Partial-Wave Analysis at COMPASS

Stefan Wallner for the COMPASS Collaboration

Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich

September 6, 2019
International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy

(see talk by B. Ketzer on Monday)

- ► Explore light-meson spectrum for $m \lesssim 3 \,\text{GeV}/c^2$
- ► High-precision measurement of known states
- ► Search for new forms of matter:
 - Multi-quark states
 - Hybrids
 - ▶ Glueballs
 - •

M2 beam line

Located at CERN (SPS)

Beam

► 190 GeV/c secondary hadron beams

COMPASS spectrometer

Beam

- Two-stage magnetic spectrometer
- ► Beam and final-state particle ID

Diffractive Production

- ► Diffractive production in high-energy scattering
- ▶ Light mesons appear as intermediate states X⁻
- Observed in decays into quasi-stable particles:
 - \blacktriangleright $\pi^-\pi^-\pi^+$ final state: Access to a_J and π_J states
 - $ightharpoonup K^-\pi^-\pi^+$ final state: Access to all K and K^* states

Diffractive Production

- Diffractive production in high-energy scattering
- Light mesons appear as intermediate states X⁻
- Observed in decays into quasi-stable particles:
 - $\blacktriangleright \pi^-\pi^-\pi^+$ final state: Access to a_J and π_J states
 - $K^-\pi^-\pi^+$ final state: Access to all K and K^* states

Kinematic Distributions

- ightharpoonup Rich spectrum of overlapping and interfering X^-
 - Dominant well known states
 - ► States with lower intensity are "hidden"

Kinematic Distributions

- \triangleright Rich spectrum of overlapping and interfering X^-
 - Dominant well known states
 - ► States with lower intensity are "hidden"

Isobar Model

Partial wave $a = J^{P(C)} M^{\epsilon} \xi^0 b^- L$ at fixed invariant mass of X^- system

lacktriangle Calculate 5D decay phase-space distribution $\varPsi(au)$ of final state

$$\mathcal{I}(au) = \left| \sum_{artheta} \mathcal{T}_{artheta} \varPsi_{artheta}(au)
ight|$$

imes Perform maximum-likelihood fit in cells of $(m_{K\pi\pi},t')$

 \blacktriangleright Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

Isobar Model

- ▶ Partial wave $a = J^{P(C)} M^{\varepsilon} \xi^{0} b^{-} L$ at fixed invariant mass of X^{-} system
 - ightharpoonup Calculate 5D decay phase-space distribution $\Psi(\tau)$ of final state
- ► Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(au) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \varPsi_{a}(au) \right|^{2}$$

- ▶ Perform maximum-likelihood fit in cells of $(m_{K\pi\pi}, t')$
 - \blacktriangleright Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

Isobar Model

- ▶ Partial wave $a = J^{P(C)} M^{\varepsilon} \xi^{0} b^{-} L$ at fixed invariant mass of X^{-} system
 - lacktriangle Calculate 5D decay phase-space distribution $\varPsi(au)$ of final state
- ► Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(au) = \left|\sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \varPsi_{a}(au) \right|^{2}$$

- ▶ Perform maximum-likelihood fit in cells of $(m_{K\pi\pi}, t')$
 - ightharpoonup Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

Isobar Model

- ▶ Partial wave $a = J^{P(C)} M^{\varepsilon} \xi^{0} b^{-} L$ at fixed invariant mass of X^{-} system
 - ightharpoonup Calculate 5D decay phase-space distribution $\Psi(\tau)$ of final state
- ► Total intensity distribution: Coherent sum of partial-wave amplitudes

$$\mathcal{I}(au) = \left| \sum_{a}^{\mathsf{waves}} \mathcal{T}_{a} \varPsi_{a}(au)
ight|^{2}$$

- ▶ Perform maximum-likelihood fit in cells of $(m_{K\pi\pi}, t')$
 - ightharpoonup Extract $m_{K\pi\pi}$ and t' dependence of transition amplitudes \mathcal{T}_a

$$\mathcal{I}(au) = \left| \sum_{\mathsf{a}}^{\mathsf{waves}} \mathcal{T}_{\mathsf{a}} \varPsi_{\mathsf{a}}(au)
ight|^2$$

Challenge: Find the "best" set of waves that describes the data

- ► If the wave set is too large
 - ⇒ Starting to describe statistical fluctuations
- ▶ If waves that contribute to the data are missing
 - ► Intensity can be wrongly attributed to other waves
 - → Model leakage

Infer wave set from data

- Systematically construct large set of allowed partial waves
 - → "Wave pool"
- Fit wave pool to data
 - ▶ Impose penalty on $|\mathcal{T}_a|^2$ ⇒ regularization
 - Suppress insignificant waves
- Select waves that significantly contribute to data
 - ⇒ "Best" subset of waves that describe the data

- $ightharpoonup \pi^-\pi^-\pi^+$ Monte Carlo mock data set with 126 partial waves
- Fitting wave pool of 753 waves
 - Massive overheading
 - Almost all waves pick up intensity

- $ightharpoonup \pi^-\pi^-\pi^+$ Monte Carlo mock data set with 126 partial waves
- Fitting wave pool of 753 waves
 - Massive overfitting
 - → Almost all waves pick up intensity

Regularization: LASSO

$$\ln \mathcal{L}_{ ext{fit}} = \ln \mathcal{L}_{ ext{extended}} + \sum_{a}^{ ext{waves}} \ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{a}|; \{c_{ ext{para}}\})$$

LASSO/L1 regularization

$$\ln \mathcal{L}_{\text{reg}}(|T_a|;\lambda) = -\lambda |T_a|$$

- ightharpoonup Maximum at $|\mathcal{T}_a| = 0$
- Well established²
- ightharpoonup "Smoothing" at $|\mathcal{T}_a| = 0$

$$|\mathcal{T}_a| \to \sqrt{|\mathcal{T}_a|^2 + \varepsilon}$$

Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996)
 Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

Regularization: LASSO

$$\ln \mathcal{L}_{ ext{fit}} = \ln \mathcal{L}_{ ext{extended}} + \sum_{a}^{ ext{waves}} \ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_a|; \{c_{ ext{para}}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{\text{reg}}(|T_{\mathsf{a}}|;\lambda) = -\lambda |\mathcal{T}_{\mathsf{a}}|$$

- Maximum at $|\mathcal{T}_a| = 0$
- Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$

¹ Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996) ² Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

Regularization: LASSO

$$\ln \mathcal{L}_{\mathrm{fit}} = \ln \mathcal{L}_{\mathrm{extended}} + \sum_{a}^{\mathrm{waves}} \ln \mathcal{L}_{\mathrm{reg}}(|\mathcal{T}_a|; \{c_{\mathrm{para}}\})$$

LASSO/L1 regularization¹

$$\ln \mathcal{L}_{\text{reg}}(|T_a|;\lambda) = -\lambda |T_a|$$

- Maximum at $|\mathcal{T}_a| = 0$
- Well established²
- "Smoothing" at $|\mathcal{T}_a| = 0$

$$|\mathcal{T}_{a}| o \sqrt{|\mathcal{T}_{a}|^{2} + \varepsilon}$$

Robert Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: Journal of the Royal Statistical Society. Series B 58.1 (1996)
 Baptiste Guegan et al. "Model selection for amplitude analysis". In: JINST 10.09 (2015), P09002

S. Wallner Partial-Wave Analysis at COMPASS

Regularization: LASSO

$$\lambda = 0.3$$

$$\varepsilon = 10^{-5}$$

- Bias also on large transition amplitudes
- ► Some additional waves
- Some waves missing

Generalized Pareto¹

$$\ln \mathcal{L}_{\mathrm{reg}}(|T_{\mathsf{a}}|; \varGamma, \zeta) = -\frac{1}{\zeta} \ln \left[1 + \zeta \frac{|\mathcal{T}_{\mathsf{a}}|}{\varGamma} \right]$$

- Wave intensities spread over orders of magnitudes
- ▶ Use logarithmic prior
 - → Heavy-tailed
- ▶ LASSO-like for $|T_a| \rightarrow 0$
- "Smoothing" at $|\mathcal{T}_a| = 0$

$$|\mathcal{T}_{\mathsf{a}}| o \sqrt{|\mathcal{T}_{\mathsf{a}}|^2 + \varepsilon}$$

Artin Armagan, David B. Dunson, and Jaeyong Lee. "Generalized double Pareto shrinkage". In: Statistica Sinica (2013). doi: 10.5705/ss.2011.048.

Regularization: Generalized Pareto

 $\zeta = 0.5$ $\Gamma = 0.1$ $\varepsilon = 10^{-5}$

- Less bias on large transition amplitudes
- ightharpoonup Clear kink in intensity distribution to smoothing scale \Rightarrow Selection
- Less additional waves
- ► Some small waves missing

"Cauchy"

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extsf{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{ extsf{a}}|^2}{arGamma_{ extsf{a}}^2}
ight]$$

- ► Logarithmic prior
- ▶ L2-like for $|T_a| \rightarrow 0$

Regularization: Cauchy

 $\Gamma = 0.2$

- Less bias on large transition amplitudes
- Clear kink in intensity distribution
- ► Few additional waves
- ► Few small waves missing

Courtesy F. Kaspar, TUM

Wave pool

- ▶ Spin $J \le 7$
- ▶ Angular momentum $L \le 7$
- Positive naturality of exchange particle
- ▶ 12 isobars
 - \blacktriangleright $[K\pi]_{S}^{K\pi}$, $[K\pi]_{S}^{K\eta}$, $K^{*}(892)$, $K^{*}(1680)$, $K_{2}^{*}(1430)$, $K_{3}^{*}(1780)$
 - \blacktriangleright $[\pi\pi]_S$, $f_0(980)$, $f_0(1500)$, $\rho(770)$, $f_2(1270)$, $\rho_3(1690)$
 - ⇒ "Wave pool" of 596 waves

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extsf{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{ extsf{a}}|^2}{arGamma_{ extsf{a}}^2}
ight]$$

- ► Use Cauchy regularization
- Scale of $|\mathcal{T}_a|$ depends on experimental acceptance

7 penalty on expected penalty on expected events $= \frac{\Gamma}{\sqrt{\overline{\eta}_a}} \Rightarrow \frac{|\mathcal{T}_a|^2}{\Gamma_a^2} = \frac{\overline{N}_a}{\Gamma^2}$

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{ extsf{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{ extsf{a}}|^2}{arGamma_{ extsf{a}}^2}
ight]$$

- Use Cauchy regularization
- ► Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number \bar{N}_a of observed events

$$\Gamma_{a} = rac{\Gamma}{\sqrt{ar{\eta}_{a}}} \; \Rightarrow \; rac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = rac{ar{N}_{a}}{\Gamma^{2}}$$

Regularization

$$\ln \mathcal{L}_{ ext{reg}}(|\mathcal{T}_{m{a}}|; arGamma) = - \ln \left[1 + rac{|\mathcal{T}_{m{a}}|^2}{arGamma_{m{a}}^2}
ight]$$

- Use Cauchy regularization
- ► Scale of |T_a| depends on experimental acceptance
 - Apply penalty on expected number \bar{N}_a of observed events

$$\Gamma_{a} = \frac{\Gamma}{\sqrt{\bar{\eta}_{a}}} \Rightarrow \frac{|\mathcal{T}_{a}|^{2}}{\Gamma_{a}^{2}} = \frac{\bar{N}_{a}}{\Gamma^{2}}$$

Wave-set size

- ▶ 5 to 90 waves per $(m_{K\pi\pi}, t')$ cell
- ► Larger wave set for larger binning in $m_{K\pi\pi}$
- ► Larger wave set in *t'* bins with more events

Leakage Effect $J^P = 1^+$

$$1^+ 0^+ K^*(892) \pi S$$

- Dominant signal
- $ightharpoonup K_1(1270), K_1(1400)$ double peak

- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1+ wave
- ► Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- Unexpected low-mass enhancement in 3⁺ 1⁺ K*(892) π D wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- ► Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- ► Unexpected low-mass enhancement in $3^+1^+K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

$$ar{I}_{a,b} = \int \mathrm{d} arphi_3(au) \; \frac{\eta(au)}{\eta(au)} \varPsi_a(au) \varPsi_b^*(au) \ 0.00 \; 0.07 \; 0.14$$

Leakage Effect

- ▶ Unexpected low-mass enhancement in $3^+1^+K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

Leakage Effect

- ► Unexpected low-mass enhancement in $3^+1^+K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

Leakage Effect

- ▶ Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- ► Similar to dominant 1⁺ wave
- Sensitive to systematic effects
- Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account
- Limited acceptance due to limited kinematic range of final-state PID
- Only a small sub-set of partial waves affected

Extract isobar amplitudes from data

- Replace model with step-like isobars
- Extract binned shape in mass-independent fit

Extract isobar amplitudes from data

- Replace model with step-like isobars
- Extract binned shape in mass-independent fit

- ▶ 12 dominant waves with freed isobars
 - ► About 75 % of total intensity
- Replace 16 of 88 fixed-isobar waves
 - > 72 small waves with fixed isobars
 - ► Stabilize the fit
- \blacktriangleright Extract $\pi^-\pi^+$ amplitude
 - ▶ for 1100 $(m_{3\pi}, t')$ cells
 - ▶ for different J^{PC} of $\pi^-\pi^-\pi^+$ system
- ▶ 5 "zero modes" (see talk by F. Krinner on Thursday)
 - ► Mathematical ambiguities in the model
 - External physical conditions needed to resolve zero mode

- ▶ 12 dominant waves with freed isobars
 - ► About 75 % of total intensity
- Replace 16 of 88 fixed-isobar waves
 - ▶ 72 small waves with fixed isobars
 - Stabilize the fit
- \blacktriangleright Extract $\pi^-\pi^+$ amplitude
 - for 1100 $(m_{3\pi}, t')$ cells
 - for different J^{PC} of $\pi^-\pi^-\pi^+$ system
- ▶ 5 "zero modes" (see talk by F. Krinner on Thursday)
 - ► Mathematical ambiguities in the model
 - External physical conditions needed to resolve zero mode

- ▶ 12 dominant waves with freed isobars
 - ► About 75 % of total intensity
- Replace 16 of 88 fixed-isobar waves
 - > 72 small waves with fixed isobars
 - Stabilize the fit
- \blacktriangleright Extract $\pi^-\pi^+$ amplitude
 - for 1100 $(m_{3\pi}, t')$ cells
 - for different J^{PC} of $\pi^-\pi^-\pi^+$ system
- ▶ 5 "zero modes" (see talk by F. Krinner on Thursday)
 - Mathematical ambiguities in the model
 - External physical conditions needed to resolve zero mode

Spin-Exotic 1^{-+} 1^+ $[\pi\pi]_{1^{--}}$ π P Wave in $\pi^-\pi^-\pi^+$

- Resolve zero mode: $\rho(770)$ Breit Wigner
- ► Similar to fixed-isobar shape
- Isobar model: Valid assumption

- Observed deviations?
 - Final state interactions
 - Non-resonant contribution

Spin-Exotic $1^{-+}\,1^+\,[\pi\pi]_{1^{--}}\,\pi\,P$ Wave in $\pi^-\pi^-\pi^+$

- Resolve zero mode: $\rho(770)$ Breit Wigner
- ► Similar to fixed-isobar shape
- ► Isobar model: Valid assumption

- Observed deviations?
 - Final state interactions
 - ► Non-resonant contributions
 - ...

Spin-Exotic $1^{-+}\,1^+\,[\pi\pi]_{1^{--}}\,\pi\,P$ Wave in $\pi^-\pi^-\pi^+$

- Resolve zero mode: $\rho(770)$ Breit Wigner
- Similar to fixed-isobar shape
- Isobar model: Valid assumption

- Observed deviations?
 - ► Final state interactions
 - Non-resonant contributions
 - **-** ...

- High-precision measurements of light mesons
- ► Regularization-based wave-set selectio
- ► Study of leakage effects
- Freed-isobar analysis to study sub-system amplitudes

- Apply developed methods to other final states
 - $K^{-}\pi^{-}\pi^{+}$
 - $\sim \omega \pi^- \pi^0$

- High-precision measurements of light mesons
- Regularization-based wave-set selection
- Study of leakage effects
- Freed-isobar analysis to study sub-system amplitudes

- ► Apply developed methods to other final states
 - $K^{-}\pi^{-}\pi^{+}$
 - $\omega \pi^- \pi^0$

- High-precision measurements of light mesons
- Regularization-based wave-set selection
- Study of leakage effects

- Apply developed methods to other final states
 - $K^{-}\pi^{-}\pi^{+}$
 - $\sim \omega \pi^- \pi^0$

- High-precision measurements of light mesons
- Regularization-based wave-set selection
- Study of leakage effects
- Freed-isobar analysis to study sub-system amplitudes

- ► Apply developed methods to other final states
 - $K^{-}\pi^{-}\pi^{+}$
 - $\sim \omega \pi^- \pi^0$
 - ω 7

- High-precision measurements of light mesons
- Regularization-based wave-set selection
- Study of leakage effects
- Freed-isobar analysis to study sub-system amplitudes

- ► Apply developed methods to other final states
 - $K^{-}\pi^{-}\pi^{+}$
 - $\sim \omega \pi^- \pi^0$
 - ...

Backup

Outline