalization that projects also the interactions to the irreps of cubic symmetry, not only propagation
- Separation of variables
 - shells = sets of points related by O_h
 - Analogous to radial coordinate in infinite volume
- Find the orthonormal basis for arbitrary functions defined on each point of a given shell.

$$q_i = \frac{2\pi}{L} n_i, \quad n_i \in \mathbb{Z}, \quad i = 1, 2, 3$$
$$\int \frac{d^3 \mathbf{q}}{(2\pi)^3} \to \frac{1}{L^3} \sum_s \sum_{i=1}^{\vartheta(s)} \frac{\vartheta(s)}{i=1}$$

- J (inf. volume) \rightarrow irreps (finite volume): $\Gamma \in \{A_1^{\pm}, A_2^{\pm}, E^{\pm}, T_1^{\pm}, T_2^{\pm}\}$
- <u>Partial wave projection</u> (inf. Volume) <u>Irrep. projection</u> (fin.)

$$f(\mathbf{p}) = \sqrt{4\pi} \sum_{\ell m} Y_{\ell m}(\hat{p}) f_{\ell m}(p)$$
$$f_{\ell m}(p) = \frac{1}{\sqrt{4\pi}} \int d\Omega Y_{\ell m}^*(\hat{p}) f(\mathbf{p})$$

$$f^{s}(\hat{p}_{j}) = \sqrt{4\pi} \sum_{\Gamma\alpha} \sum_{a} f_{a}^{\Gamma\alpha s} \chi_{a}^{\Gamma\alpha s}(\hat{p}_{j})$$

$$f_a^{\Gamma\alpha s} = \frac{\sqrt{4\pi}}{\vartheta(s)} \sum_{j=1}^{\vartheta(s)} f^s(\hat{p}_j) \chi_a^{\Gamma\alpha s}(\hat{p}_j)$$

(a is index u in quantization condition; Quantization condition has projection in incoming AND outgoing basis states with indices u, u')

Quantization Condition

 $T_{22} = v \tau v$

- Not a Lüscher-like equation ("left": infinite volume, "right": finite volume)
- Instead: Fix parameters to lattice eigenvalues
- With parameters fixed, evaluate infinite-volume amplitude
- Same workflow as in many 2-body coupled-channel fits (see, e.g.,

M.D., Meißner, Oset, Rusetsky, EPJA (2012))

Numerical demonstration

[M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]]

- Numerical demonstration of three-body finite volume formalism
- 3 particles in finite volume: *m=138 MeV, L=3 fm*
- one S-wave isobar \rightarrow two unknowns:
 - vertex(Isobar \rightarrow 2 stable particles)
 - subtraction constant (~mass)
- Project to $\Gamma = A^{1+}$

→ prediction of 3body energy-eigenlevels (C=0)

Two-body scattering on lattice

Input for 3-body

Two body scattering

In the infinite volume

• Unitarity of the scattering matrix S: $SS^{\dagger} = 1$ $[S = 1 - i \frac{p}{4\pi E} T].$

• \rightarrow Generic (Lippman-Schwinger) equation for unitarizing the *T*-matrix:

$$T = V + V G T \qquad \text{Im } G = -\sigma$$

V: (Pseudo)potential, σ : phase space.

• *G*: Green's function:

$$G = \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \frac{f(|\vec{q}|)}{E^{2} - (\omega_{1} + \omega_{2})^{2} + i\epsilon},$$

$$\omega_{1,2}^{2} = m_{1,2}^{2} + \vec{q}^{2}$$

Discretization

0

E [MeV]

G, Õ

Discretized momenta in the finite volume with periodic boundary conditions

$$\Psi(\vec{x}) \stackrel{!}{=} \Psi(\vec{x} + \hat{\mathbf{e}}_i L) = \exp\left(i L q_i\right) \Psi(\vec{x}) \implies q_i = \frac{2\pi}{L} n_i, \quad n_i \in \mathbb{Z}, \quad i = 1, 2, 3$$

Finite \rightarrow infinite volume: the Lüscher equation

Warning: rather crude re-derivation

• Measured eigenvalues of the Hamiltonian (tower of *lattice levels* E(L)) \rightarrow Poles of scattering equation \tilde{T} in the finite volume \rightarrow determines V:

$$\tilde{T} = (1 - V\tilde{G})^{-1}V \rightarrow V^{-1} - \tilde{G} \stackrel{!}{=} 0 \rightarrow V^{-1} = \tilde{G}$$

• The interaction V determines the T-matrix in the infinite volume limit:

$$T = \left(V^{-1} - G\right)^{-1} = \left(\tilde{G} - G\right)^{-1}$$

• Re-derivation of Lüscher's equation (T determines the phase shift δ):

$$p \cot \delta(p) = -8\pi\sqrt{s} \left(\tilde{G}(E) - \operatorname{Re} G(E) \right)$$

- V and dependence on renormalization have disappeared (!)
- p: c.m. momentum
- *E*: scattering energy
- *G̃* − Re*G*: known kinematical function
 (≃ Z₀₀ up to exponentially suppressed contributions)
- One phase at one energy.

Finite-volume & chiral extrapolations

QCD calculations in finite volume unphysical pion mass (periodic) boundary conditions \rightarrow discrete momenta & discrete spectrum Recipe for $2 \rightarrow 2$ scattering (e.g. $I=J=0 \pi \pi$ scattering) Briceño et al.(2016) Doring, Mai, Hu (2016) [000] E_{cm} 150 1100 120 p cot(δ₀₀) [GeV] 1000 90 δ_0 step 2 900 step 1 800 600 -0.05 0.00 0.05 0.03 0.04 0.07 0.09 0.13 p^2 / GeV^2 p² [GeV²] HSC(2016) (This step can be skipped) **LÜSCHER(1986) CHIRAL EXTRAPOLATIONS** eigenenergy \leftrightarrow 1 phase-shift in infinite volume • M_{π} dependence from NLO ChPT (IAM) also with coupled channels He et al. (2005) Gasser, Leutwyler(1981) **Doring, Prelovsek, HSC** Dobado, Pelaez (1997) Extrapolation in flavor

B. Hu, MD, R. Molina M. Mai et al. (2016)

0.10

GWU lattice group: the isoscalar sector

[Guo, Alexandru, Molina, M.D., M. Mai, PRD (2018)]

Chiral extrapolation of σ pole

 $M_{\pi} = 138 \text{ MeV}$

Parametrization	Fitted data	$\operatorname{Re} z^*$	$-\operatorname{Im} z^*$	$\mid g \mid$
chm1	$\sigma_{227,315}$	440_{-90}^{+60}	240^{+20}_{-50}	$3.0^{+0.2}_{-0.6}$
chm2	$\sigma_{227}~ ho_{227}$	430^{+20}_{-30}	250^{+30}_{-30}	$3.0^{+0.1}_{-0.1}$
chm2	$\sigma_{315}~ ho_{315}$	460^{+10}_{-15}	210^{+40}_{-30}	$3.0^{+0.1}_{-0.1}$
chm2	$\sigma_{227,315}~ ho_{227,315}$	440^{+10}_{-16}	240^{+20}_{-20}	$3.0\substack{+0.0\\-0.0}$
Ref. [1]	experimental	449^{+22}_{-16}	275^{+12}_{-12}	$3.5^{+0.3}_{-0.2}$

[1] J. R. Pelaez, Phys. Rept. 658, 1 (2016), arXiv:1510.00653 [hep-ph].

[Consistent with conformal-mapping amplitude parametrization (model-independent, not shown)] 56

Residues

Pole trajectory

First prediction: Hanhart, Pealez, Rios, PRL (2008)

 $\rightarrow \sigma$ becomes a (virtual) bound state @ $M_{\pi} = (345) 415 \text{ MeV}$

Cancellations

Also: all 2^{nd} order singularities in determinant cancel \rightarrow All consequence of Manifest three-body unitarity