New amplitudes for B and D three-body decay

Patricia C. Magalhães

Motivation

- D and B three-body HADRONIC decay are dominated by resonances
- spectroscopy

\rightarrow underling strong force behave
- obtain meson-meson amplitudes up to high mass (including KK)
- CP-Violation
- weak and strong phase

Motivation

- D and B three-body HADRONIC decay are dominated by resonances
- spectroscopy

\rightarrow underling strong force behave
- obtain meson-meson amplitudes up to high mass (including KK)
- CP-Violation
- weak and strong phase

O $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$massive localized direct CP asymmetry

LHCb PRD90 (2014) 112004

Motivation

- D and B three-body HADRONIC decay are dominated by resonances
- spectroscopy

\rightarrow underling strong force behave
- obtain meson-meson amplitudes up to high mass (including KK)
- CP-Violation
- weak and strong phase

O $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$massive localized direct CP asymmetry

O dynamic effect

Final state interactions play a massive role
\rightarrow can lead to new physics

- new large data sample from $\mathrm{LHCb} \longrightarrow$ more to come from LHCb and Belle II simple models (isobar model with Breit-Wigners resonances) (2+I)
- difference phase-space in D and B decays

○ \neq scales!!! \rightarrow still similar FSI

- 3-body effects expected to be smaller in B
- B phase-space $\rightarrow+$ FSI possibilities

Dynamics of 3-body heavy decay

ex: $D^{+} \rightarrow K^{-} K^{+} K^{-}$

primary vertex - weak -

\qquad

QCD, CKM coupling and phase

Final State Interactions

- strong -
Ele
$(2+I)+3$-body interactions

Dalitz plot

$$
\frac{d \Gamma}{d s_{12} d s_{23}}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}}\left|\mathcal{A}\left(s_{12}, s_{23}\right)\right|^{2}
$$

Dynamics of 3-body heavy decay

ex: $D^{+} \rightarrow K^{-} K^{+} K^{-}$

primary vertex - weak -

QCD, CKM coupling and phase

Final State Interactions

- strong -
Elize
$(2+I)+3$-body interactions

$$
\frac{d \Gamma}{d s_{12} d s_{23}}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}}\left(\left.\mathcal{A}\left(s_{12}, s_{23}\right)\right|^{2}\right)
$$

Dynamics of 3-body heavy decay

ex: $D^{+} \rightarrow K^{-} K^{+} K^{-}$

primary vertex - weak -

QCD, CKM coupling and phase

$$
\begin{gathered}
\text { Final State Interactions } \\
\text { - strong - } \\
\\
(2+1)+3 \text {-body interactions }
\end{gathered}
$$

To extract information from data we need an amplitude MODEL

$$
\frac{d \Gamma}{d s_{12} d s_{23}}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}}\left(\left.\mathcal{A}\left(s_{12}, s_{23}\right)\right|^{2}\right.
$$

- isobar model: widely used by experimentalists
- $\quad(2+1) \rightarrow \quad$ ignore the 3rd particle (bachelor)
- aways intermediated by a resonance $R \rightarrow M$ M——ne
$A=\sum c_{k} A_{k},+$ NR $\left\{\begin{array}{l}\text { non-resonant as constant or exponential! } \\ \text { each resonance as Breit-Wigner } \quad \operatorname{BW}\left(s_{12}\right)=\frac{1}{m_{R}^{2}-s_{12}-i m_{R} \Gamma\left(s_{12}\right)},\end{array}\right.$
幾 weak vertex is not considered explicitly

O warnings:

- isobar model: widely used by experimentalists
- $\quad(2+1) \rightarrow \quad$ ignore the 3 rd particle (bachelor)
- aways intermediated by a resonance $\mathrm{R} \rightarrow \mathrm{M}$,
$A=\sum c_{k} A_{k},+$ NR $\left\{\begin{array}{l}\text { non-resonant as constant or exponential! } \\ \text { each resonance as Breit-Wigner } \quad \mathrm{BW}\left(s_{12}\right)=\frac{1}{m_{R}^{2}-s_{12}-i m_{R} \Gamma\left(s_{12}\right)},\end{array}\right.$
滕 weak vertex is not considered explicitly
- warnings:
- sum of BW violates two-body unitarity (2 res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory!
- movement to use better 2-body (unitarity) inputs in data analysis
- "K-matrix" : דm S-wave 5 coupled-channel modulated by a production amplitude
\rightarrow used by Babar, LHCb, BES III- analyticity problems !
Anisovich PLB653(2007)
rescattering $\pi \pi \rightarrow K K$ contribution in $\mathrm{LHCb}\left\{\begin{array}{l}B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm} \\ B^{ \pm} \rightarrow K^{-} K^{+} \pi^{ \pm}\end{array} \quad\right.$ soon $\quad[a r X i v: 1905.09244]$
Pelaez, Yndurain PRD7I(2005) 074016
new parametrization Pelaez, and Rodas EPJ. C78 (2018) II, 897
- movement to use better 2-body (unitarity) inputs in data analysis
- "K-matrix": $\pi \pi$ S-wave 5 coupled-channel modulated by a production amplitude \rightarrow used by Babar, LHCb, BES III- analyticity problems ! Anisovich PLB653(2007)
- rescattering $\pi \pi \rightarrow K K$ contribution in LHCb $\begin{cases}B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm} & \text {soon } \\ B^{ \pm} \rightarrow K^{-} K^{+} \pi^{ \pm} & \text {[arXiv:1905.09244] }\end{cases}$ Pelaez, Yndurain PRD7I(2005) 074016
\longrightarrow new parametrization Pelaez, and Rodas EPJ.C78 (2018) 11,897
alternative \rightarrow scalar and vector form factors using Dispersion Relation

$$
\begin{aligned}
& <\pi \pi \mid 0>\text { scalar Moussallam EPJ C I4, III (2000); Daub, Hanhart, and B. Kubis JHEP } 02 \text { (2016) } 009 . \\
& \text { vector Hanhart, PL B7I5, I70 (2012). Dumm and Roig EPJ C 73, } 2528 \text { (2013). } \\
& <K \pi \mid 0>\text { scalar Moussallam EPJ C 53, 40I (2008) Jamin, Oller and Pich, PRD 74, } 074009 \text { (2006) } \\
& \text { vector Boito, Escribano, and Jamin EPJ C 59, } 82 \text { I (2009). }
\end{aligned}
$$

- no data for KK

$$
<K K \mid 0>
$$

Fit from 3-body data PCM, Robilotta + LHCb JHEP 1904 (2019) 063 extrapolate from unitarity model Albaladejo and Moussallam EPJ C 75, 488 (2015). quark model with isospin symmetry Bruch,Khodjamirian, and Kühn , EPJ C 39, 4I (2005)

- best theoretical $\pi \pi, K \pi$ scattering amplitude \rightarrow constrained by data \longrightarrow no KK data/theory limited to low E

- best theoretical $\pi \pi, K \pi$ scattering amplitude \rightarrow constrained by data \longrightarrow no KK data/theory limited to low E
- we need non-perturbative meson-meson interactions up to.... B sector is far
- extend 2-body amplitude theory validity

Ropertz, Kubis, Hanhart
EPJ Web Conf. 202 (2019) 06002

PCM, Robilotta
work in progress

Models available

- QCD factorization approach \rightarrow factorize the quark currents

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\Delta B=1} & =\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)\right. \\
& \left.+C_{7 \gamma}(\mu) O_{7 \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+ \text { h.c. }
\end{aligned}
$$

challenging for 3-body
not all FSI and 3-body NR
scale issue with charm

\rightarrow ex: $\quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$

$$
\mathbf{A} \sim\left\langle\left[\pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)\right]\right|(\bar{u} b)_{V-A}\left|B^{-}\right\rangle\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} u)_{V-A}|0\rangle+\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} b)_{s c-p s}\left|B^{-}\right\rangle\left\langle\left[\pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)\right]\right|(\bar{d} d)_{s c+p s}|0\rangle
$$

Models available

- QCD factorization approach \rightarrow factorize the quark currents
$\mathcal{H}_{\mathrm{eff}}^{\Delta B=1}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)\right.$
$\left.+C_{7 \gamma}(\mu) O_{7 \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+$ h.c.,
\rightarrow ex: $\quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$how to describe it?
$\mathbf{A} \sim\left\langle\left[\pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)\right]\right|(\bar{u} b)_{V-A}\left|B^{-}\right\rangle\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} u)_{V-A}|0\rangle+\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} b)_{s c-p s}\left|B^{-}\right\rangle\left\langle\left[\pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)\right]\right|(\bar{d} d)_{s c+p s}|0\rangle$
- QCD factorization approach \rightarrow factorize the quark currents
$\mathcal{H}_{\mathrm{eff}}^{\triangle B=1}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)\right.$
$\left.+C_{\tau \gamma}(\mu) O_{T \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+$ h.c.,
\rightarrow ex: $\quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$how to describe it?
$\mathbf{A} \sim\langle[\underbrace{\left\langle\pi^{+}\left(p_{2}\right) \pi^{-}\right.}_{\mathbf{R}}\left(p_{3}\right)]|(\bar{u} b)_{V-A}\left|B^{-}\right\rangle\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} u)_{V-A}|0\rangle+\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} b)_{s c-p s}\left|B^{-}\right\rangle\langle[\pi^{+}(\underbrace{}_{\mathrm{FF}}) \underbrace{\left.\pi^{-}\left(p_{3}\right)\right] \mid(\bar{d} d)_{s c+p s}}|0\rangle$
- naive factorization $\left\{\begin{array}{l}\text { - intermediate by a resonance } R \text {; } \\ \text { - FSI with scalar and vector form factors FF }\end{array}\right.$
\hookrightarrow parametrizations for B and $D \rightarrow 3 h \quad$ Boito et al. PRD96 | I 3003 (2017)
- QCD factorization approach \rightarrow factorize the quark currents $\mathcal{H}_{\text {eff }}^{\Delta B=1}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)\right.$ $\left.+C_{T \gamma}(\mu) O_{T \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+$ h.c.,
\rightarrow ex: $\quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$how to describe it?
Keri's talk

$$
\begin{gathered}
\text { challenging for 3-body } \\
\text { not all PSI and 3-body NR } \\
\text { scale issue with charm }
\end{gathered}
$$

$\mathbf{A} \sim\langle[\underbrace{\left\langle\pi^{+}\left(p_{2}\right) \pi^{-}\right.}_{\mathbf{R}}\left(p_{3}\right)]|(\bar{u} b)_{V-A}\left|B^{-}\right\rangle\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} u)_{V-A}|0\rangle+\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} b)_{s c-p s}\left|B^{-}\right\rangle\langle[\pi^{+}(\underbrace{}_{\mathrm{FF}} \underbrace{2})^{-}\left(p_{3}\right)]|(\bar{d} d)_{s c+p s}|0\rangle$

- naive factorization $\left\{\begin{array}{l}\text { - intermediate by a resonance } R \text {; } \\ - \text { FSI with scalar and vector form factors FF }\end{array}\right.$
\longrightarrow parametrization for B and $D \rightarrow 3 h \quad$ Boito et al. PRD96 | | 3003 (2017)
- modern QDC factorization: different in each region
\longrightarrow improvement over (2+I)
\rightarrow introduce new non-perturbative strong phase
Klein, Mannel,Virto, Keri Vos JHEPIO II7 (20|7)

Models available

- QCDF predictions

Branching Fraction (tree dominated decays)

Theory I: $f_{+}^{B \pi}(0)=0.25 \pm 0.05, A_{0}^{B \rho}(0)=0.30 \pm 0.05, \lambda_{B}(1 \mathrm{GeV})=0.35 \pm 0.15 \mathrm{GeV}$ Theory II: $f_{+}^{B \pi}(0)=0.23 \pm 0.03, A_{0}^{B \rho}(0)=0.28 \pm 0.03, \lambda_{B}(1 \mathrm{GeV})=0.20_{-0.00}^{+0.05} \mathrm{GeV}$
not good agreement for Acp

Beneke Seminar at "Future Challenges in Non-Leptonic B Decays", Bad Honnef, 2016

\rightarrow good agreement for Br

Acp (penguin dominate decays)

Models available

- Three-body FSI (beyond 2+I)

- shown to be relevant on charm sector

Models available

- Three-body FSI (beyond 2+I)

- shown to be relevant on charm sector

Models available

- Three-body FSI (beyond 2+I)

- Three-body FSI (beyond 2+I)

ex: multi meson model - $D^{+} \rightarrow K^{-} K^{+} K^{+}$

amplitude analysis for D decay

ex: multi meson model - $D^{+} \rightarrow K^{-} K^{+} K^{+}$

- Model for $D^{+} \rightarrow K^{-} K^{+} K^{-}$

PCM, Aoude, dos Reis and Robilotta PRD 9805602 (2018)
$\rightarrow A_{a b}^{J I}$ unitary scattering amplitude for $a b \rightarrow K^{+} K^{-}$

ex: multi meson model - $D^{+} \rightarrow K^{-} K^{+} K^{+}$

- Model for $D^{+} \rightarrow K^{-} K^{+} K^{-}$

PCM, Aoude, dos Reis and Robilotta PRD 98056021 (2018)
$\rightarrow A_{a b}^{J I}$ unitary scattering amplitude for $a b \rightarrow K^{+} K^{-}$

- separate the different energy scales:

$$
\mathcal{T}=\left\langle(K K K)^{+}\right| T\left|D^{+}\right\rangle=\underbrace{\left\langle(K K K)^{+}\right| A_{\mu}|0\rangle}_{\text {ChPT }}\langle 0| A^{\mu}\left|D^{+}\right\rangle .
$$

\rightarrow parameters have physical meaning: resonance masses and coupling constants

ex: multi meson model - $D^{+} \rightarrow K^{-} K^{+} K^{+}$

- Model for $D^{+} \rightarrow K^{-} K^{+} K^{-}$

PCM, Aoude, dos Reis and Robilotta PRD 98056021 (2018)
$\rightarrow A_{a b}^{J I}$ unitary scattering amplitude for $a b \rightarrow K^{+} K^{-}$

- separate the different energy scales:

$$
\mathcal{T}=\left\langle(K K K)^{+}\right| T\left|D^{+}\right\rangle=\underbrace{\left\langle(K K K)^{+}\right| A_{\mu}|0\rangle}_{\text {ChPT }}\langle 0| A^{\mu}\left|D^{+}\right\rangle .
$$

\rightarrow parameters have physical meaning: resonance masses and coupling constants

- alternative to isobar model in amplitude analysis

Triple - M

$K \bar{K}$ coupled-channel unitary amplitude
o isospin decomposition $[J, I=(0,1),(0,1)]$ $\pi \pi, \eta \eta, \pi \eta, \rho \pi$

Chiral symmetry

$K \bar{K}$ coupled-channel unitary amplitude
O isospin decomposition $[J, I=(0,1),(0,1)]$ $\pi \pi, \eta \eta, \pi \eta, \rho \pi$

Chiral symmetry

- $K \bar{K}$ coupled-channel unitary amplitude

O isospin decomposition $[J, I=(0,1),(0,1)]$ $\pi \pi, \eta \eta, \pi \eta, \rho \pi$

Chiral symmetry

- $K \bar{K}$ coupled-channel unitary amplitude

O isospin decomposition $[J, I=(0,1),(0,1)]$ $\pi \pi, \eta \eta, \pi \eta, \rho \pi$

Triple M LHCb fit

$$
T^{S}=T_{N R}^{S}+T^{00}+T^{01}
$$

$$
T^{P}=T_{N R}^{P}+T^{11}+T^{10}
$$

parameter	value
F	$94.3_{-1.7}^{+2.8} \pm 1.5 \mathrm{MeV}$
$m_{a_{0}}$	$947.7_{-5.0}^{+5.5} \pm 6.6 \mathrm{MeV}$
$m_{S_{o}}$	$992.0_{-7.5}^{+8.5} \pm 8.6 \mathrm{MeV}$
$m_{S_{1}}$	$1330.2_{-6.5}^{+5.9} \pm 5.1 \mathrm{MeV}$
m_{ϕ}	$1019.54_{-0.10}^{+0.10} \pm 0.51 \mathrm{MeV}$
G_{ϕ}	$0.464_{-0.009}^{+0.013} \pm 0.007$
c_{d}	$-78.9_{-2.7}^{+4.2} \pm 1.9 \mathrm{MeV}$
c_{m}	$106.0_{-4.6}^{+7.7} \pm 3.3 \mathrm{MeV}$
\tilde{c}_{d}	$-6.15_{-0.54}^{+0.55} \pm 0.19 \mathrm{MeV}$
\tilde{c}_{m}	$-10.8_{-1.5}^{+2.0} \pm 0.4 \mathrm{MeV}$

Figure 11. Projections of the Dalitz plot onto (top left) $s_{K^{+} K^{-}}$, (top right) $s_{K^{+} K^{+}}$, (bottom left) $s_{K^{+} K^{-}}^{\text {high }}$ and (bottom right) $s_{K^{+} K^{-}}^{\text {low }}$ axes, with the fit result with the Triple-M amplitude superimposed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The magenta histogram represents the contribution from the background.

Triple M LHCb fit
$T^{S}=T_{N R}^{S}+T^{00}+T^{01}$
$T^{P}=T_{N R}^{P}+T^{11}+T^{10}$
parameters with physical meaning

parameter	value
F	$94.3_{-1.7}^{+2.8} \pm 1.5 \mathrm{MeV}$
$m_{a_{0}}$	$947.7_{-5.0}^{+5.5} \pm 6.6 \mathrm{MeV}$
$m_{S_{o}}$	$992.0_{-7.5}^{+8.5} \pm 8.6 \mathrm{MeV}$
$m_{S_{1}}$	$1330.2_{-6.5}^{+5.9} \pm 5.1 \mathrm{MeV}$
m_{ϕ}	$1019.54_{-0.10}^{+0.10} \pm 0.51 \mathrm{MeV}$
G_{ϕ}	$0.464_{-0.009}^{+0.013} \pm 0.007$
c_{d}	$-78.9_{-2.7}^{+4.2} \pm 1.9 \mathrm{MeV}$
c_{m}	$106.0_{-4.6}^{+7.7} \pm 3.3 \mathrm{MeV}$
\tilde{c}_{d}	$-6.15_{-0.54}^{+0.55} \pm 0.19 \mathrm{MeV}$
\tilde{c}_{m}	$-10.8_{-1.5}^{+2.0} \pm 0.4 \mathrm{MeV}$

\rightarrow can disentangle a_{0} and f_{0}

Triple M LHCb fit S-wave

- intensity of each component is predict by theory
- 3-body amplitude \neq from 2-body

Triple M LHCb fit S-wave

- intensity of each component is predict by theory
- 3-body amplitude \neq from 2-body

\longrightarrow predict KK scattering amplitude to be used in other process

Amplitude analysis of B decay

cp asymmetry at high mass

- FSI on B decays
- CPV needs:
$\rightarrow 2$ interfering amplitudes
$\rightarrow 2 \neq$ strong phases $\quad\left[\sin \left(\delta_{1}-\delta_{2}\right) \neq 0\right]$
$\rightarrow 2 \neq$ weak phases $\left[\sin \left(\phi_{1}-\phi_{2}\right) \neq 0\right]$

- FSI on B decays
- CPV needs:
$\rightarrow 2$ interfering amplitudes
hadronic FSI
$\rightarrow 2 \neq$ strong phases $\left[\sin \left(\delta_{1}-\delta_{2}\right) \neq 0\right]$
$\rightarrow 2 \neq$ weak phases $\left[\sin \left(\phi_{1}-\phi_{2}\right) \neq 0\right]$

- FSI on B decays

- CPV needs:
$\rightarrow 2$ interfering amplitudes
$\rightarrow 2 \neq$ strong phases $\left[\sin \left(\delta_{1}-\delta_{2}\right) \neq 0\right]$
$\rightarrow 2 \neq$ weak phases $\left[\sin \left(\phi_{1}-\phi_{2}\right) \neq 0\right]$
- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$CP violation puzzle middle with no resonance but have CPV
- \neq mechanisms for low-energy CPV ex: $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$Wen Bin talk

rescattering as a CPV mechanism

- rescattering $\quad \pi \pi \rightarrow K K$

CPV [1-2] GeV

Frederico, Bediaga, Lourenço PRD89(2014)0940I3

FSI as strong phase
Wolfenstein PRD43 (1991) I5I

LHCb PRD90 (2014) 112004

rescattering as a CPV mechanism

- rescattering $\pi \pi \rightarrow K K$

CPV [1-2] GeV

Frederico, Bediaga, Lourenço PRD89(2014)094013

FSI as strong phase
Wolfenstein PRD43 (1991) I5I

LHCb PRD90 (2014) 112004

rescattering as a CPV mechanism

- rescattering $\pi \pi \rightarrow K K$

CPV [1-2] GeV
Frederico, Bediaga, Lourenço PRD89(2014)094013

FSI as strong phase
Wolfenstein PRD43 (1991) I5I

KKт

LHCb PRD90 (2014) 112004

- rescattering $\pi \pi \rightarrow K K$

CPV [1-2] GeV
Frederico, Bediaga, Lourenço
PRD89(2014)0940I3
\hookrightarrow FSI as strong phase
Wolfenstein PRD43 (1991) I5I

LHCb PRD90 (2014) 112004

- CPT must be preserved

$$
\begin{aligned}
& \text { Lifetime } \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }} \\
\Gamma_{\text {total }}= & \Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \\
\bar{\Gamma}_{\text {total }}= & \bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+\ldots
\end{aligned}
$$

$$
\Gamma_{\text {total }}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \quad \text { CPV in one channel should be compensated by }
$$ another one with opposite sign

\longrightarrow rescattering contribution for CPV confirmed by LHCb analysis Misha's talk

charm rescattering contribution

- CPV at high mass?
\rightarrow charm intermediate processes as source of strong phase
PCM, I. Bediaga, T Frederico PLB 780 (2018) 357

- $D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$phenomenological amplitude

charm rescattering contribution

- CPV at high mass?
\rightarrow charm intermediate processes as source of strong phase
PCM, I. Bediaga, T Frederico PLB 780 (2018) 357

- $D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$phenomenological amplitude

charm rescattering contribution

- CPV at high mass?
\rightarrow charm intermediate processes as source of strong phase
PCM, I. Bediaga, T Frederico PLB 780 (2018) 357

- $D^{0} \overline{D^{0}} \rightarrow K^{+} K^{-}$phenomenological amplitude
- charm FSI: $B \rightarrow 3 h, B_{c} \rightarrow 3 h, B \rightarrow K^{*} \mu \mu, \ldots$
- $B_{c}^{+} \rightarrow K^{-} K^{+} \pi^{+}$

PCM, I. Bediaga,T Frederico PLB 785 (2018) 581
\rightarrow two-body unitary, coupled-channel description in mandatory
\rightarrow FSI play an important role in B / D hadronic decays
$\longrightarrow B$ decays \longrightarrow understand of CPV, low and high mass,
$\longrightarrow D$ decays —> 3-body effects, extract 2-body information from data, CPV?
\rightarrow Triple M : theory/experimental joint work
\longrightarrow models need to connect the weak and strong description
\rightarrow QCDF and FSI on going project...
\rightarrow two-body unitary, coupled-channel description in mandatory
\rightarrow FSI play an important role in B/D hadronic decays
$\longrightarrow B$ decays \longrightarrow understand of CPV, low and high mass,
$\longrightarrow D$ decays —> 3-body effects, extract 2-body information from data, CPV?
\rightarrow Triple M : theory/experimental joint work
\longrightarrow models need to connect the weak and strong description \rightarrow QCDF and FSI on going project...

Extra slides

unitarized amplitude $P^{a} P^{b} \rightarrow P^{c} P^{d}$

- unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

- kernel $\mathcal{K}_{a b \rightarrow c d}^{(J, I)}$

resonance (NLO) + contact (LO)
- loops \rightarrow K-matrix approximation: only on-shell

$$
\begin{aligned}
& \left\{I_{a b} ; I_{a b}^{\mu \nu}\right\}=\int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\left\{1 ; \ell^{\mu} \ell^{\nu}\right\}}{D_{a} D_{b}} \\
& D_{a}=(\ell+p / 2)^{2}-M_{a}^{2} \quad D_{b}=(\ell-p / 2)^{2}-M_{b}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\Omega}_{a b}^{S}=-\frac{i}{8 \pi} \frac{Q_{a b}}{\sqrt{s}} \theta\left(s-\left(M_{a}+M_{b}\right)^{2}\right) \\
& \bar{\Omega}_{a a}^{P}=-\frac{i}{6 \pi} \frac{Q_{a a}^{3}}{\sqrt{s}} \theta\left(s-4 M_{a}^{2}\right) \\
& Q_{a b}=\frac{1}{2} \sqrt{s-2\left(M_{a}^{2}+M_{b}^{2}\right)+\left(M_{a}^{2}-M_{b}^{2}\right)^{2} / s}
\end{aligned}
$$

- free parameters
- masses:
$m_{\rho}, m_{a_{0}}, m_{s 0}, m_{s 1} S U(3)$ singlet and octet \rightarrow physical f_{0} states are linear combination of $m_{s 0}, m_{s 1}$
- coupling constants:
$g_{\rho}, g_{\phi} \quad c_{d}, c_{m}, \tilde{c_{d}}, \tilde{c_{m}}$ vector
scalar

kich

$T^{S}=T_{N R}^{S}+T^{00}+T^{01}$
$T^{P}=T_{N R}^{P}+T^{11}+T^{10}$

parameter	value
F	$94.3_{-1.7}^{+2.8} \pm 1.5 \mathrm{MeV}$
$m_{a_{0}}$	$947.7_{-5.0}^{+5.5} \pm 6.6 \mathrm{MeV}$
$m_{S_{o}}$	$992.0_{-7.5}^{+8.5} \pm 8.6 \mathrm{MeV}$
$m_{S_{1}}$	$1330.2_{-6.5}^{+5.9} \pm 5.1 \mathrm{MeV}$
m_{ϕ}	$1019.54_{-0.10}^{+0.10} \pm 0.51 \mathrm{MeV}$
G_{ϕ}	$0.464_{-0.009}^{+0.013} \pm 0.007$
c_{d}	$-78.9_{-2.7}^{+4.2} \pm 1.9 \mathrm{MeV}$
c_{m}	$106.0_{-4.6}^{+7.7} \pm 3.3 \mathrm{MeV}$
\tilde{c}_{d}	$-6.15_{-0.54}^{+0.55} \pm 0.19 \mathrm{MeV}$
\tilde{c}_{m}	$-10.8_{-1.5}^{+2.0} \pm 0.4 \mathrm{MeV}$

Figure 12. (left) Two-dimensional distribution of the normalised residuals for the Triple-M fit. (right) Distribution of normalised residuals of each bin.

- S-wave, isospin 0 and I

Figure 14. (top) Phase-shifts $\delta_{K^{+} K^{-}}^{0 I}$ and (bottom) inelasticities $\eta^{0 I}$ as a function of the $K^{+} K^{-}$ invariant mass, for both isospin states.

can be used in other process

- $\operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim \mathbf{1} \% \rightarrow \mathbf{1 0 0 0} \mathbf{x} \operatorname{Br}[B \rightarrow K K K]$

S- matrix unitarity + Regge theory

- $\operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim \mathbf{1 \%} \rightarrow \mathbf{1 0 0 0} \mathbf{x} \operatorname{Br}[B \rightarrow K K K]$

- $\operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim \mathbf{1 \%} \rightarrow \mathbf{1 0 0 0} \mathbf{x} \operatorname{Br}[B \rightarrow K K K]$
- hadronic loop \rightarrow three-body FSI - introduce new complex structures
- $B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$
$D^{+} \rightarrow \pi^{+} K^{-} \pi^{+}$

PCM \& I Bediaga
arXiv:1512.09284

PCM \& M Robilotta
PRD 92094005 (2015) [arXiv:1504.06346]
PCM et al
PRD 84094001 (2011) [arXiv:1105.5120]

- not well understand on literature
- important as FSI in B two-body decays

Donoghue et al., PRL 77(I996)2178; Suzuki,Wolfenstein, PRD 60 (I999)0740I9;
Falk et al. PRD 57,4290(I998);
Blok, Gronau, Rosner, PRL 78, 3999 (I997).

- phenomenological amplitude
- unitarity of the S-matrix $\quad S=\left(\begin{array}{cc}\eta e^{2 i \alpha} & \sqrt{1-\eta^{2}} e^{i(\alpha+\beta)} \\ -\sqrt{1-\eta^{2}} e^{i(\alpha+\beta)} & \eta e^{2 i \beta}\end{array}\right)$
- inspired in the damping factor of the S matrix i.e. $\pi \pi \rightarrow K K$

$$
\eta=\mathcal{N} \sqrt{s / s_{t h}-1} /\left(s / s_{t h}\right)^{2.5}
$$

$$
\begin{aligned}
& \text { KK: } e^{2 i \alpha}=1-\frac{2 i k_{1}}{\frac{c}{1-k_{1} / k_{0}}+i k_{1}}, \text { DD: } e^{2 i \beta}=1-\frac{2 i k}{\frac{1}{a}+i k} \\
& k=\sqrt{\frac{s-s_{t h}}{4}}, k_{1}=\sqrt{\frac{s-s_{t+1}}{4}} \text { and } k_{0}=\sqrt{\frac{s_{0}-s_{t h}}{4}}
\end{aligned}
$$

$$
S_{\beta, \alpha}=\delta_{\beta, \alpha}+i t_{\beta, \alpha}
$$

$D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$scattering amplitude

$T_{\overline{D^{0}} D^{0} \rightarrow K K}(s)=\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}}$ $=-i \frac{2 k_{2}}{\sqrt{s_{t h} D \bar{D}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}}$

$D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$scattering amplitude

- $T_{\overline{D^{0} D} D^{0} \rightarrow K K}(s)=\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}}$ $=-i \frac{2 k_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}}$

$D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$scattering amplitude

$T_{\overline{D^{0}} D^{0} \rightarrow K K}(s)=\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}}$ $=-i \frac{2 k_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}}$

\longrightarrow zero at threshold

$$
\begin{aligned}
T_{\bar{D}^{0} D^{0} \rightarrow K K}(s) & =\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}} \quad \rightarrow \text { parameters } \\
& =-i \frac{2 k_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}} \quad \text { fix by data! }
\end{aligned}
$$

\longrightarrow zero at threshold

$$
\begin{aligned}
T_{\bar{D}^{0} D^{0} \rightarrow K K}(s) & =\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}} \\
& =-i \frac{2 k_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}}
\end{aligned} \text { parameters} \text { fix by data! }
$$

\longrightarrow zero at threshold
discontinuity at threshold

hadronic loop

- Loop $=i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\Delta_{D^{0}}+2 \Delta_{\overline{D^{0}}}-2 s_{23}+3 M_{K}^{2}+M_{B}^{2}-l^{2}}{\Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{D *}\left[l^{2}-m_{B^{*}}\right]}$

hadronic loop
- Loop $=i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\Delta_{D^{0}}+2 \Delta_{\overline{D^{0}}}-2 s_{23}+3 M_{K}^{2}+M_{B}^{2}-l^{2}}{\Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{D *}\left[l^{2}-m_{B^{*}}\right]}$

discontinuity at threshold
hadronic loop
- Loop $=i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\Delta_{D^{0}}+2 \Delta_{\overline{D^{0}}}-2 s_{23}+3 M_{K}^{2}+M_{B}^{2}-l^{2}}{\Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{D *}\left[l^{2}-m_{B^{*}}\right]}$

$\unlhd_{\text {discontinuity }}$ at threshold

\longrightarrow change sign at threshold

Final Amplitude

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\overline{D^{0} D^{0}} \rightarrow K K}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}$,

Final Amplitude

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\overline{D^{0} D^{0}} \rightarrow K K}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}$,

\longrightarrow zero in between two bumps

Final Amplitude

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\bar{D}^{0} D^{0} \rightarrow K K}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}$,

\longrightarrow zero in between two bumps
rescattering $D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$ play a major role

