AMPLITUDE ANALYSIS AND POLE INTERPRETATION: THE $P_c(4312)$ CASE

CÉSAR FERNÁNDEZ-RAMÍREZ INSTITUTO DE CIENCIAS NUCLEARES - UNAM JOINT PHYSICS ANALYSIS CENTER (JPAC)

Nucleares

AMPLITUDE ANALYSIS: **BOTTOM-TOP APPROACH**

- Fit the experimental data and perform an error analysis
- **Riemann sheets**
- Hunt and study poles. Two aspects:
 - Are they poles of the model only or are they also poles of the data?
 - singularity?

• Build the minimally-biased theory (model) with the correct physical restrictions

Analytically continue the amplitude to the complex plane and the unphysical

Can we make a model-independent interpretation of the nature of the

2

Alessandro will elaborate on this later

• Take the data with errors

Alessandro will elaborate on this later

PWA11/ATHOS6 Rio de Janeiro, 2019

• Take the data with errors

Alessandro will elaborate on this later

PWA11/ATHOS6 Rio de Janeiro, 2019

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)

Alessandro will elaborate on this later

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)

Alessandro will elaborate on this later

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)
- Fit, get parameters, compute any derivative quantity (observables, poles)

Alessandro will elaborate on this later

- Take the data with errors
- Randomize according to uncertainties (generate pseudodata)
- Fit, get parameters, compute any derivative quantity (observables, poles)
 - Repeat until you have enough statistics

Alessandro will elaborate on this later

PWA11/ATHOS6 Rio de Janeiro, 2019

- Take the data with errors
 - Randomize according to uncertainties (generate pseudodata)
 - Fit, get parameters, compute any derivative quantity (observables, poles)
- Repeat until you have enough statistics

You end up with N sets of parameters, and you can perform statistics on them and compute derivative quantities (poles, observables) propagating in full the errors Alessandro will elaborate on this later

3

NATURE OF P_c(4312)

Close to a threshold

Triangle singularity Compact pentaquark Molecule Virtual state

4

LHCb, PRL 122 (2019) 222001

Compact pentaquark

Compact pentaquark

Compact pentaquark

Virtual state

PWA11/ATHOS6 Rio de Janeiro, 2019

レ

.....

PWA11/ATHOS6 Rio de Janeiro, 2019

The virtual state is actually a very well-established physics case **Consider Nucleon-Nucleon interaction:**

6

The virtual state is actually a very well-established physics case Consider Nucleon-Nucleon interaction:

> $p + n \text{ (singlet)} \rightarrow d \text{ (bound state, deuteron)}$ $p + p \text{ (triplet)} \rightarrow p + p \text{ (virtual state)}$ $p + n \text{ (triplet)} \rightarrow p + n \text{ (virtual state)}$ $n + n \text{ (triplet)} \rightarrow n + n \text{ (virtual state)}$

> > 6

The virtual state is actually a very well-established physics case **Consider Nucleon-Nucleon interaction:**

p + n (triplet) $\rightarrow p + n$ (virtual state)

nn scattering never generates a bound state, but generates a signal that can be seen in the scattering lengths

6

 $p + n \text{ (singlet)} \rightarrow d \text{ (bound state, deuteron)}$

p + p (triplet) $\rightarrow p + p$ (virtual state)

n + n (triplet) $\rightarrow n + n$ (virtual state)

The virtual state is actually a very well-established physics case **Consider Nucleon-Nucleon interaction:**

p + n (triplet) $\rightarrow p + n$ (virtual state)

nn scattering never generates a bound state, but generates a signal that can be seen in the scattering lengths

The interaction is strong enough to generate pole but not to bind the system

6

 $p + n \text{ (singlet)} \rightarrow d \text{ (bound state, deuteron)}$

p + p (triplet) $\rightarrow p + p$ (virtual state)

n + n (triplet) $\rightarrow n + n$ (virtual state)

BOUND AND VIRTUAL STATES Example from *pn* scattering Bound state on the real axis I sheet (deuteron)

BOUND AND VIRTUAL STATES

Decreasing the potential strength, the pole reaches threshold

7

BOUND AND VIRTUAL STATES

The pole jumps on the II sheet, it becomes a virtual state

7

TRIANGLE SINGULARITY

TRIANGLE SINGULARITY

4200

TRIANGLE SINGULARITY

Triangle singularities do not generate poles but the phase motion is the same as for a pole (i.e. the Argand plot is going to be the same)

[Remember Bernhard's talk]

4200

4400

RIEMANN SHEETS STRUCTURE

First threshold is $J/\psi p$ channel and the second is $\Sigma_c^+ \bar{D}^0$

COMPACT PENTAQUARK

Jlyp

COMPACT PENTAQUARK

J/wp

COMPACT PENTAQUARK

 $J/\psi p$

III sheet ll sheet

J/ψp

 $\Sigma_c^+ D^{\vee}$

J/wp

Either nothing on the III sheet or shadow pole

ll sheet

VIRTUAL STATE IV sheet J/ψp X s_2 *s*₁ s plane \mathcal{X}' sheet $I \xrightarrow{x} x' \xrightarrow{y} \frac{y'}{z}$ z'sheet II sheet III sheet IV

J/wp

IV sheet $\Sigma_{c}^{+}\bar{D}^{0}$

Either nothing on the III sheet or shadow pole

PWA11/ATHOS6 Rio de Janeiro, 2019

ll sheet

ANALYSIS OF THE $P_c(4312)$ SIGNAL

- Build a theory in the near threshold region
- Analyze the three datasets provided by LHCb P_c(4312)
- 66 experimental data
- Experimental resolution incorporated
- Error analysis through bootstrap

JPAC, PRL 123 (2019) 092001

NEAR-THRESHOLD THEORY

Hypotheses:

Only one partial wave contributes to the signal The threshold drives the physics (testable)

Other effects are absorbed in the parameters (testable)

NEAR-THRESHOLD THEORY

Hypotheses:

Only one partial wave contributes to the signal The threshold drives the physics (testable)

 \bigvee We fit the J/ ψ p projection (no info on quantum numbers)

Other effects are absorbed in the parameters (testable)

NEAR-THRESHOLD THEORY

 $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + B(s) \right]$

 $(T^{-1})_{ii} = M_{ij} - ik_i\delta_{ij}$

 $M_{ij}(s) = m_{ij} - c_{ij}s$

The matrix elements M_{ii} are singularity free near threshold and can be expanded in a Taylor series

 $F(s) = P_1(s)T_{11}(s)$

 $B(s) = b_0 + b_1 s$ $P_1(s) = p_0 + p_1 s$

Frazer & Hendry, PR 134 (1964) B1307

ANPLITUDE IN THE NEAR THRESHOLD REGION

 $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + B(s) \right]$

 $B(s) = b_0 + b_1 s$

 $F(s) = (p_0 + p_1 s) \frac{[m_{22} - c_{22}s - ik_2]}{[m_{22} - c_{22}s - ik_2][m_{11} - c_{11}s - ik_1] - m_{12}^2}$

PWA11/ATHOS6 Rio de Janeiro, 2019

AMPLITUDE IN THE NEAR THRESHOLD REGION

 $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + B(s) \right]$

 $p_0 + p_1 s)$ -

 $B(s) = b_0 + b_1 s$

F(s) =

 $[m_{22} - c_{22}s - ik_2]$ $[m_{22} - c_{22}s - ik_2][m_{11} - c_{11}s - ik_1] - m_{12}^2$

Production, hyperons and effects due to other (far) singularities

PWA11/ATHOS6 Rio de Janeiro, 2019

ANPLITUDE IN THE NEAR THRESHOLD REGION

 $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + B(s) \right]$

 $B(s) = b_0 + b_1 s$

F(s) =

Production, hyperons and effects due to other (far) singularities

Channel coupling

PWA11/ATHOS6 Rio de Janeiro, 2019

AMPLITUDE IN THE NEAR THRESHOLD REGION

 $\frac{dN}{d\sqrt{s}} = \rho(s) \left[|F(s)|^2 + B(s) \right]$

 $B(s) = b_0 + b_1 s$

 $F(s) = (p_0 + p_1 s) \frac{[m_{22} - c_{22}s - ik_2]}{[m_{22} - c_{22}s - ik_2][m_{11} - c_{11}s - ik_1] - m_{12}^2}$

Effective range approximation if c_{ii}=0 Under the effective range approximation only poles in the II and IV sheet can happen When $c_{ij} \neq 0$, poles can appear in any sheet (no threshold domination hypothesis)

16

Production, hyperons and effects due to other (far) singularities

Channel coupling

FIT RESULTS

FIG. 1. Fits to the $\cos \theta_{P_c}$ -weighted $J/\psi p$ mass distribution from LHCb [9] according to cases A (left) and B (right). The amplitude of case A is expressed in the scattering length approximation, *i.e.* $c_{ij} = 0$ in Eq. (3), and is able to describe either bound (molecular) or virtual states. The amplitude of case B is given in the effective range approximation, *i.e.* finite c_{ii} , and extends the description to genuine pentaquark states. The solid line and green band show the result of the fit and the 1σ confidence level provided by the bootstrap analysis, respectively.

POLE MOVEMENT: P_c(4312)

A Pilloni Studios presentation

POLE MOVEMENT: P_c(4312)

A Pilloni Studios presentation

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

 $[m_{22} - c_{22}s - ik_2]$ $[m_{22} - c_{22}s - ik_2][m_{11} - c_{11}s - ik_1] - m_{12}^2$

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

 $[m_{22} - c_{22}s - ik_2]$ $[m_{22} - c_{22}s - ik_2][m_{11} - c_{11}s - ik_1] - m_{12}^2$

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

POLE MOVEMENT: C≠0

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

A Pilloni Studios presentation

When $m_{12}=0$ both channels decouple and

CONCLUSIONS

- In a near-threshold region we can build a minimally biased approach
- prior model if the situation is simple enough
- The P_c(4312) is a very suitable test case. Pole obtained :
- The favored interpretation based on pole motion is Virtual state

 We can study pole stability against changes in the parameters compatible with the experimental uncertainties through bootstrap (more in Alessandro's talk)

We can study pole motion, getting insight in the nature of the signal without any

• $[M = 4319.7(1.6) MeV; \Gamma = -0.8(2.4) MeV; M = 4319.8(1.5) MeV; \Gamma = 9.2(2.9) MeV]$

CHARM 2020 in Mexico City, May 18-22 at the Main Campus of UNAM (UNESCO World Heritage Site)

https://indico.nucleares.unam.mx/e/charm20

ADVERTISEMENT

HADRON 2021 México

