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● Three-body dynamics in infinite volume

● The Finite-volume problems (application: 2-body)

● Three-body dynamics in finite volume

– The 3-pion system at maximal isospin: 

Interpretation of recent lattice QCD data 

Outline
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● Important channel in GlueX @ JLab

● Finite volume spectrum from lattice QCD: 
Lang, Leskovec, Mohler, Prelovsek (2014)
Woss, Thomas et al. [HadronSpectrum] (2018)
Hörz, Hanlon (2019), ...

● Roper resonance is debated for ~50 years 

in experiment. Can only be seen in PWA.

● 1st calculation w. meson-baryon operators 

on the lattice:  Lang et al. (2017)

FSI

π
π
π

π
π
π

Light mesons

Light baryons

3-body dynamics for mesons and baryons
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Three-body Interactions with Isobars

Mai, Hu, M. D., Pilloni, Szczepaniak

Eur. Phys. J. A53 (2017) 177
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3-body Unitarity

delta function sets all intermediate
particles on-shell
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3-body Unitarity

General Ansatz for the isobar-spectator interaction
→ B & τ are new unknown functions
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General Ansatz for the isobar-spectator interaction
→ B & τ are new unknown functions

3-body Unitarity
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3-body Unitarity
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3-body Unitarity



10  

†

3-body Unitarity



11  

†

8 top.

3-body Unitarity
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3-body Unitarity
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3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   

 

● un-subtracted dispersion relation

● one-π exchange in TOPT →  RESULT, NOT INPUT !

● One can map to field theory, but does not have to. Result is a-priori dispersive.

Scattering amplitude
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Application: The a
1
(1260) lineshape

Sadasivan, M.D., Mai, in preparation

● Recent efforts to study 3-body production beyond the “isobar approximation” (*)

● Here: Full solution of three-body equation with exact three-body unitarity

● S- and D-waves included 

(*) here meant in the sense of “no rescattering”, “no three-body unitarity”

P. Magalhães, A. C. dos Reis et al., PRD84 (2011); Khmechandani, Martinez, Oset, PRC77 (2008);
JPAC: Mikhasenko, Wunderlich et. al., JHEP (2019); Mikhasenko, Pilloni et. al., PRD98 (2018);
A. Jackura et al., EPJC79 (2019); Jülich: Janssen et al., PRL (1993)

π-

...

π-

π-

π-

+ symmetrization final states

Data: ALEPH coll. hep-ex/0506072

(*)
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From two to three particles in finite volume
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The cubic lattice
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Two-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Infinite 

→ Fin. Vol

Lüscher

.

How to derive the 
2-body quanti-
zation condition
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GWU lattice group: All Isospins
[Culver et al., PRD100 (2019); Mai et al., arXiv:1908.01847 [hep-lat]]

Guo et al. (2018) Guo et al. (2016) Culver et al. (2019)

● Simultaneous fit with Inverse Amplitude Method (more later)

● Including correlation between energy eigenvalues, pion masses and pion decay constants

● Including correlations across energy eigenvalues & isospins
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GWU lattice group: Chiral Extrapolation
[ Mai et al., arXiv:1908.01847 [hep-lat]]

Scattering lengths and resonance poles:

(Optional & model depedent)

isoscalar isovector I=2
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THREE-BODY 
AMPLITUDE 
IN A BOX

M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]
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Lüscher-like formalism in 3 → 3 case is under investigation

Polejaeva/Rusetsky (2012) 

Briceño/Hansen/Sharpe (2014-)

Non-relativistic approaches based on dimer picture & effective field theory

Kreuzer, Griesshammer(2012), Hammer et al. (2016)

F. Romero, Rusetsky, Urbach et. al. (2018)

Equivalence of various 3-body formalisms; three-body unitarity for Hansen/Sharpe

Requirements

● 3-body systems involve (resonant) two-body sub-amplitudes: Construct such that 2-

body information can be included

● Need extrapolations between different energies (problem of underdetermination)

● Allow for systematic improvement by allowing more and more quantum numbers as 

lattice data improve (problem of underdetermination)

● At least, all possible intermediate on-shell configurations must be identified and 

included to ensure all power-law finite-volume effects are taken account of.

 ⟹ This work:      Quantization condition from 3-body unitarity in isobar formulation

 

Overview

Jackura et al. (2019) [JPAC], Briceño et al. (2019)
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Two-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Infinite 

→ Fin. Vol

Lüscher

.

How to derive the 
2-body quanti-
zation condition

Three-body?

Analogously!
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Two-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Infinite 

→ Fin. Vol

Lüscher

.

                  

Three-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Quantization Condition

.

all
boosts
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Three-body unitarity

On-shell condition

Imaginary parts

Power-law fin-vol. effects

Quantization Condition

.

Only exact three-body 

unitarity guarantees the 

cancellation of unphysical

1st and 2nd order poles 
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A physical system:

Mai, M.D., PRL 122 (2019), 062503
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I. 2-body subchannel:
➢ one-channel problem: ππ-system in S-wave, I=2
➢ 2-body amplitude consistent with 3-body one

ChPT @ NLO

K-mat @ LO

IAM

Isobar: λ=const.

Isobar: IAM
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discretize (Lüscher) → predicted fin-vol. spectrum

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel 
➢ L=2.5 fm, mπ=291/352/491/591 MeV 

NPLQCD, Detmold et al.(2008)

Three positive pions

Truong(1988), Peláez (1999), 
Gómez Nicola, Peláez (2002),...

Inverse Amplitude method
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II. 3-body spectrum

Remaining unknown: C
➢ genuine (momenta-dependent) 3-body “force” 
➢ simplest case:

QUANTIZATION CONDITION

C

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel
➢ L=2.5 fm, mπ=291/352/491/591 MeV 

NPLQCD, Detmold et al.(2008)
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II. 3-body spectrum

Remaining unknown: C
➢ genuine (momenta-dependent) 3-body “force” 
➢ simplest case:

QUANTIZATION CONDITION

C

Fit C to NPLQCD ground state level
→ C=(0.2 ± 1.5)·10−10

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel 
➢ L=2.5 fm, mπ=291/352/491/591 MeV 

NPLQCD, Detmold et al.(2008)
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II. 3-body spectrum

Remaining unknown: C
➢ genuine (momenta-dependent) 3-body “force” 
➢ simplest case:

QUANTIZATION CONDITION

C

Predict excited spectrum:

→ novel pattern

1/1 of interacting/non-interacting lvls

→ all QC-poles are simple

→ chiral extrapolation to phys point 

     (under assumptions)

● Maximal isospin: π+π+π+

➢ LatticeQCD results for ground level available for π+π+ & π+π+π+

➢ Repulsive channel
➢ L=2.5 fm, mπ=291/352/491/591 MeV 

First prediction of excited levels for physical system

NPLQCD, Detmold et al.(2008)
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The Moving
System 

Mai, M.D., Alexandru, Culver  
(in preparation)
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New Lattice Data
Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

Two-body spectrum Three-body spectrum

● First lattice data on excited energy eigenvalues from multi-pion operators
→ More reliable extraction of scattering eigenvalues

● D200 CLS ensemble (2+1) with improved Wilson fermions and  tree-level 
Lüscher–Weisz gauge action; stochastic LapH method; m

π
=200 MeV; L=4.1 fm

● High number of Wick contraction (20,679,840 diagrams) managed with 
novel method from quantum chemistry
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Two-body spectrum: D-wave (I)
Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

PW         :      S       D      S&D      D     S&D      D     S&D      D       S&D    D    

m
ix

in
g

m
ix

in
g

m
ix

in
g

m
ix

in
g

→ I=2 D-wave vanishes within uncertainties – what does IAM predict? 

“+”
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D-wave (II): prediction

GW: GW global (arXiv:1908.01847 [hep-lat])

GL: Gasser, Leutwyler (Annals Phys. 158, 1984)

DP: Dobado, Peláez (PRD 56 (1997))

See also [Nebreda, Peláez, Ríos, PRD83 (2011)]
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IAM predictions 2-body spectrum

(D-wave set to zero)

Hörz, Hanlon

IAM prediction (GL)

Non-interacting

→ We may consider this as any suitable 2-body Parametrization (like, e.g., K-matrix 
with conformal mapping)

(uncertainties exaggerated)
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IAM predictions: Different LECs
(D-wave set to zero)

Nebrada, Peláez, Rios (PRD88, 2013)

GW global (arXiv:1908.01847 [hep-lat])

Gasser, Leutwyler (Annals Phys. 158, 1984)

● Robust predictions of the 2-body spectrum irrespective of used LECs

● No sign of D-wave up to very high energies in irreps with S&D-wave mixing

● Ignore the vanishing           – D-wave, but keep the important       – isobar D-wave

“in-flight transitions”



36  

3-body Spectrum: Predictions (I)

S        D  (lowest participating wave)

● S-wave prediction good at threshold 
(like for NPLQCD data)

● S-wave prediction good at high energies
→ Energy dependence matched

● No sign of 3-body force (like for NPLQCD data)

● D-wave prediction qualitatively good
→ Relative* strength between 
     S- and D-wave matched
→ Consequence that 3-body interaction

dominated by exchange
→ Consequence of 3-body Unitarity

● Three-body unitarity directly visible
in the eigenvalue spectrum of lattice QCD

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

Hörz, Hanlon

Prediction  from 2-body input

Non-interacting

*and absolute

Technical note: Projection technique 
for 3-body systems to irreps from 
M.D., Hammer, Mai, Pang, Rusetsky, Wu
PRD97 (2018)
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Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

3-body spectrum: Moving frames

S       D      S&D      S&D   S&D   S&D    S&D   S&D

Low 
participating
isobar-
waves

→ Need to develop a framework for moving 3-body systems!
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Moving frames for 3-body systems

Lattice rest frame 3-body rest frame 2-body rest frame

Usually: Explicit S- and D-wave projected parameterizations in coupled channels 
Here: Boost of unprojected 3-body amplitude. A-posteriori projections with suitable

Clebsch-Gordan coefficients → Requires plane-wave solution of scattering

3-body summation:

3→3 boosted plane-wave amplitude
Poles → Eigenvalues
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Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

3-body spectrum: Complete Predictions

Hörz, Hanlon

Prediction from 

2-body input & 

three-body unitarity

Non-interacting

Central 
Result
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3-body Unitarity

● 3-body unitarity dictates on-shell condition 

(exchange term & isobar propagator)

● On-shell condition dictates 

leading, power-law finite-

volume effects

● “Bare-bone”infinite-volume 

extrapolation tool (in spirit of 

Lüscher equation)

● Optional: Pion-mass extrapolation

The                    System

● First application to physical 3-body 

system  [PRL 2019]

● NPLQCD threshold data well predicted, 

excited levels predicted

● First explanation of excited 3-body

levels (data from Hörz/Hanlon)

● Consequences of three-body unitarity 

directly visible in  data  (S vs. D waves)

● First development and application

of moving frames for 3-body systems

OUTLOOK 

→ Implementation of spin isobars & multiple isobars 

→ unequal masses

→ practical studies: a
1
(1260), Roper, exotics... 

Summary
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SPARES
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I=2 D-wave at HadSpec Pion Masses

Figure from [Nebreda, Peláez, Ríos, PRD83 (2011)]
Data: [Dudek, Edwards, Peardon, Richards, Thomas, PRD83 (2011)]

Perturbative O(p4), O(p^6) calculation 
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Real three-body force

External on-shell
2-body interaction

Exchange force

On-shell 2→ 2 interaction
(even within integral, but
without left-hand cuts)

Recasting in on-shell
2→2 amplitudes +
real 3-body forces 

Scattering amplitude – analytic expression
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The Power of Unitarity

    Question: Does provide full imaginary part of all possible 
3→ 3 transitions?
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The Power of Unitarity

    Question: Does provide full imaginary part of all possible 
3→ 3 transitions?

on-shell

?

unitary 
2→2

Riddle 1 Riddle 2 Riddle 3

Riddle 4

Riddle 5
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The Power of Unitarity

    Question: Does provide full imaginary part of all possible 
3→ 3 transitions?

on-shell

?

unitary 
2→2

Riddle 1 Riddle 2 Riddle 3

Riddle 4

Riddle 5

Answer: Yes.                    and  

are the only on-shell configurations in physical region. Three-
body unitarity avoids many artificial complications of diagram-
matic expansions.
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Projection to irreps
[M.D.,Hammer,Mai,Pang,Rusetsky,Wu(2018)]

● Lüscher formalism relies on regular 2→ 2 potentials

● Now: manifestly singular interactions

● Find generalization that projects also the interactions 

to the irreps of cubic symmetry, not only propagation

● Separation of variables

● shells = sets of points related by O
h 

● Analogous to radial coordinate in infinite volume

● Find the orthonormal basis for arbitrary functions 

defined on each point of a given shell.

● J (inf. volume) → irreps (finite volume ):

● Partial wave projection (inf. Volume)         Irrep.  projection  (fin.)

(a is index u in quantization condition; Quantization condition has 
projection in incoming AND outgoing basis states with indices u, u’)
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Fix to 2→2 data:

T22 = v τ v

Fix to 3→3 data 

W – total energy

s/s’ - shell index

u/u’ - basis index

ϑ – multiplicity

L – lattice volume

E
s
 – spect. energy

Quantization Condition

Determinant of (s,u) x (s’,u’) matrix
at fixed W, Γ, L 

● Not a Lüscher-like equation (“left”: infinite volume, “right”: finite volume)
● Instead: Fix parameters to lattice eigenvalues
● With parameters fixed, evaluate infinite-volume amplitude
● Same workflow as in many 2-body coupled-channel fits (see, e.g., 

M.D., Meißner, Oset, Rusetsky, EPJA (2012))
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● Numerical demonstration of three-body finite volume formalism

● 3 particles in finite volume: m=138 MeV, L=3 fm

● one S-wave isobar → two unknowns:

– vertex(Isobar→2 stable particles)

– subtraction constant (~mass)

● Project to Γ = A1+

→ prediction of 3body energy-eigenlevels (C=0) 

T
22 

= v τ v       

unphysical lvls cancel out (exact proof available)

Numerical demonstration
[M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]]
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Two-body scattering on lattice

Input for 3-body
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Two body scattering
In the infinite volume
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Discretization
Discretized momenta in the finite volume with periodic boundary conditions
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Finite → infinite volume: the Lüscher equation
Warning: rather crude re-derivation
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Finite-volume & chiral extrapolations
QCD calculations in finite volume

● unphysical pion mass
● (periodic) boundary conditions 

→ discrete momenta & discrete spectrum

Recipe for 2 → 2 scattering (e.g. I=J=0 ππ scattering) 

 Briceño et al.(2016) Doring, Mai, Hu (2016)

CHIRAL EXTRAPOLATIONS

● Mπ dependence from NLO ChPT (IAM) 

Gasser, Leutwyler(1981)

Dobado, Pelaez (1997)

● Extrapolation in flavor

        B. Hu, MD, R. Molina M. Mai et al. (2016)  

LÜSCHER(1986)
● 1 eigenenergy ↔ 1 phase-shift in infinite volume             
● also with coupled channels                     He et al. (2005) 

Doring,  Prelovsek, HSC 

step 1 step 2

HSC(2016) (This step can be skipped)
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GWU lattice group: the isoscalar sector

● nHYP-smeared clover fermions with 
mass-degenerate quark flavors (N

f
 = 2)

● M
π
=227 MeV and 315 MeV

● 3 elongated boxes
● Large variational basis including

several meson-meson operators
● Moving frames
● Conformal mapping for σ pole extraction
● Unitarized Chiral Perturbation Theory

fits for chiral extrapolation:
chm1: 
chm2:   

[Guo, Alexandru, Molina, M.D., M. Mai, PRD (2018) ]

Chiral extrapolation and exp. data
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Chiral extrapolation of σ pole

[Consistent with conformal-mapping amplitude parametrization (model-independent, not shown)]
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Residues

345 (GWU 415 (GWU

Hanhart, Pelaez, Rios, PRL (2008)

HadSpec, PRL (2017)

Pelaez, Rios, PRD (2010)
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→ σ becomes a (virtual) bound state @ M
π 

= (345) 415 MeV 

Pole trajectory
First prediction: Hanhart, Pealez, Rios, PRL (2008)
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&

– when isobar-momenta are discretized in the 3-body cms momenta

→ fin. vol. normalization of δ-distribution!

Cancellations

Also: all 2nd order singularities in determinant cancel → All consequence of 
Manifest three-body unitarity
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