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AMPLITUDE ANALYSIS:  
BOTTOM-TOP APPROACH

• Build the minimally-biased theory (model) with the correct physical restrictions 

• Fit the experimental data and perform an error analysis 

• Analytically continue the amplitude to the complex plane and the unphysical 
Riemann sheets 

• Hunt and study poles. Two aspects: 

• Are they poles of the model only or are they also poles of the data? 

• Can we make a model-independent interpretation of the nature of the 
singularity?

2
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UNCERTAINTIES ANALYSIS: BOOTSTRAP
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Alessandro will elaborate on this later
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• Randomize according to uncertainties  
(generate pseudodata)

Alessandro will elaborate on this later
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• Fit, get parameters, compute any 
 derivative quantity (observables, poles)

• Randomize according to uncertainties  
(generate pseudodata)

Alessandro will elaborate on this later
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UNCERTAINTIES ANALYSIS: BOOTSTRAP

• Take the data with errors
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• Repeat until you have enough statistics

• Fit, get parameters, compute any 
 derivative quantity (observables, poles)

• Randomize according to uncertainties  
(generate pseudodata)
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UNCERTAINTIES ANALYSIS: BOOTSTRAP

• Take the data with errors

3

• Repeat until you have enough statistics

• Fit, get parameters, compute any 
 derivative quantity (observables, poles)

• Randomize according to uncertainties  
(generate pseudodata)
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You end up with N sets of parameters,and you can perform statistics on them and 
compute derivative quantities (poles, observables) propagating in full the errors

Alessandro will elaborate on this later
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NATURE OF PC(4312)
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FIG. 1. Fits to the cos ✓Pc -weighted J/ p mass distribution from LHCb [9] according to cases A (left) and B (right). The
amplitude of case A is expressed in the scattering length approximation, i.e. cij = 0 in Eq. (3), and is able to describe either
bound (molecular) or virtual states. The amplitude of case B is given in the e↵ective range approximation, i.e. finite cii, and
extends the description to genuine pentaquark states. The solid line and green band show the result of the fit and the 1�
confidence level provided by the bootstrap analysis, respectively.

prominent in data. We thus consider an amplitude which
couples J/ p (channel 1) and ⌃+

c D̄
0 (channel 2). There

is another nearby threshold, 6MeV above, which corre-
sponds to the opening of the isospin partner, ⌃++

c D
�

state. The J/ p spectrum suggests this heavier thresh-
old to be less important. We thus discuss the two-channel
case first, where the analytic properties are more trans-
parent. We comment on the results of three-channel fit
further below. The events distribution is given by

dN

d
p
s
= ⇢(s)

⇥
|F (s)|2 +B(s)

⇤
, (1)

where ⇢(s) is the phase space factor. We assume that the
Pc(4312)+ signal has well defined spin, i.e. it appears in
a single partial wave F (s). The background B(s) from
all other partial waves is added incoherently, and param-
eterized with a linear polynomial. The amplitude F (s)
is a product of a function P1(s) which provides the pro-
duction of J/ pK

�,2 and the T11(s) amplitude, which
describes the J/ p ! J/ p scattering,

F (s) = P1(s)T11(s),
�
T

�1
�
ij
= Mij � iki �ij , (2)

with i, j = 1, 2. Here ki =
p
s� si with s1 = (m +

mp)2, s2 = (m⌃+
c
+mD̄0)2 are the thresholds of the two

channels. In principle, one could also add the o↵-diagonal
P2(s)T21(s) term. This would not change the analytic
properties, and would provide a nonzero value of F (s)
when T11(s) vanishes. The presence of a zero would be
a relevant feature if no background were present, and

2
The P1(s) function absorbs also the cross channel ⇤

⇤
resonances

projected into the same partial wave as Pc(4312)
+
.

in that case P2(s)T21(s) might be needed. In our case,
we suppress such a term to reduce the number of free
parameters. For the real symmetric 2 ⇥ 2 matrix M(s)
we use the first-order e↵ective range expansion

Mij(s) = mij � cijs, (3)

which is su�cient when considering the possibility of at
most a single threshold state (virtual or molecular) and
a compact state [34]. In the single channel case, this
parameterization has often been discussed in the con-
text of the Weinberg compositeness criterion [32, 35–39].
The function P1(s) is analytic in the data region, and,
given the small mass range considered, it can be pa-
rameterized with a first order polynomial. For particle
masses, we use the PDG values m⌃+

c
= 2452.9MeV and

mD̄0 = 1864.83MeV [40]. Since the width of the ⌃+
c is

similar to the experimental resolution we neglect its ef-
fect. More details about the parameterizations and the
fit results are in the Supplemental Material [41].
Because of the square roots in k1 and k2, the amplitude

has branch cuts opening at the two thresholds. Through
analytic continuation to complex values of s, one accesses
four di↵erent Riemann sheets (see also Fig. 2 of [42]).
The physical region between the two thresholds is con-
nected to the lower half of the II sheet. Similarly, the
physical region above the ⌃+

c D̄
0 threshold is connected

to the lower half of the III sheet. Poles in these sheets
will appear as peaks with Breit-Wigner-like lineshape in
data, if they lie below the respective physical regions, i.e.
between the two thresholds for the II sheet, and above
the heavier one for the III. From the II sheet, if one con-
tinuously moves to the upper half plane above the higher
threshold, one enters the upper half of the IV sheet. Since
the latter is hidden from the physical region, a pole here

Triangle singularity 

Compact pentaquark 

Molecule 

Virtual state

Close to a threshold

LHCb data

LHCb, PRL 122 (2019) 222001
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VIRTUAL STATE?
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VIRTUAL STATE?
The virtual state is actually a very well-established physics case 

Consider Nucleon-Nucleon interaction:

nn scattering never generates a bound state,  but generates a 
signal that can be seen in the scattering lengths

The interaction is strong enough to generate pole but not to bind the system

p+ n (singlet) ! d (bound state, deuteron)

p+ p (triplet)! p+ p (virtual state)

p+ n (triplet)! p+ n (virtual state)

n+ n (triplet)! n+ n (virtual state)
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BOUND AND VIRTUAL STATES

7

Example from pn scattering 
Bound state on the real axis I sheet (deuteron)

𝑉(𝑟)

𝑟

�𝑉

Re 𝐸

Im 𝐸

Deuteron

Deuteron 
pole
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BOUND AND VIRTUAL STATES

7

𝑉(𝑟)

𝑟

�𝑉

Re 𝐸

Im 𝐸

Decreasing the potential strength, 
the pole reaches threshold
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BOUND AND VIRTUAL STATES

7

𝑉(𝑟)

𝑟

�𝑉
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Im 𝐸

Virtual 
pole

The pole jumps on the II sheet, 
it becomes a virtual state



PWA11/ATHOS6 Rio de Janeiro, 2019

TRIANGLE SINGULARITY
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TRIANGLE SINGULARITY
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Triangle singularities do not generate poles  
but the phase motion is the same as for a pole 
 (i.e. the Argand plot is going to be the same)

[Remember Bernhard's talk]
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RIEMANN SHEETS STRUCTURE
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ANALYSIS OF THE PC(4312) SIGNAL

• Build a theory in the near threshold region 

• Analyze the three datasets provided by LHCb Pc(4312) 

• 66 experimental data 

• Experimental resolution incorporated 

• Error analysis through bootstrap

13

JPAC, PRL 123 (2019) 092001
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NEAR-THRESHOLD THEORY

14

Hypotheses: 

 Only one partial wave contributes to the signal 

 The threshold drives the physics (testable) 

 Other effects are absorbed in the parameters (testable)
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NEAR-THRESHOLD THEORY

14

Hypotheses: 

 Only one partial wave contributes to the signal 

 The threshold drives the physics (testable) 

 Other effects are absorbed in the parameters (testable)

Caveat: 

 We fit the J/ψ p projection (no info on quantum numbers)
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NEAR-THRESHOLD THEORY

15

dN

d s
= ρ(s)[ |F(s) |2 + B(s)]

F(s) = P1(s)T11(s)

(T−1)ij
= Mij − ikiδij

Mij(s) = mij − cijs
The matrix elements Mij are singularity free near threshold  
and can be expanded in a Taylor series

B(s) = b0 + b1s P1(s) = p0 + p1s

Frazer & Hendry, PR 134 (1964) B1307
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AMPLITUDE IN THE NEAR THRESHOLD 
REGION

16

F(s) = (p0 + p1s)
[m22 − c22s − ik2]

[m22 − c22s − ik2][m11 − c11s − ik1] − m2
12

B(s) = b0 + b1s

dN

d s
= ρ(s)[ |F(s) |2 + B(s)]
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AMPLITUDE IN THE NEAR THRESHOLD 
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16

F(s) = (p0 + p1s)
[m22 − c22s − ik2]

[m22 − c22s − ik2][m11 − c11s − ik1] − m2
12

B(s) = b0 + b1s

dN

d s
= ρ(s)[ |F(s) |2 + B(s)]

Effective range approximation if cij=0 
Under the effective range approximation only poles in the II and IV sheet can happen 
When cij≠0, poles can appear in any sheet (no threshold domination hypothesis)

Production, hyperons and effects due  
to other (far) singularities

Channel coupling
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FIT RESULTS

17
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FIG. 1. Fits to the cos ✓Pc -weighted J/ p mass distribution from LHCb [9] according to cases A (left) and B (right). The
amplitude of case A is expressed in the scattering length approximation, i.e. cij = 0 in Eq. (3), and is able to describe either
bound (molecular) or virtual states. The amplitude of case B is given in the e↵ective range approximation, i.e. finite cii, and
extends the description to genuine pentaquark states. The solid line and green band show the result of the fit and the 1�
confidence level provided by the bootstrap analysis, respectively.

prominent in data. We thus consider an amplitude which
couples J/ p (channel 1) and ⌃+

c D̄
0 (channel 2). There

is another nearby threshold, 6MeV above, which corre-
sponds to the opening of the isospin partner, ⌃++

c D
�

state. The J/ p spectrum suggests this heavier thresh-
old to be less important. We thus discuss the two-channel
case first, where the analytic properties are more trans-
parent. We comment on the results of three-channel fit
further below. The events distribution is given by

dN

d
p
s
= ⇢(s)

⇥
|F (s)|2 +B(s)

⇤
, (1)

where ⇢(s) is the phase space factor. We assume that the
Pc(4312)+ signal has well defined spin, i.e. it appears in
a single partial wave F (s). The background B(s) from
all other partial waves is added incoherently, and param-
eterized with a linear polynomial. The amplitude F (s)
is a product of a function P1(s) which provides the pro-
duction of J/ pK

�,2 and the T11(s) amplitude, which
describes the J/ p ! J/ p scattering,

F (s) = P1(s)T11(s),
�
T

�1
�
ij
= Mij � iki �ij , (2)

with i, j = 1, 2. Here ki =
p
s� si with s1 = (m +

mp)2, s2 = (m⌃+
c
+mD̄0)2 are the thresholds of the two

channels. In principle, one could also add the o↵-diagonal
P2(s)T21(s) term. This would not change the analytic
properties, and would provide a nonzero value of F (s)
when T11(s) vanishes. The presence of a zero would be
a relevant feature if no background were present, and

2
The P1(s) function absorbs also the cross channel ⇤

⇤
resonances

projected into the same partial wave as Pc(4312)
+
.

in that case P2(s)T21(s) might be needed. In our case,
we suppress such a term to reduce the number of free
parameters. For the real symmetric 2 ⇥ 2 matrix M(s)
we use the first-order e↵ective range expansion

Mij(s) = mij � cijs, (3)

which is su�cient when considering the possibility of at
most a single threshold state (virtual or molecular) and
a compact state [34]. In the single channel case, this
parameterization has often been discussed in the con-
text of the Weinberg compositeness criterion [32, 35–39].
The function P1(s) is analytic in the data region, and,
given the small mass range considered, it can be pa-
rameterized with a first order polynomial. For particle
masses, we use the PDG values m⌃+

c
= 2452.9MeV and

mD̄0 = 1864.83MeV [40]. Since the width of the ⌃+
c is

similar to the experimental resolution we neglect its ef-
fect. More details about the parameterizations and the
fit results are in the Supplemental Material [41].
Because of the square roots in k1 and k2, the amplitude

has branch cuts opening at the two thresholds. Through
analytic continuation to complex values of s, one accesses
four di↵erent Riemann sheets (see also Fig. 2 of [42]).
The physical region between the two thresholds is con-
nected to the lower half of the II sheet. Similarly, the
physical region above the ⌃+

c D̄
0 threshold is connected

to the lower half of the III sheet. Poles in these sheets
will appear as peaks with Breit-Wigner-like lineshape in
data, if they lie below the respective physical regions, i.e.
between the two thresholds for the II sheet, and above
the heavier one for the III. From the II sheet, if one con-
tinuously moves to the upper half plane above the higher
threshold, one enters the upper half of the IV sheet. Since
the latter is hidden from the physical region, a pole here

LHCb data
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POLE MOVEMENT: C≠0

19

When m12=0 both channels  
decouple and

[m22 − c22s − ik2]
[m22 − c22s − ik2][m11 − c11s − ik1] − m2
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CONCLUSIONS

• In a near-threshold region we can build a minimally biased approach 

• We can study pole stability against changes in the parameters compatible with 
the experimental uncertainties through bootstrap (more in Alessandro’s talk) 

• We can study pole motion, getting insight in the nature of the signal without any 
prior model if the situation is simple enough 

• The Pc(4312) is a very suitable test case. Pole obtained : 

• [M= 4319.7(1.6) MeV; Γ=−0.8(2.4) MeV; M= 4319.8(1.5) MeV; Γ= 9.2(2.9) MeV]  

• The favored interpretation based on pole motion is Virtual state
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ADVERTISEMENT
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CHARM 2020  
in Mexico City,  

May 18-22 
at the Main Campus  

of UNAM  
(UNESCO World Heritage Site)

https://indico.nucleares.unam.mx/e/charm20

https://indico.nucleares.unam.mx/e/charm20
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ADVERTISEMENT
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HADRON 2021  
México


