AMPLITUDE ANALYSIS AND POLE INTERPRETATION: THE Pc(4312) CASE

CÉSAR FERNÁNDEZ-RAMÍREZ
INSTITUTO DE CIENCIAS NUCLEARES - UNAM JOINT PHYSICS ANALYSIS CENTER (JPAC)

AMPLITUDE ANALYSIS: BOTTOM-TOP APPROACH

- Build the minimally-biased theory (model) with the correct physical restrictions
- Fit the experimental data and perform an error analysis
- Analytically continue the amplitude to the complex plane and the unphysical Riemann sheets
- Hunt and study poles. Two aspects:
-Are they poles of the model only or are they also poles of the data?
- Can we make a model-independent interpretation of the nature of the singularity?

UNCERTAINTIES ANALYSIS: BOOTSTRAP

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

- Take the data with errors

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

- Take the data with errors

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)
- Fit, get parameters, compute any derivative quantity (observables, poles)

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

\rightarrow Take the data with errors

- Randomize according to uncertainties (generate pseudodata)
- Fit, get parameters, compute any derivative quantity (observables, poles)

Repeat until you have enough statistics

Alessandro will elaborate on this later

UNCERTAINTIES ANALYSIS: BOOTSTRAP

\rightarrow Take the data with errors

- Randomize according to uncertainties (generate pseudodata)
- Fit, get parameters, compute any derivative quantity (observables, poles)

Repeat until you have enough statistics

You end up with N sets of parameters, and you can perform statistics on them and compute derivative quantities (poles, observables) propagating in full the errors

Alessandro will elaborate on this later

NATURE OF Pc(4312)

Close to a threshold

Triangle singularity
Compact pentaquark
Molecule
Virtual state

LHCb, PRL 122 (2019) 222001

$$
\Lambda_{b}^{0}
$$

$\bar{D}_{s 1}^{0}$

Molecule

Compact pentaquark

Molecule

VIRTUAL STATE?

VIRTUAL STATE?

The virtual state is actually a very well-established physics case Consider Nucleon-Nucleon interaction:

VIRTUAL STATE?

The virtual state is actually a very well-established physics case Consider Nucleon-Nucleon interaction:

$$
\begin{aligned}
& p+n(\text { singlet }) \rightarrow d(\text { bound state }, \text { deuteron }) \\
& p+p(\text { triplet }) \rightarrow p+p(\text { virtual state }) \\
& p+n(\text { triplet }) \rightarrow p+n(\text { virtual state }) \\
& n+n(\text { triplet }) \rightarrow n+n(\text { virtual state })
\end{aligned}
$$

VIRTUAL STATE?

The virtual state is actually a very well-established physics case Consider Nucleon-Nucleon interaction:

$$
\begin{aligned}
& p+n(\text { singlet }) \rightarrow d(\text { bound state }, \text { deuteron }) \\
& p+p(\text { triplet }) \rightarrow p+p(\text { virtual state }) \\
& p+n(\text { triplet }) \rightarrow p+n(\text { virtual state }) \\
& n+n(\text { triplet }) \rightarrow n+n(\text { virtual state })
\end{aligned}
$$

$n n$ scattering never generates a bound state, but generates a signal that can be seen in the scattering lengths

VIRTUAL STATE?

The virtual state is actually a very well-established physics case Consider Nucleon-Nucleon interaction:

$$
\begin{aligned}
& p+n(\text { singlet }) \rightarrow d(\text { bound state }, \text { deuteron }) \\
& p+p(\text { triplet }) \rightarrow p+p(\text { virtual state }) \\
& p+n(\text { triplet }) \rightarrow p+n(\text { virtual state }) \\
& n+n(\text { triplet }) \rightarrow n+n(\text { virtual state })
\end{aligned}
$$

$n n$ scattering never generates a bound state, but generates a signal that can be seen in the scattering lengths

The interaction is strong enough to generate pole but not to bind the system

BOUND AND VIRTUAL STATES

Example from pn scattering
 Bound state on the real axis I sheet (deuteron)

BOUND AND VIRTUAL STATES

Decreasing the potential strength, the pole reaches threshold

BOUND AND VIRTUAL STATES

The pole jumps on the II sheet, it becomes a virtual state

TRIANGLE SINGULARITY

TRIANGLE SINGULARITY

TRIANGLE SINGULARITY

Triangle singularities do not generate poles but the phase motion is the same as for a pole (i.e. the Argand plot is going to be the same)
[Remember Bernhard's talk]

RIEMANN SHEETS STRUCTURE

First threshold is $J / \psi p$ channel and the second is $\Sigma_{c}^{+} \bar{D}^{0}$

COMPACT PENTAQUARK

$\Sigma_{c}^{+} \bar{D}^{0}$

$J / \psi p$

COMPACT PENTAQUARK

$$
J / \psi p \quad \Sigma_{c}^{+} \bar{D}^{0}
$$

COMPACT PENTAQUARK

$$
J / \psi p
$$

$\Sigma_{c}^{+} \bar{D}^{0}$

MOLECULE

$$
\xlongequal[\Sigma_{c}^{+} \bar{D}^{0}]{\underline{|c|}}
$$

$J / \psi p$

MOLECULE
$J / \psi p$ $\Sigma_{c}^{+} \bar{D}^{0}$

MOLECULE

$$
J / \psi p
$$ $\Sigma_{c}^{+} \bar{D}^{0}$

Either nothing on the III sheet or shadow pole

VIRTUAL STATE

II sheet

$$
\mathrm{O} \pm+\bar{D}^{0}
$$

$J / \psi p$

VIRTUAL STATE

IV sheet
$J / \psi p$
$\mathrm{O}_{c}^{+}{ }_{c}^{\bar{D}^{0}}$

VIRTUAL STATE

IV sheet
$J / \psi p$ $\Sigma_{c}^{+} \bar{D}^{0}$

0
II sheet

ANALYSIS OF THE Pc(4312) SIGNAL

- Build a theory in the near threshold region
- Analyze the three datasets provided by LHCb $P_{c}(4312)$
- 66 experimental data
- Experimental resolution incorporated
- Error analysis through bootstrap

NEAR-THRESHOLD THEORY

Hypotheses:
Only one partial wave contributes to the signal
The threshold drives the physics (testable)
\% Other effects are absorbed in the parameters (testable)

NEAR-THRESHOLD THEORY

Hypotheses:
Only one partial wave contributes to the signal
The threshold drives the physics (testable)
\% Other effects are absorbed in the parameters (testable)

Caveat:

- We fit the $\mathrm{J} / \psi \mathrm{p}$ projection (no info on quantum numbers)

NEAR-THRESHOLD THEORY

$$
\begin{aligned}
& \frac{d N}{d \sqrt{s}}=\rho(s)\left[|F(s)|^{2}+B(s)\right] \\
& \left(T^{-1}\right)_{i j}=M_{i j}-i k_{i} \delta_{i j}
\end{aligned}
$$

$$
M_{i j}(s)=m_{i j}-c_{i j} s
$$

The matrix elements $M_{i j}$ are singularity free near threshold and can be expanded in a Taylor series

$$
F(s)=P_{1}(s) T_{11}(s) \quad B(s)=b_{0}+b_{1} s \quad P_{1}(s)=p_{0}+p_{1} s
$$

Frazer \& Hendry, PR 134 (1964) B1307

AMPLITUDE IN THE NEAR THRESHOLD REGION

$$
\begin{aligned}
& \frac{d N}{d \sqrt{s}}=\rho(s)\left[|F(s)|^{2}+B(s)\right] \\
& B(s)=b_{0}+b_{1} s \\
& F(s)=\left(p_{0}+p_{1} s\right) \frac{\left[m_{22}-c_{22} s-i k_{2}\right]}{\left[m_{22}-c_{22} s-i k_{2}\right]\left[m_{11}-c_{11} s-i k_{1}\right]-m_{12}^{2}}
\end{aligned}
$$

AMPLITUDE IN THE NEAR THRESHOLD REGION

AMPLITUDE IN THE NEAR THRESHOLD REGION

Channel coupling

AMPLITUDE IN THE NEAR THRESHOLD REGION

Under the effective range approximation only poles in the II and IV sheet can happen When $c_{i j} \neq 0$, poles can appear in any sheet (no threshold domination hypothesis)

FIT RESULTS

FIG. 1. Fits to the $\cos \theta_{P_{c}}$-weighted $J / \psi p$ mass distribution from LHCb [9] according to cases A (left) and B (right). The amplitude of case A is expressed in the scattering length approximation, i.e. $c_{i j}=0$ in Eq. (3), and is able to describe either bound (molecular) or virtual states. The amplitude of case B is given in the effective range approximation, i.e. finite $c_{i i}$, and extends the description to genuine pentaquark states. The solid line and green band show the result of the fit and the 1σ confidence level provided by the bootstrap analysis, respectively.

POLE MOVEMENT: Pc(4312)

POLE MOVEMENT: Pc(4312)

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

POLE MOVEMENT: $\mathbf{C} \neq 0$

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

CONCLUSIONS

- In a near-threshold region we can build a minimally biased approach
- We can study pole stability against changes in the parameters compatible with the experimental uncertainties through bootstrap (more in Alessandro's talk)
- We can study pole motion, getting insight in the nature of the signal without any prior model if the situation is simple enough
- The $P_{c}(4312)$ is a very suitable test case. Pole obtained :
- $[\mathrm{M}=4319.7(1.6) \mathrm{MeV} ; \Gamma=-0.8(2.4) \mathrm{MeV} ; \mathrm{M}=4319.8(1.5) \mathrm{MeV} ; \Gamma=9.2(2.9) \mathrm{MeV}]$
- The favored interpretation based on pole motion is Virtual state

ADVERTISEMENT

CHARM 2020

in Mexico City, May 18-22
at the Main Campus of UNAM
(UNESCO World Heritage Site)
https://indico.nucleares.unam.mx/e/charm20

ADVERTISEMENT

