Three-body Interactions in Lattice QCD and Phenomenology

Michael Döring Maxim Mai

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Jefferson Lab

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy, PWA11/ATHOS6

Supported by
National Science
Foundation
NSF CAREER grant PHY-1452055

Deutsche
Forschungsgemeinschaft
DFG

MA 7156/1-1

Outline

- Three-body dynamics in infinite volume
- The Finite-volume problems (application: 2-body)
- Three-body dynamics in finite volume
- The 3-pion system at maximal isospin: Interpretation of recent lattice QCD data

3-body dynamics for mesons and baryons

Light mesons

- Important channel in GlueX @ JLab
- Finite volume spectrum from lattice QCD: Lang, Leskovec, Mohler, Prelovsek (2014) Woss, Thomas et al. [HadronSpectrum] (2018) Hörz, Hanlon (2019), ...

Light baryons

- Roper resonance is debated for ~ 50 years in experiment. Can only be seen in PWA.
- $1^{\text {st }}$ calculation w. meson-baryon operators on the lattice: Lang et al. (2017)

Three-body Interactions with Isobars

Mai, Hu, M. D., Pilloni, Szczepaniak
Eur. Phys. J. A53 (2017) 177

3-body Unitarity

$$
\begin{array}{r}
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle= \\
\left.\times \prod_{\ell=1}\left[\frac{d^{4} k_{\ell}}{(2 \pi)^{4}}(2 \pi) q_{1}, q_{2}, q_{3}\left|\hat{T}^{\dagger}\right| k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle\right] \\
\\
\text { delta function sets all intermediate } \\
\text { particles on-shell }
\end{array}
$$

3-body Unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

General Ansatz for the isobar-spectator interaction
$\rightarrow B \& t$ are new unknown functions

3-body Unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

General Ansatz for the isobar-spectator interaction
$\rightarrow B \& t$ are new unknown functions

3-body Unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

3-body Unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

3-body Unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

3-body Unitarity

$$
\left\langle q_{1}, q_{2}, q_{3}\right|\left(\hat{T}-\hat{T}^{\dagger}\right)\left|p_{1}, p_{2}, p_{3}\right\rangle=i \int_{P}\left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}^{\dagger}\left|k_{1}, k_{2}, k_{3}\right\rangle\left\langle k_{1}, k_{2}, k_{3}\right| \hat{T}\left|p_{1}, p_{2}, p_{3}\right\rangle
$$

3-body Unitarity

Scattering amplitude

$3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation

- Imaginary parts of B, S are fixed by unitarity/matching
- For simplicity $\boldsymbol{v}=\boldsymbol{\lambda}$ (full relations available)

$$
\operatorname{Disc} B(u)=2 \pi i \lambda^{2} \frac{\delta\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}\right)}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}}
$$

- un-subtracted dispersion relation

$$
\langle q| B(s)|p\rangle=-\frac{\lambda^{2}}{2 \sqrt{m^{2}+\mathbf{Q}^{2}}\left(E_{Q}-\sqrt{m^{2}+\mathbf{Q}^{2}}+i \epsilon\right)}+C
$$

- one- π exchange in TOPT \rightarrow RESULT, NOT INPUT!
- One can map to field theory, but does not have to. Result is a-priori dispersive.

Application: The $\mathrm{a}_{1}(1260)$ lineshape

Sadasivan, M.D., Mai, in preparation

- Recent efforts to study 3-body production beyond the "isobar approximation" (*)
P. Magalhães, A. C. dos Reis et al., PRD84 (2011); Khmechandani, Martinez, Oset, PRC77 (2008);

JPAC: Mikhasenko, Wunderlich et. al., JHEP (2019); Mikhasenko, Pilloni et. al., PRD98 (2018);
A. Jackura et al., EPJC79 (2019); Jülich: Janssen et al., PRL (1993)

- Here: Full solution of three-body equation with exact three-body unitarity
- S- and D-waves included

(*) here meant in the sense of "no rescattering", "no three-body unitarity"

From two to three particles in finite volume

The cubic lattice

- Side length L, periodic boundary conditions $\Psi(\vec{x}) \stackrel{!}{=} \Psi\left(\vec{x}+\hat{\mathbf{e}}_{i} L\right)$
\rightarrow finite volume effects
\rightarrow Infinite volume $L \rightarrow \infty$ extrapolation
- Lattice spacing a \rightarrow finite size effects Modern lattice calculations: $a \simeq 0.07 \mathrm{fm} \rightarrow p \sim 2.8 \mathrm{GeV}$ \rightarrow (much) larger than typical hadronic scales;
not considered here.
- Unphysically large quark/hadron masses \rightarrow (chiral) extrapolation required.
Two-body unitarity

On-shell condition

Imaginary parts

Infinite

\rightarrow Fin. Vol

$$
\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \rightarrow \frac{1}{L^{3}} \sum_{s} \sum_{i=1}^{\vartheta(s)}
$$

Power-law fin-vol. effects
Lüscher

$$
p \cot \delta(p)=-8 \pi \sqrt{s}(\tilde{G}(E)-\operatorname{Re} G(E))
$$

GWU lattice group: All Isospins

[Culver et al., PRD100 (2019); Mai et al., arXiv:1908.01847 [hep-lat]]

- Simultaneous fit with Inverse Amplitude Method (more later)
- Including correlation between energy eigenvalues, pion masses and pion decay constants
- Including correlations across energy eigenvalues \& isospins

GWU lattice group: Chiral Extrapolation

(Optional \& model depedent)
[Mai et al., arXiv:1908.01847 [hep-lat]]

$\begin{array}{lllllll}0.01 & 0.03 & 0.05 & 0.07 & 0.09 & 0.11 & 0.13\end{array}$

$$
p^{2}\left[G e V^{2}\right]
$$

Scattering lengths and resonance poles:

$m_{\pi}[\mathrm{MeV}]$	~ 315	~ 224	139
$m_{\pi} a_{0}^{I=0}$	$+1.9008_{-0.0593}^{+0.0521}$	$+0.6985_{-0.0015}^{+0.0010}$	$+0.2132_{-0.0009}^{+0.0008}$
$m_{\pi} a_{0}^{I=2}$	$-0.1538_{-0.0018}^{+0.0021}$	$-0.0952_{-0.0009}^{+0.0010}$	$-0.0433_{-0.0002}^{+0.0002}$
$m_{\sigma}[\mathrm{MeV}]$	$+591_{-5}^{+6}-i 109_{-4}^{+4}$	$+502_{-4}^{+4}-i 175_{-5}^{+6}$	$+443_{-3}^{+3}-i 221_{-6}^{+6}$
$g_{\sigma \pi \pi}[\mathrm{MeV}] \mid$	533_{-2}^{+2}	426_{-2}^{+2}	$397.8_{-0.6}^{+0.6}$
$m_{\rho}[\mathrm{MeV}] \mid$	$+789_{-1}^{+1}-i 20_{-0}^{+0}$	$+738_{-1}^{+2}-i 43_{-1}^{+1}$	$+724_{-4}^{+2}-i 67_{-1}^{+1}$
$g_{\rho \pi \pi}[\mathrm{MeV}] \mid$	226_{-2}^{+2}	282_{-2}^{+3}	323_{-3}^{+5}

THREE-BODY AMPLITUDE IN A BOX

M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]

Overview

Lüscher-like formalism in $3 \rightarrow \mathbf{3}$ case is under investigation
Polejaeva/Rusetsky (2012)
Briceño/Hansen/Sharpe (2014-)

Non-relativistic approaches based on dimer picture \& effective field theory
Kreuzer, Griesshammer(2012), Hammer et al. (2016)
F. Romero, Rusetsky, Urbach et. al. (2018)

Equivalence of various 3-body formalisms; three-body unitarity for Hansen/Sharpe
Requirements
Jackura et al. (2019) [JPAC], Briceño et al. (2019)

- 3-body systems involve (resonant) two-body sub-amplitudes: Construct such that 2body information can be included
- Need extrapolations between different energies (problem of underdetermination)
- Allow for systematic improvement by allowing more and more quantum numbers as lattice data improve (problem of underdetermination)
- At least, all possible intermediate on-shell configurations must be identified and included to ensure all power-law finite-volume effects are taken account of.
\Longrightarrow This work: Quantization condition from 3-body unitarity in isobar formulation

Two-body unitarity

On-shell condition

Imaginary parts

Infinite

\rightarrow Fin. Vol

Power-law fin-vol. effects

Lüscher

$$
p \cot \delta(p)=-8 \pi \sqrt{s}(\tilde{G}(E)-\operatorname{Re} G(E))
$$

How to derive the 2-body quantization condition

Three-body?

Analogously!

Only exact three-body unitarity guarantees the
cancellation of unphysical $1^{\text {st }}$ and $2^{\text {nd }}$ order poles

Three-body unitarity

Power-law fin-vol. effects

Quantization Condition

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathrm{ss}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{\mathbf{2} \mathbf{E}_{\mathbf{s}} \mathbf{L}^{\mathbf{3}}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}
$$

A physical system: $\pi^{+} \pi^{+} \pi^{+}$

Mai, M.D., PRL 122 (2019), 062503

Three positive pions

- Maximal isospin: $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
${ }^{2}$ LatticeQCD results for ground level available for $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \& \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
- Repulsive channel

NPLQCD, Detmold et al.(2008)
> $L=2.5 \mathrm{fm}, m_{\pi}=291 / 352 / 491 / 591 \mathrm{MeV}$

I. 2-body subchannel:

Inverse Amplitude method

```
Truong(1988), Peláez (1999),
```


- 2-body amplitude consistent with 3-body one

- Maximal isospin: $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
${ }^{\wedge}$ LatticeQCD results for ground level available for $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \& \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
- Repulsive channel
- $L=2.5 \mathrm{fm}, m_{\pi}=291 / 352 / 491 / 591 \mathrm{MeV}$

II. 3-body spectrum

Remaining unknown: C

QUANTIZATION CONDITION
$\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u ^ { \prime }}}^{\Gamma \mathbf{s s}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{\mathbf{2} \mathbf{E}_{\mathbf{s}} \mathbf{L}^{3}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-\mathbf{1}} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}$
"force"
> genuine (momenta-dependent) 3-body "force"
> simplest case: $C_{q \boldsymbol{q}}=c \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q})$

- Maximal isospin: $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
> LatticeQCD results for ground level available for $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \& \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
> Repulsive channel
> $L=2.5 \mathrm{fm}, m_{\pi}=291 / 352 / 491 / 591 \mathrm{MeV}$

II. 3-body spectrum

Remaining unknown: C

QUANTIZATION CONDITION

$$
\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}}{ }^{\Gamma \mathbf{s s}^{\prime}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{\mathbf{2} \mathbf{E}_{\mathbf{s}} \mathbf{L}^{\mathbf{3}}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-1} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u}^{\prime}}\right)=\mathbf{0}
$$

> genuine (momenta-dependent) 3-body "force"
, simplest case: $C_{\boldsymbol{q} \boldsymbol{p}}=c \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q})$

Fit C to NPLQCD ground state level

$$
\rightarrow C=(0.2 \pm 1.5) \cdot 10^{-10}
$$

First prediction of excited levels for physical system

- Maximal isospin: $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
${ }^{\wedge}$ LatticeQCD results for ground level available for $\boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \& \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{+}$
- Repulsive channel
, $L=2.5 \mathrm{fm}, m_{\pi}=291 / 352 / 491 / 591 \mathrm{MeV}$

II. 3-body spectrum

Remaining unknown: C
QUANTIZATION CONDITION
$\operatorname{Det}\left(\mathbf{B}_{\mathbf{u u}^{\prime}}^{\Gamma \mathbf{s s ^ { \prime }}}\left(\mathbf{W}^{\mathbf{2}}\right)+\frac{\mathbf{2} \mathbf{E}_{\mathbf{s}} \mathbf{L}^{\mathbf{3}}}{\vartheta(\mathbf{s})} \tau_{\mathbf{s}}\left(\mathbf{W}^{\mathbf{2}}\right)^{-\mathbf{1}} \delta_{\mathbf{s s}^{\prime}} \delta_{\mathbf{u u ^ { \prime }}}\right)=\mathbf{0}$
"force"
, simplest case: $C_{\boldsymbol{q} \boldsymbol{p}}=c \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q})$

Predict excited spectrum:
\rightarrow novel pattern
1/1 of interacting/non-interacting lvls
\rightarrow all QC-poles are simple
\rightarrow chiral extrapolation to phys point (under assumptions)

The Moving $\pi^{+} \pi^{+} \pi^{+}$ System

Mai, M.D., Alexandru, Culver (in preparation)

New Lattice Data

Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

Two-body spectrum $\pi^{+} \pi^{+}$

Three-body spectrum $\pi^{+} \pi^{+} \pi^{+}$

- First lattice data on excited energy eigenvalues from multi-pion operators
\rightarrow More reliable extraction of scattering eigenvalues
- D200 CLS ensemble (2+1) with improved Wilson fermions and tree-level Lüscher-Weisz gauge action; stochastic LapH method; $m_{\pi}=200 \mathrm{MeV}$; L=4.1 fm
- High number of Wick contraction (20,679,840 diagrams) managed with novel method from quantum chemistry

Two-body spectrum: D-wave (I)

Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

\rightarrow I=2 D-wave vanishes within uncertainties - what does IAM predict?

D-wave (II): prediction

See also [Nebreda, Peláez, Ríos, PRD83 (2011)]

IAM predictions 2-body spectrum

\rightarrow We may consider this as any suitable 2-body Parametrization (like, e.g., K-matrix with conformal mapping)

IAM predictions: Different LECs

(D-wave set to zero)

^ Nebrada, Peláez, Rios (PRD88, 2013)

- GW global (arXiv:1908.01847 [hep-lat])
- Gasser, Leutwyler (Annals Phys. 158, 1984)
- Robust predictions of the 2-body spectrum irrespective of used LECs
- No sign of D-wave up to very high energies in irreps with S\&D-wave mixing
- Ignore the vanishing $\pi^{+} \pi^{+}$- D-wave, but keep the important π^{+}- isobar D-wave

"in-flight transitions"

3-body Spectrum: Predictions (I)

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

- S-wave prediction good at threshold (like for NPLQCD data)
- S-wave prediction good at high energies
\rightarrow Energy dependence matched
- No sign of 3-body force (like for NPLQCD data)
- D-wave prediction qualitatively good
\rightarrow Relative* strength between
S - and D-wave matched
\rightarrow Consequence that 3-body interaction dominated by exchange
\rightarrow Consequence of 3-body Unitarity
- Three-body unitarity directly visible in the eigenvalue spectrum of lattice QCD
*and absolute

Technical note: Projection technique for 3-body systems to irreps from
M.D., Hammer, Mai, Pang, Rusetsky, Wu

PRD97 (2018)

3-body spectrum: Moving frames

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

\rightarrow Need to develop a framework for moving 3-body systems!

Moving frames for 3-body systems

Usually: Explicit S- and D-wave projected parameterizations in coupled channels Here: Boost of unprojected 3-body amplitude. A-posteriori projections with suitable Clebsch-Gordan coefficients \rightarrow Requires plane-wave solution of scattering
$\left.\begin{array}{l}\tilde{\mathbf{P}}=\tilde{\mathbf{q}}_{1}+\tilde{\mathbf{q}}_{2}+\tilde{\mathbf{q}}_{3}=\tilde{\mathbf{p}}_{1}+\tilde{\mathbf{p}}_{2}+\tilde{\mathbf{p}}_{3} \\ (L / 2 \pi) \text { P }\end{array}\right\}\{(0,0,1),(0,1,1),(1,1,1)\} \quad \mathbf{q}=\tilde{\mathbf{q}}+\left[\left(\frac{\tilde{P}^{0}}{\sqrt{s}}-1\right) \frac{\tilde{\mathbf{q}} \tilde{\mathbf{P}}}{\left|\tilde{\mathbf{P}}^{2}\right|}-\frac{\tilde{q}^{0}}{\sqrt{s}}\right] \tilde{\mathbf{P}}$
3-body summation: $\int \frac{d^{3} \mathbf{l}}{(2 \pi)^{3}} g(\mathbf{l}) \rightarrow \int \frac{d^{3} \tilde{\mathbf{l}}}{(2 \pi)^{3}} g(\mathbf{l}(\tilde{\mathbf{l}})) \tilde{J}(\tilde{\mathbf{l}}) \rightarrow \frac{1}{L^{3}} \sum_{\mathbf{n}} g(\mathbf{l}(\tilde{\mathbf{l}})) \tilde{J}(\tilde{\mathbf{l}})$
$\longrightarrow \hat{T}(\mathbf{q}(\tilde{\mathbf{q}}), \mathbf{p}(\tilde{\mathbf{p}})) 3 \rightarrow 3$ boosted plane-wave amplitude Poles \rightarrow Eigenvalues

3-body spectrum: Complete Predictions

Data: Hörz, Hanlon, arXiv:1905.04277 [hep-lat]

Summary

3-body Unitarity

- 3-body unitarity dictates on-shell condition (exchange term \& isobar propagator)
- On-shell condition dictates leading, power-law finitevolume effects
- "Bare-bone"infinite-volume extrapolation tool (in spirit of Lüscher equation)
- Optional: Pion-mass extrapolation

The $\pi^{+} \pi^{+} \pi^{+}$System

- First application to physical 3-body system [PRL 2019]
- NPLQCD threshold data well predicted, excited levels predicted
- First explanation of excited 3-body levels (data from Hörz/Hanlon)
- Consequences of three-body unitarity directly visible in data (S vs. D waves)
- First development and application of moving frames for 3-body systems

OUTLOOK

\rightarrow Implementation of spin isobars \& multiple isobars
\rightarrow unequal masses
\rightarrow practical studies: a_{1} (1260), Roper, exotics...

SPARES

I=2 D-wave at HadSpec Pion Masses

Scattering amplitude - analytic expression

$$
\begin{aligned}
& \left\langle q_{1}, q_{2}, q_{3}\right| \hat{T}_{c}(s)\left|p_{1}, p_{2}, p_{3}\right\rangle= \\
& \frac{1}{3!} \sum_{n=1}^{3} \sum_{m=1}^{3} T_{22}\left(\sigma\left(q_{n}\right)\right)\left\langle q_{n}\right| T(s)\left|p_{m}\right\rangle{ }_{2} \begin{array}{l}
\text { External on-shell } \\
\text { 2-body interaction }
\end{array} \\
& \hline
\end{aligned}
$$

Recasting in on-shell $2 \rightarrow 2$ amplitudes + real 3-body forces
with

The Power of Unitarity

Question: Does

provide full imaginary part of all possible $3 \rightarrow 3$ transitions?

The Power of Unitarity

The Power of Unitarity

Projection to irreps

[M.D., Hammer, Mai, Pang, Rusetsky, Wu (2018)]

- Lüscher formalism relies on regular $2 \rightarrow 2$ potentials
- Now: manifestly singular interactions
- Find generalization that projects also the interactions to the irreps of cubic symmetry, not only propagation
- Separation of variables
- shells $=$ sets of points related by $\boldsymbol{O}_{\boldsymbol{h}}$
- Analogous to radial coordinate in infinite volume
- Find the orthonormal basis for arbitrary functions defined on each point of a given shell.

$$
\begin{aligned}
& q_{i}=\frac{2 \pi}{L} n_{i}, \quad n_{i} \in \mathbb{Z}, \quad i=1,2,3 \\
& \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \rightarrow \frac{1}{L^{3}} \sum_{s} \sum_{i=1}^{\vartheta(s)}
\end{aligned}
$$

- J (inf. volume) \rightarrow irreps (finite volume): $\Gamma \in\left\{A_{1}^{ \pm}, A_{2}^{ \pm}, E^{ \pm}, T_{1}^{ \pm}, T_{2}^{ \pm}\right\}$
- Partial wave projection (inf. Volume) \Rightarrow Irrep. projection (fin.)

$$
\begin{aligned}
& f(\mathbf{p})=\sqrt{4 \pi} \sum_{\ell m} Y_{\ell m}(\hat{p}) f_{\ell m}(p) \\
& f_{\ell m}(p)=\frac{1}{\sqrt{4 \pi}} \int d \Omega Y_{\ell m}^{*}(\hat{p}) f(\mathbf{p})
\end{aligned}
$$

$$
f^{s}\left(\hat{p}_{j}\right)=\sqrt{4 \pi} \sum_{\Gamma \alpha} \sum_{a} f_{a}^{\Gamma \alpha s} \chi_{a}^{\Gamma \alpha s}\left(\hat{p}_{j}\right)
$$

$$
f_{a}^{\Gamma \alpha s}=\frac{\sqrt{4 \pi}}{\vartheta(s)} \sum_{j=1}^{\vartheta(s)} f^{s}\left(\hat{p}_{j}\right) \chi_{a}^{\Gamma \alpha s}\left(\hat{p}_{j}\right)
$$

Quantization Condition

$$
\operatorname{Det}\left(\mathbf{B}_{\mathrm{uu}^{\prime}}^{\Gamma_{\mathrm{ss}}}\left(\mathbf{W}^{2}\right)+\frac{2 \mathrm{E}_{\mathrm{s}} \mathrm{~L}^{3}}{\vartheta(\mathrm{~s})} \tau_{\mathrm{s}}\left(\mathbf{W}^{2}\right)^{-1} \delta_{\mathrm{ss}^{\prime}} \delta_{\mathrm{uu}^{\prime}}\right)=0
$$

Fix to $3 \rightarrow 3$ data
W - total energy
s/s' - shell index - multiplicity
$u / u^{\prime}-$ basis index $\quad E_{s}$ - lattice volume
Determinant of energy $(s, u) \times\left(s^{\prime}, u^{\prime}\right)$ matrix
at fixed W, Γ, L

Fix to $2 \rightarrow 2$ data:

$$
T_{22}=v \tau v
$$

- Not a Lüscher-like equation ("left": infinite volume, "right": finite volume)
- Instead: Fix parameters to lattice eigenvalues
- With parameters fixed, evaluate infinite-volume amplitude
- Same workflow as in many 2-body coupled-channel fits (see, e.g., m.D., Meißner, Oset, Rusetsky, EPJA (2012))

Numerical demonstration

[M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]]

- Numerical demonstration of three-body finite volume formalism
- 3 particles in finite volume: $m=138 \mathrm{MeV}, \mathrm{L}=3 \mathrm{fm}$
- one S-wave isobar \rightarrow two unknowns:
- vertex(Isobar $\rightarrow 2$ stable particles)
- subtraction constant (\sim mass)
- Project to $\Gamma=A^{1+}$

\rightarrow prediction of 3body energy-eigenlevels ($\mathrm{C}=0$)

Two-body scattering on lattice

Input for 3-body

Two body scattering

In the infinite volume

- Unitarity of the scattering matrix $S: S S^{\dagger}=\mathbb{1} \quad\left[S=\mathbb{1}-i \frac{p}{4 \pi E} T\right]$.

$$
\operatorname{Im} T^{-1}(E)=\sigma \equiv \frac{p}{8 \pi E}
$$

- \rightarrow Generic (Lippman-Schwinger) equation for unitarizing the T-matrix:

$$
T=V+V G T \quad \operatorname{Im} G=-\sigma
$$

V : (Pseudo)potential, σ : phase space.

- G : Green's function:

$$
\begin{aligned}
G & =\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{f(|\vec{q}|)}{E^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon} \\
\omega_{1,2}^{2} & =m_{1,2}^{2}+\vec{q}^{2}
\end{aligned}
$$

Discretization

Discretized momenta in the finite volume with periodic boundary conditions

$$
\Psi(\vec{x}) \stackrel{!}{=} \Psi\left(\vec{x}+\hat{\mathbf{e}}_{i} L\right)=\exp \left(i L q_{i}\right) \Psi(\vec{x}) \Longrightarrow q_{i}=\frac{2 \pi}{L} n_{i}, \quad n_{i} \in \mathbb{Z}, \quad i=1,2,3
$$

$$
\int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} g\left(|\vec{q}|^{2}\right) \rightarrow \frac{1}{L^{3}} \sum_{\vec{n}} g\left(|\vec{q}|^{2}\right), \quad \vec{q}=\frac{2 \pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^{3}
$$

$$
G \rightarrow \tilde{G}=\frac{1}{L^{3}} \sum_{\vec{q}} \frac{f(|\vec{q}|)}{E^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}}
$$

- $E>m_{1}+m_{2}: \tilde{G}$ has poles at free energies in the box, $E=\omega_{1}+\omega_{2}$
- $E<m_{1}+m_{2}: \tilde{G} \rightarrow G$ exponentially with L (regular summation theorem).

Finite \rightarrow infinite volume: the Lüscher equation

Warning: rather crude re-derivation

- Measured eigenvalues of the Hamiltonian (tower of lattice levels $E(L)$) \rightarrow Poles of scattering equation \tilde{T} in the finite volume \rightarrow determines V :

$$
\tilde{T}=(1-V \tilde{G})^{-1} V \rightarrow \quad V^{-1}-\tilde{G} \stackrel{!}{=} 0 \rightarrow V^{-1}=\tilde{G}
$$

- The interaction V determines the T-matrix in the infinite volume limit:

$$
T=\left(V^{-1}-G\right)^{-1}=(\tilde{G}-G)^{-1}
$$

- Re-derivation of Lüscher's equation (T determines the phase shift δ):

$$
p \cot \delta(p)=-8 \pi \sqrt{s}(\tilde{G}(E)-\operatorname{Re} G(E))
$$

- V and dependence on renormalization have disappeared (!)
- p : c.m. momentum
- E: scattering energy
- $\tilde{G}-\operatorname{Re} G$: known kinematical function ($\simeq \mathcal{Z}_{00}$ up to exponentially suppressed contributions)
- One phase at one energy.

Finite-volume \& chiral extrapolations

QCD calculations in finite volume

- unphysical pion mass
- (periodic) boundary conditions
\rightarrow discrete momenta \& discrete spectrum

Recipe for $\mathbf{2} \boldsymbol{\rightarrow} \mathbf{2}$ scattering (e.g. $I=J=0 \pi \pi$ scattering)

HSC(2016)

CHIRAL EXTRAPOLATIONS

- M_{π} dependence from NLO ChPT (IAM)

Gasser, Leutwyler(1981)
Dobado, Pelaez (1997)

- Extrapolation in flavor

GWU lattice group: the isoscalar sector

[Guo, Alexandru, Molina, M.D., M. Mai, PRD (2018)]

- nHYP-smeared clover fermions with mass-degenerate quark flavors $\left(\mathrm{N}_{\mathrm{f}}=2\right)$
- $\mathrm{M}_{\pi}=227 \mathrm{MeV}$ and 315 MeV
- 3 elongated boxes
- Large variational basis including several meson-meson operators
- Moving frames
- Conformal mapping for σ pole extraction
- Unitarized Chiral Perturbation Theory fits for chiral extrapolation: chm1: $I=L=0, M_{\pi}=227,315 \mathrm{MeV}$ chm2: $I=L=0,1, M_{\pi}=227,315 \mathrm{MeV}$

Chiral extrapolation of σ pole

$$
M_{\pi}=138 \mathrm{MeV}
$$

Parametrization Fitted data

chm 1	$\sigma_{227,315}$	440_{-90}^{+60}	240_{-50}^{+20}	$3.0_{-0.6}^{+0.2}$

chm 2	$\sigma_{227} \rho_{227}$	430_{-30}^{+20}	250_{-30}^{+30}	$3.0_{-0.1}^{+0.1}$
chm 2	$\sigma_{315} \rho_{315}$	460_{-15}^{+10}	210_{-30}^{+40}	$3.0_{-0.1}^{+0.1}$
chm 2	$\sigma_{227,315} \rho_{227,315}$	440_{-16}^{+10}	240_{-20}^{+20}	$3.0_{-0.0}^{+0.0}$

Ref. [1]	experimental	449_{-16}^{+22}	275_{-12}^{+12}	$3.5_{-0.2}^{+0.3}$

[1] J. R. Pelaez, Phys. Rept. 658, 1 (2016), arXiv:1510.00653 [hep-ph].
[Consistent with conformal-mapping amplitude parametrization (model-independent, not shown)]

Residues

Pole trajectory

First prediction: Hanhart, Pealez, Rios, PRL (2008)

$\rightarrow \sigma$ becomes a (virtual) bound state @ $M_{\pi}=(345) 415 \mathrm{MeV}$

Cancellations

(T)

Also: all $2^{\text {nd }}$ order singularities in determinant cancel \rightarrow All consequence of Manifest three-body unitarity

