

New amplitudes for B and D three-body decay

Patricia C. Magalhães

International Workshop on Partial Wave Analyses and Advanced Tools for Hadron Spectroscopy, PWA11/ATHOS6 p.magalhaes@bristol.ac.uk

D and B three-body HADRONIC decay are dominated by resonances

- → underling strong force behave
- obtain meson-meson amplitudes up to high mass (including KK)
- CP-Violation
- weak and strong phase

D and B three-body HADRONIC decay are dominated by resonances

- → underling strong force behave
- obtain meson-meson amplitudes up to high mass (including KK)
- CP-Violation
- weak and strong phase
- $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$ massive localized direct CP asymmetry

dynamic effect

Final state interactions play a massive role

FSI in 3-body decay

ATHOS 2019

D and B three-body HADRONIC decay are dominated by resonances

- → underling strong force behave
- obtain meson-meson amplitudes up to high mass (including KK)
- CP-Violation
- weak and strong phase
- $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$ massive localized direct CP asymmetry

dynamic effect

CPV on three-body?

Final state interactions play a massive role

can lead to new physics

FSI in 3-body decay

ATHOS 2019

new large data sample from LHCb \longrightarrow more to come from LHCb and Belle II

not enough to explain data anymore

 \searrow simple models (isobar model with Breit-Wigners resonances) (2+1)

difference phase-space in D and B decays

 \neq scales!!! \rightarrow still similar FSI

3-body effects expected to be smaller in B

B phase-space \rightarrow + FSI possibilities

Dynamics of 3-body heavy decay

4

Dynamics of 3-body heavy decay

Dynamics of 3-body heavy decay

FSI in 3-body decay

ATHOS 2019

p.magalhaes@bristol.ac.uk

- isobar model: widely used by experimentalists
 - $(2+1) \rightarrow$ ignore the 3rd particle (bachelor)
 - aways intermediated by a resonance R \rightarrow M \rightarrow \sum

 $A = \sum c_k A_k, + \mathsf{NR} \left\{ \begin{array}{l} \mathsf{non-resonant} \text{ as constant or exponential!} \\ \mathsf{each} \text{ resonance as } \mathsf{Breit-Wigner} \quad \mathsf{BW}(s_{12}) = \frac{1}{m_R^2 - s_{12} - im_R \Gamma(s_{12})}, \end{array} \right.$

weak vertex is not considered explicitly

warnings:

- isobar model: widely used by experimentalists
 - $(2+1) \rightarrow$ ignore the 3rd particle (bachelor)
 - aways intermediated by a resonance R \rightarrow M \rightarrow \sum

 $A = \sum c_k A_k, + NR \begin{cases} \text{non-resonant as constant or exponential!} \\ \text{each resonance as Breit-Wigner} \quad BW(s_{12}) = \frac{1}{m_R^2 - s_{12} - im_R \Gamma(s_{12})}, \end{cases}$

warnings:

- sum of BW violates two-body unitarity (2 res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !

ATHOS 2019

- movement to use better 2-body (unitarity) inputs in data analysis
- "K-matrix" : $\pi\pi$ S-wave 5 coupled-channel modulated by a production amplitude which wave 5 coupled-channel modulated by a production amplitude which PLB653(2007) • Anisovich PLB653(2007)
- rescattering $\pi \pi \to KK$ contribution in LHCb $\begin{cases} B^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm} & \text{soon} \\ B^{\pm} \to K^{-}K^{+}\pi^{\pm} & [arXiv:1905.09244] \end{cases}$ Pelaez, Yndurain PRD71(2005) 074016

> new parametrization Pelaez, and Rodas EPJ. C78 (2018) 11,897

- movement to use better 2-body (unitarity) inputs in data analysis
- "K-matrix" : $\pi\pi$ S-wave 5 coupled-channel modulated by a production amplitude which wave 5 coupled-channel modulated by a production amplitude which PLB653(2007) • Anisovich PLB653(2007)
- rescattering $\pi \pi \to KK$ contribution in LHCb $\begin{cases} B^{\pm} \to \pi^{+}\pi^{-}\pi^{\pm} & \text{soon} \\ B^{\pm} \to K^{-}K^{+}\pi^{\pm} & [arXiv:1905.09244] \end{cases}$ Pelaez, Yndurain PRD71(2005) 074016
 - > new parametrization Pelaez, and Rodas EPJ. C78 (2018) 11,897
- ullet alternative \longrightarrow scalar and vector form factors using Dispersion Relation
 - $<\pi\pi|0>$ scalar Moussallam EPJ C 14, 111 (2000); Daub, Hanhart, and B. Kubis JHEP 02 (2016) 009. Vector Hanhart, PL B715, 170 (2012). Dumm and Roig EPJ C 73, 2528 (2013).
 - $< K\pi | 0 >$ scalar Moussallam EPJ C 53, 401 (2008) Jamin, Oller and Pich, PRD 74, 074009 (2006) vector Boito, Escribano, and Jamin EPJ C 59, 821 (2009).
 - Madrid Parametrization Pelaez's talk
 - no data for KK
 - < KK | 0 >

Fit from 3-body dataPCM, Robilotta + LHCb JHEP 1904 (2019) 063extrapolate from unitarity modelAlbaladejo and Moussallam EPJ C 75, 488 (2015).quark model with isospin symmetryBruch,Khodjamirian, and Kühn , EPJ C 39, 41 (2005)

ATHOS 2019

• best theoretical $\pi\pi$, $K\pi$ scattering amplitude \rightarrow constrained by data \searrow no KK data/theory limited to low E

• best theoretical $\pi\pi$, $K\pi$ scattering amplitude \rightarrow constrained by data \searrow no KK data/theory limited to low E

we need non-perturbative meson-meson interactions up to.... B sector is far

extend 2-body amplitude theory validity
 Ropertz, Kubis, Hanhart
 EPJ Web Conf. 202 (2019) 06002
 PCM, Robilotta
 work in progress

ATHOS 2019

• QCD factorization approach \rightarrow factorize the quark currents

$$\mathcal{H}_{\text{eff}}^{\Delta B=1} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pq}^* V_{pb} \left[C_1(\mu) O_1^p(\mu) + C_2(\mu) O_2^p(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) + C_{7\gamma}(\mu) O_{7\gamma}(\mu) + C_{8g}(\mu) O_{8g}(\mu) \right] + \text{ h.c. },$$

challenging for 3-body not all FSI and 3-body NR scale issue with charm

Keri's talk

$$\rightarrow$$
 ex: $B^+ \rightarrow \pi^+ \pi^- \pi^+$

 $\mathbf{A} \sim \left\langle [\pi^+(p_2)\pi^-(p_3)] | (\bar{u}b)_{V-A} | B^- \right\rangle \left\langle \pi^-(p_1) | (\bar{d}u)_{V-A} | 0 \right\rangle + \left\langle \pi^-(p_1) | (\bar{d}b)_{sc-ps} | B^- \right\rangle \left\langle [\pi^+(p_2)\pi^-(p_3)] | (\bar{d}d)_{sc+ps} | 0 \right\rangle$

≽ (2+I)

Models available A =

• QCD factorization approach \rightarrow factorize the quark currents

$$\mathcal{H}_{eff}^{\Delta B=1} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pq}^* V_{pb} \left[C_1(\mu) O_1^p(\mu) + C_2(\mu) O_2^p(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) + C_{q}(\mu) O_{q}(\mu) + C_{q}(\mu) + C_{q}$$

- QCD factorization approach \rightarrow factorize the quark currents (2+1)Keri's talk $\mathcal{H}_{\text{eff}}^{\Delta B=1} = \frac{G_F}{\sqrt{2}} \sum_{p=\mu,c} V_{pq}^* V_{pb} \left| C_1(\mu) O_1^p(\mu) + C_2(\mu) O_2^p(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) \right|$ challenging for 3-body + $C_{7\gamma}(\mu)O_{7\gamma}(\mu) + C_{8g}(\mu)O_{8g}(\mu)$ + h.c., not all FSI and 3-body NR scale issue with charm $\rightarrow \text{ex:} \quad B^+ \rightarrow \pi^+ \pi^- \pi^+ \text{ how to describe it?}$ $A \sim \langle [\pi^+(p_2)\pi^-(p_3)] \ |(\bar{u}b)_{V-A}|B^-\rangle \ \langle \pi^-(p_1)|(\bar{d}u)_{V-A}|0\rangle + \langle \pi^-(p_1)|(\bar{d}b)_{sc-ps}|B^-\rangle \ \langle [\pi^+(p_2)\pi^-(p_3)] \ |(\bar{d}d)_{sc+ps}|0\rangle$ FF • naive factorization $\begin{cases} - \text{ intermediate by a resonance } R; \\ - FSI with scalar and vector form factors FF \end{cases}$
 - → parametrizations for B and D→3h Boito et al. PRD96 113003 (2017)

QCD factorization approach \rightarrow factorize the quark currents ► (2+I) Keri's talk $\mathcal{H}_{\text{eff}}^{\Delta B=1} = \frac{G_F}{\sqrt{2}} \sum_{p=\mu,c} V_{pq}^* V_{pb} \left| C_1(\mu) O_1^p(\mu) + C_2(\mu) O_2^p(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) \right|$ challenging for 3-body + $C_{7\gamma}(\mu)O_{7\gamma}(\mu) + C_{8g}(\mu)O_{8g}(\mu)$ + h.c., not all FSI and 3-body NR scale issue with charm $\rightarrow \text{ex:} \quad B^+ \rightarrow \pi^+ \pi^- \pi^+ \text{ how to describe it?}$ $A \sim \left\langle [\pi^+(p_2)\pi^-(p_3)] \ |(\bar{u}b)_{V-A}|B^- \right\rangle \ \left\langle \pi^-(p_1)|(\bar{d}u)_{V-A}|0 \right\rangle + \left\langle \pi^-(p_1)|(\bar{d}b)_{sc-ps}|B^- \right\rangle \ \left\langle [\pi^+(p_2)\pi^-(p_3)] \ |(\bar{d}d)_{sc+ps}|0 \right\rangle$ FF • naive factorization $\begin{cases} - \text{ intermediate by a resonance } R; \\ - FSI with scalar and vector form factors FF \end{cases}$ \rightarrow parametrizations for B and D \rightarrow 3h Boito et al. PRD96 | 13003 (2017)

modern QDC factorization: different in each region

improvement over (2+1)

introduce new non-perturbative strong phase

Klein, Mannel, Virto, Keri Vos JHEP10 117 (2017)

QCDF predictions

Branching Fraction (tree dominated decays)

	Theory I	Theory II	Experiment
$B^- ightarrow \pi^- \pi^0 \ ar{B}^0_d ightarrow \pi^+ \pi^- \ ar{B}^0_d ightarrow \pi^0 \pi^0$	5.43 + 0.06 + 1.45 (*) 7.37 + 0.86 + 1.22 (*) 7.37 + 0.69 - 0.97 (*) 0.33 + 0.11 + 0.42 - 0.08 - 0.17	5.82 + 0.07 + 1.42 - 0.06 - 1.35 (*) 5.70 + 0.70 + 1.16 - 0.55 - 0.97 (*) 0.63 + 0.12 + 0.64 - 0.10 - 0.42 BELLE CKM 14:	$5.59^{+0.41}_{-0.40}$ 5.16 ± 0.22 1.55 ± 0.19 0.90 ± 0.16
$B^{-} \rightarrow \pi^{-} \rho^{0}$ $B^{-} \rightarrow \pi^{0} \rho^{-}$ $\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}$ $\bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$ $\bar{B}^{0} \rightarrow \pi^{\pm} \rho^{\mp}$ $\bar{B}^{0} \rightarrow \pi^{0} \rho^{0}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 9.84 \stackrel{+0.41}{_{-0.40}} \stackrel{+2.54}{_{-2.52}} (\star \star) \\ 12.13 \stackrel{+0.85}{_{-0.73}} \stackrel{+2.23}{_{-2.17}} (\star) \\ 13.76 \stackrel{+0.49}{_{-0.44}} \stackrel{+1.77}{_{-0.44}} (\star) \\ 8.14 \stackrel{+0.34}{_{-0.33}} \stackrel{+1.39}{_{-1.49}} (\star \star) \\ 21.90 \stackrel{+0.20}{_{-0.12}} \stackrel{+3.06}{_{-3.55}} (\dagger) \\ 1.49 \stackrel{+0.07}{_{-0.07}} \stackrel{+1.77}{_{-1.29}} \end{array}$	$8.3^{+1.2}_{-1.3}$ $10.9^{+1.4}_{-1.5}$ 15.7 ± 1.8 7.3 ± 1.2 23.0 ± 2.3 2.0 ± 0.5
$B^{-} \rightarrow \rho_{L}^{-} \rho_{L}^{0}$ $\bar{B}_{d}^{0} \rightarrow \rho_{L}^{+} \rho_{L}^{-}$ $\bar{B}_{d}^{0} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$	$18.42^{+0.23}_{-0.21} \xrightarrow{+3.92}_{-2.55} (\star\star)$ $25.98^{+0.85}_{-0.77} \xrightarrow{-3.43}_{-3.43} (\star\star)$ $0.39^{+0.03}_{-0.03} \xrightarrow{+0.36}_{-0.36}$	$\begin{array}{r} 19.06 \substack{+0.24 + 4.59 \\ -0.22 - 4.22 \ } (\star\star) \\ 20.66 \substack{+0.68 + 2.99 \\ -0.62 - 3.75 \ } (\star\star) \\ 1.05 \substack{+0.05 + 1.62 \\ -0.04 - 1.04 \ } \end{array}$	$22.8^{+1.8}_{-1.9} \\ 23.7^{+3.1}_{-3.2} \\ 0.55^{+0.22}_{-0.24}$

Theory I: $f_{+}^{B\pi}(0) = 0.25 \pm 0.05, A_{0}^{B\rho}(0) = 0.30 \pm 0.05, \lambda_{B}(1 \text{ GeV}) = 0.35 \pm 0.15 \text{ GeV}$ Theory II: $f_{+}^{B\pi}(0) = 0.23 \pm 0.03, A_{0}^{B\rho}(0) = 0.28 \pm 0.03, \lambda_{B}(1 \text{ GeV}) = 0.20_{-0.00}^{+0.05} \text{ GeV}$

not good agreement for Acp <--

Beneke Seminar at "Future Challenges in Non-Leptonic B Decays", Bad Honnef, 2016

→ good agreement for Br

Acp (penguin dominante decays)

f	NLO	NNLO	NNLO + LD	Exp
$\pi^- \bar{K}^{*0}$	$1.36^{+0.25}_{-0.26}{}^{+0.60}_{-0.47}$	$1.49^{+0.27}_{-0.29}{}^{+0.69}_{-0.56}$	$0.27^{+0.05}_{-0.05}{}^{+3.18}_{-0.67}$	-3.8 ± 4.2
$\pi^0 K^{*-}$	$13.85^{+2.40}_{-2.70}{}^{+5.84}_{-5.86}$	$18.16^{+3.11+7.79}_{-3.52-10.57}$	$-15.81_{-2.83}^{+3.01}_{-15.39}^{+69.35}$	-6 ± 24
$\pi^+ K^{*-}$	$11.18^{+2.00+9.75}_{-2.15-10.62}$	$19.70_{-3.80}^{+3.37}_{-3.80}_{-11.42}^{+10.54}$	$-23.07_{-4.05}^{+4.35}_{-20.64}^{+86.20}$	-23 ± 6
$\pi^0 \bar{K}^{*0}$	$-17.23_{-3.00}^{+3.33}{}^{+7.59}_{-12.57}$	$-15.11_{-2.65}^{+2.93}_{-10.64}^{+12.34}$	$2.16^{+0.39+17.53}_{-0.42-36.80}$	-15 ± 13
$\delta(\pi \bar{K}^*)$	$2.68^{+0.72}_{-0.67}{}^{+5.44}_{-4.30}$	$-1.54_{-0.58}^{+0.45}{}^{+4.60}_{-9.19}$	$7.26^{+1.21}_{-1.34}{}^{+12.78}_{-20.65}$	17 ± 25
$\Delta(\pi \bar{K}^*)$	$-7.18^{+1.38}_{-1.28}{}^{+3.38}_{-5.35}$	$-3.45^{+0.67}_{-0.59}{}^{+9.48}_{-4.95}$	$-1.02\substack{+0.19\ +4.32\ -0.18\ -7.86}$	-5 ± 45
$\rho^- \bar{K}^0$	$0.38^{+0.07}_{-0.07}{}^{+0.16}_{-0.27}$	$0.22^{+0.04+0.19}_{-0.04-0.17}$	$0.30^{+0.06}_{-0.06}{}^{+2.28}_{-2.39}$	-12 ± 17
$ ho^0 K^-$	$-19.31_{-3.61-8.96}^{+3.42+13.95}$	$-4.17_{-0.80}^{+0.75}_{-19.52}^{+19.26}$	$43.73_{-7.62}^{+7.07+}_{-137.77}^{+44.00}$	37 ± 11
$\rho^+ K^-$	$-5.13_{-0.97}^{+0.95}\substack{+6.38\\-0.97}\limits_{-4.02}$	$1.50^{+0.29+8.69}_{-0.27-10.36}$	$25.93_{-4.90}^{+4.43}_{-75.63}^{+25.40}$	20 ± 11
$ ho^0 \bar{K}^0$	$8.63^{+1.59}_{-1.65}{}^{+2.31}_{-1.69}$	$8.99^{+1.66}_{-1.71}^{+3.60}_{-7.44}$	$-0.42^{+0.08}_{-0.08}^{+19.49}_{-8.78}$	6 ± 20
$\delta(\rho \bar{K})$	$-14.17^{+2.80}_{-2.96}{}^{+7.98}_{-5.39}$	$-5.67^{+0.96}_{-1.01}{}^{+0.96}_{-9.79}$	$17.80_{-3.01}^{+3.15}_{-62.44}^{+19.51}$	17 ± 16
$\Delta(\rho \bar{K})$	$-8.75_{-1.66}^{+1.62}_{-6.48}^{+4.78}$	$-10.84^{+1.98}_{-2.09}{}^{+11.67}_{-9.09}$	$-2.43^{+0.46}_{-0.42}^{+4.60}_{-19.43}$	-37 ± 37

9

FSI in 3-body decay

Three-body FSI (beyond 2+1)

shown to be relevant on charm sector

Three-body FSI (beyond 2+1)

shown to be relevant on charm sector

Three-body FSI (beyond 2+1)

Three-body FSI (beyond 2+1)

ex: multi meson model - $D^+ \rightarrow K^- K^+ K^+$

• Model for $D^+ \to K^- K^+ K^-$

PCM, Aoude, dos Reis and Robilotta PRD 98 056021 (2018)

- $\rightarrow A_{ab}^{JI}$ unitary scattering amplitude for $ab \rightarrow K^+K^-$
- \rightarrow hypotheses that annihilation is dominant $-\frac{k_{3}^{+}}{W} = -\frac{k_{3}^{+}}{K_{1}^{+}} = -\frac{k_{3}^{+}}{K_{1}^{+}}$

ex: multi meson model - $D^+ \rightarrow K^- K^+ K^+$

• Model for $D^+ \to K^- K^+ K^-$

PCM, Aoude, dos Reis and Robilotta PRD 98 056021 (2018)

- $\rightarrow A_{ab}^{JI}$ unitary scattering amplitude for $ab \rightarrow K^+K^-$
- \rightarrow hypotheses that annihilation is dominant $-\frac{k_1}{k_1} = -\frac{k_2}{k_1}$
 - separate the different energy scales:

$$\mathcal{T} = \langle (KKK)^+ | T | D^+ \rangle = \underbrace{\langle (KKK)^+ | A_\mu | 0 \rangle}_{\mathsf{ChPT}} \langle 0 | A^\mu | D^+ \rangle.$$

-> parameters have physical meaning: resonance masses and coupling constants

ex: multi meson model - $D^+ \rightarrow K^- K^+ K^+$

• Model for $D^+ \to K^- K^+ K^-$

PCM, Aoude, dos Reis and Robilotta

- $\rightarrow A_{ab}^{JI}$ unitary scattering amplitude for $ab \rightarrow K^+K^-$
- \rightarrow hypotheses that annihilation is dominant $-\frac{k_1^4}{k_1^4} = -\frac{k_1^4}{k_1^4}$
 - separate the different energy scales:

$$\mathcal{T} = \langle (KKK)^+ | T | D^+ \rangle = \underbrace{\langle (KKK)^+ | A_\mu | 0 \rangle}_{\mathsf{ChPT}} \langle 0 | A^\mu | D^+ \rangle.$$

- \rightarrow parameters have physical meaning: resonance masses and coupling constants
- alternative to isobar model in amplitude analysis

 \sim $K\bar{K}$ coupled-channel unitary amplitude \sim isospin decomposition [J, I = (0, 1), (0, 1)] $\pi\pi, \eta\eta, \pi\eta, \eta\pi, \rho\pi$

FSI in 3-body decay

ATHOS 2019

p.magalhaes@bristol.ac.uk

• isospin decomposition [J, I = (0, 1), (0, 1)]

FSI in 3-body decay

ATHOS 2019

p.magalhaes@bristol.ac.uk

FSI in 3-body decay

ATHOS 2019

• isospin decomposition [J, I = (0, 1), (0, 1)]

p.magalhaes@bristol.ac.uk

14

Triple M LHCb fit

$$T^S = T^S_{NR} + T^{00} + T^{01}$$

$$T^P = T^P_{NR} + T^{11} + T^{10}$$

parameter	value
F	$94.3^{+2.8}_{-1.7} \pm 1.5\mathrm{MeV}$
m_{a_0}	$947.7^{+5.5}_{-5.0}\pm6.6{\rm MeV}$
m_{S_o}	$992.0^{+8.5}_{-7.5}\pm8.6{\rm MeV}$
m_{S_1}	$1330.2^{+5.9}_{-6.5}\pm5.1{\rm MeV}$
m_{ϕ}	$1019.54^{+0.10}_{-0.10}\pm0.51{\rm MeV}$
G_{ϕ}	$0.464^{+0.013}_{-0.009}\pm0.007$
c_d	$-78.9^{+4.2}_{-2.7}\pm1.9{\rm MeV}$
c_m	$106.0^{+7.7}_{-4.6}\pm3.3{\rm MeV}$
\widetilde{c}_d	$-6.15^{+0.55}_{-0.54}\pm0.19{\rm MeV}$
$ ilde{c}_m$	$-10.8^{+2.0}_{-1.5}\pm0.4{\rm MeV}$

igure 11. Projections of the Dalitz plot onto (top left) $s_{K^+K^-}$, (top right) $s_{K^+K^+}$, (bottom left) $s_{K^+K^-}^{\text{igh}}$ and (bottom right) $s_{K^+K^-}^{\text{low}}$ axes, with the fit result with the Triple-M amplitude superimdashed green line is the phase space distribution weighted by the efficiency. The represents the contribution from the background.

, ,	$1330.2^{+5.9}_{-6.5} \pm 5.1 \mathrm{MeV}$	9 Ge
_	$1019.54^{+0.10}_{-0.10} \pm 0.51 \mathrm{MeV}$	00.0)/s
	$0.464^{+0.013}_{-0.009} \pm 0.007$	andidates/(0.009 Ge ³
	$-78.9^{+4.2}_{-2.7} \pm 1.9 \mathrm{MeV}$	can
	$^{-2.7}_{106.0^{+7.7}_{-4.6}\pm 3.3{ m MeV}}$	
	$-6.15^{+0.55}_{-0.54} \pm 0.19 \mathrm{MeV}$	
	$-10.8^{+2.0}_{-1.5} \pm 0.4 \mathrm{MeV}$	
		Γ΄ Fi g
		s_{K}

180

1600

1400

0095 GeV²

LHCb

DS 2019

• $\chi^2/\text{ndof} = 1.12$ (Isobar 1.14-1.6)

p.magalhaes@bristol.ac.uk

Triple M LHCb fit

and f_0

$$T^S = T^S_{NR} + T^{00} + T^{01}$$

$$T^P = T^P_{NR} + T^{11} + T^{10}$$

can disentangle a_0

LHCb

0095 GeV

1400

candidates/(0.0095 GeV²) candidates/(0.0095 GeV² 3000 LHCb 1600 LHCb 1400 2500 1200 2000 1500 600 1000 400 500 200 0 1.7 1.2 1.3 1.4 1.5 1.6 1.8 1.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.1 $s_{K^+K^-}$ [GeV²] $s_{K^+K^+}$ [GeV²] candidates/(0.007 GeV²) andidates/(0.009 GeV²) 4500 2000 LHCb LHCb 1800 4000 1600 3500 1400 3000 1200E 2500 1000 2000 800 1500 600 1000 400 500 200 $\frac{1.8 \quad 1.9}{s_{K^+K^-}^{\text{high}} [\text{GeV}^2]}$ 1.2 1.3 1.4 1.5 1.6 1.7 1.1 1.2 1.3 1.4 1.5 1.6 $s_{K^+K^-}^{\text{low}} [\text{GeV}^2]$

• $\chi^2/\text{ndof} = 1.12$ (Isobar 1.14-1.6)

Figure 11. Projections of the Dalitz plot onto (top left) $s_{K^+K^-}$, (top right) $s_{K^+K^+}$, (bottom left) $s_{K^+K^-}^{\text{high}}$ and (bottom right) $s_{K^+K^-}^{\text{low}}$ axes, with the fit result with the Triple-M amplitude superimdashed green line is the phase space distribution weighted by the efficiency. The An-1 czFtt+pddthyd + tFt+dytt, represents the contribution from the background. LHCb

parameters with physical

DS 2019

Triple M LHCb fit S-wave

- intensity of each component is predict by theory
- 3-body amplitude \neq from 2-body

Triple M LHCb fit S-wave

- intensity of each component is predict by theory
- 3-body amplitude \neq from 2-body

predict KK scattering amplitude to be used in other process

FSI in 3-body decay

ATHOS 2019

Models available

• FSI on B decays

CPV needs:

- \rightarrow 2 interfering amplitudes
- → 2 ≠ strong phases $[\sin(\delta_1 \delta_2) \neq 0]$
- \rightarrow 2 \neq weak phases $[\sin(\phi_1 \phi_2) \neq 0]$

18

Models available

hadronic FSI

• FSI on B decays

- CPV needs:
- \rightarrow 2 interfering amplitudes
- → 2 ≠ strong phases $[\sin(\delta_1 \delta_2) \neq 0]$
- \rightarrow 2 \neq weak phases $[\sin(\phi_1 \phi_2) \neq 0]$

Models available

• FSI on B decays

18

- CPV needs:
- → 2 interfering amplitudes → 2 ≠ strong phases $[\sin(\delta_1 - \delta_2) \neq 0]$ → 2 ≠ weak phases $[\sin(\phi_1 - \phi_2) \neq 0]$
- $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$ CP violation puzzle
 - middle with no resonance but have CPV

• \neq mechanisms for low-energy CPV ex: $B^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$ Wen Bin talk

• rescattering $\pi\pi \to KK$

└**>** CPV [1 - 2] GeV

Frederico, Bediaga, Lourenço PRD89(2014)094013

LHCb PRD90 (2014) 112004

rescattering

$$\pi\pi \to KK$$

└**>** CPV [1 - 2] GeV

Frederico, Bediaga, Lourenço PRD89(2014)094013

LHCb PRD90 (2014) 112004

rescattering

$$\pi\pi \to KK$$

└**>** CPV [1 - 2] GeV

Frederico, Bediaga, Lourenço PRD89(2014)094013

Wolfenstein PRD43 (1991) 151

ΚΚπ

LHCb PRD90 (2014) 112004

$$\tau\pi \to KK$$

└**>** CPV [1 - 2] GeV

Frederico, Bediaga, Lourenço PRD89(2014)094013

ΚΚπ

LHCb PRD90 (2014) 112004

CPT must be preserved

Lifetime $\tau = 1 / \Gamma_{total} = 1 / \overline{\Gamma}_{total}$ $\Gamma_{total} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$ $\overline{\Gamma}_{total} = \overline{\Gamma}_1 + \overline{\Gamma}_2 + \overline{\Gamma}_3 + \overline{\Gamma}_4 + \overline{\Gamma}_5 + \overline{\Gamma}_6 + \dots$

CPV in one channel should be compensated by another one with opposite sign

rescattering contribution for CPV confirmed by LHCb analysis Misha's talk

19

charm rescattering contribution

• CPV at high mass?

charm intermediate processes as source of strong phase

PCM, I. Bediaga, T Frederico PLB 780 (2018) 357

• $D^0 \overline{D^0} \to K^+ K^-$ phenomenological amplitude

charm rescattering contribution

• CPV at high mass?

PCM, I. Bediaga, T Frederico PLB 780 (2018) 357

• $D^0 \overline{D^0} \to K^+ K^-$ phenomenological amplitude

• change signal in the same region as Acp data

charm loops can be a mechanism
 to generate CPV E ~ 14 GeV

ATHOS 2019

p.magalhaes@bristol.ac.uk

charm rescattering contribution

• CPV at high mass?

PCM, I. Bediaga, T Frederico PLB 780 (2018) 357

20

• $D^0 \overline{D^0} \to K^+ K^-$ phenomenological amplitude

• charm FSI: $B \to 3h$, $B_c \to 3h$, $B \to K^* \mu \mu$,...

• $B_c^+ \to K^- K^+ \pi^+$ • production mechanism

PCM, I. Bediaga, T Frederico PLB 785 (2018) 581

charm loops can be a mechanism
 to generate CPV E ~ 14 GeV

two-body unitary, coupled-channel description in mandatory

-> FSI play an important role in B/D hadronic decays

 \blacktriangleright B decays —> understand of CPV, low and high mass,

 \rightarrow D decays —> 3-body effects, extract 2-body information from data, CPV?

- → Triple M : theory/experimental joint work
- models need to connect the weak and strong description
 QCDF and FSI
 - on going project...

two-body unitary, coupled-channel description in mandatory

-> FSI play an important role in B/D hadronic decays

 \blacktriangleright B decays —> understand of CPV, low and high mass,

 \rightarrow D decays —> 3-body effects, extract 2-body information from data, CPV?

- -> Triple M : theory/experimental joint work
- models need to connect the weak and strong description
 QCDF and FSI

on going project...

FSI in 3-body decay

ATHOS 2019

p.magalhaes@bristol.ac.uk

Extra slides

unitarized amplitude $P^a P^b \rightarrow P^c P^d$

unitarize amplitude by Bethe-Salpeter eq. [Oller and Oset PRD 60 (1999)]

$$\{I_{ab}; I_{ab}^{\mu\nu}\} = \int \frac{d^4\ell}{(2\pi)^4} \frac{\{1; \ell^{\mu} \ell^{\nu}\}}{D_a D_b}$$
$$D_a = (\ell + p/2)^2 - M_a^2 \qquad D_b = (\ell - p/2)^2 - M_b^2$$

$$\bar{\Omega}_{ab}^{S} = -\frac{i}{8\pi} \frac{Q_{ab}}{\sqrt{s}} \theta(s - (M_a + M_b)^2)$$
$$\bar{\Omega}_{aa}^{P} = -\frac{i}{6\pi} \frac{Q_{aa}^3}{\sqrt{s}} \theta(s - 4M_a^2)$$
$$Q_{ab} = \frac{1}{2} \sqrt{s - 2(M_a^2 + M_b^2) + (M_a^2 - M_b^2)^2/s}$$

free parameters

masses: $m_{
ho}$, m_{a_0} , m_{s0} , m_{s1} SU(3) singlet and octet

 \rightarrow physical f_0 states are linear combination of m_{s0} , m_{s1}

coupling constants:

$$g_{
ho} , g_{\phi} \quad c_d , c_m , \tilde{c_d} , \tilde{c_m}$$

vector

scalar

FSI in 3-body decay

ATHOS 2019

p.magalhaes@bristol.ac.uk

Triple M LHCb fit

LHCb

DS 2019

$$T^S = T^S_{NR} + T^{00} + T^{01}$$

$$T^P = T^P_{NR} + T^{11} + T^{10}$$

value parameter $94.3^{+2.8}_{-1.7}\pm1.5\,{\rm MeV}$ F $947.7^{+5.5}_{-5.0}\pm6.6\,\mathrm{MeV}$ m_{a_0} $992.0^{+8.5}_{-7.5}\pm8.6\,{\rm MeV}$ m_{S_o} $1330.2^{+5.9}_{-6.5}\pm5.1\,\mathrm{MeV}$ m_{S_1} $1019.54^{+0.10}_{-0.10}\pm0.51\,{\rm MeV}$ m_{ϕ} $0.464^{+0.013}_{-0.009}\pm0.007$ G_{ϕ} $-78.9^{+4.2}_{-2.7} \pm 1.9 \,\mathrm{MeV}$ c_d $106.0^{+7.7}_{-4.6}\pm3.3\,{\rm MeV}$ c_m $-6.15^{+0.55}_{-0.54} \pm 0.19 \,\mathrm{MeV}$ \tilde{c}_d $-10.8^{+2.0}_{-1.5}\pm0.4\,{\rm MeV}$ \tilde{c}_m

0095 GeV²

1600

1400

• $\chi^2/\text{ndof} = 1.12$ (Isobar 1.14-1.6)

Figure 12. (left) Two-dimensional distribution of the normalised residuals for the Triple-M fit. (right) Distribution of normalised residuals of each bin.

S-wave, isospin 0 and 1

Figure 14. (top) Phase-shifts $\delta_{K^+K^-}^{0I}$ and (bottom) inelasticities η^{0I} as a function of the K^+K^- invariant mass, for both isospin states.

-----> can be used in other process

FSI in 3-body decay

26

• $Br[B \to DD_s^*]$ ~1% \longrightarrow 1000 x $Br[B \to KKK]$

charm rescattering

hadronic loop three-body FSI - introduce new complex structures

Retinha 2019

PCM & M Robilotta PRD 92 094005 (2015) [arXiv:1504.06346] PCM et al PRD 84 094001 (2011) [arXiv:1105.5120]

patricia@if.usp.br

- not well understand on literature
- important as FSI in B two-body decays
- phenomenological amplitude

Antunes, Bediaga, Frederico, PCM

• unitarity of the S-matrix
$$S = \begin{pmatrix} \eta e^{2i\alpha} & \sqrt{1-\eta^2} e^{i(\alpha+\beta)} \\ -\sqrt{1-\eta^2} e^{i(\alpha+\beta)} & \eta e^{2i\beta} \end{pmatrix}$$

• inspired in the damping factor of the S matrix i.e.
$$\pi\pi \to KK$$

 $\eta = N\sqrt{s/s_{th} - 1}/(s/s_{th})^{2.5}$

$$\begin{array}{l} \text{KK: } e^{2i\alpha} = 1 - \frac{2ik_1}{\frac{c}{1 - k_1/k_0} + ik_1}, \ \text{DD: } e^{2i\beta} = 1 - \frac{2ik}{\frac{1}{a} + ik} \\ k = \sqrt{\frac{s - s_{th}}{4}}, \ k_1 = \sqrt{\frac{s - s_{th1}}{4}} \ \text{and} \ k_0 = \sqrt{\frac{s_0 - s_{th}}{4}} \end{array}$$

Donoghue et al., PRL 77(1996)2178; Suzuki, Wolfenstein, PRD 60 (1999)074019; Falk et al. PRD 57,4290(1998); Blok, Gronau, Rosner, PRL 78, 3999 (1997).

$$\bullet T_{\bar{D^0}D^0 \to KK}(s) = \frac{s^{\alpha}}{s_{th\,D\bar{D}}^{\alpha}} \frac{2\kappa_2}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi+\alpha} \left[\left(\frac{c+bk_1^2-ik_1}{c+bk_1^2+ik_1}\right) \left(\frac{\frac{1}{a}+\kappa_2}{\frac{1}{a}-\kappa_2}\right) \right]^{\frac{1}{2}}, \ s < s_{th\,D\bar{D}} \\ = -i \frac{2k_2}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi} \left(\frac{m_0}{s-m_0}\right)^{\beta} \left[\left(\frac{c+bk_1^2-ik_1}{c+bk_1^2+ik_1}\right) \left(\frac{\frac{1}{a}-ik_2}{\frac{1}{a}+ik_2}\right) \right]^{\frac{1}{2}}, \ s \ge s_{th\,D\bar{D}}$$

•
$$T_{\bar{D}^{0}D^{0}\rightarrow KK}(s) = \frac{s^{\alpha}}{s_{th\,D\bar{D}}^{\alpha}} \frac{2\kappa_{2}}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi+\alpha} \left[\left(\frac{c+bk_{1}^{2}-ik_{1}}{c+bk_{1}^{2}+ik_{1}}\right) \left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right) \right]^{\frac{1}{2}}, \ s < s_{th\,D\bar{D}}$$

$$= -i \frac{2k_{2}}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi} \left(\frac{m_{0}}{s-m_{0}}\right)^{\beta} \left[\left(\frac{c+bk_{1}^{2}-ik_{1}}{c+bk_{1}^{2}+ik_{1}}\right) \left(\frac{\frac{1}{a}-ik_{2}}{\frac{1}{a}+ik_{2}}\right) \right]^{\frac{1}{2}}, \ s \ge s_{th\,D\bar{D}}$$

$$Fix by data!$$

28

•
$$T_{\bar{D}^{0}D^{0}\rightarrow KK}(s) = \frac{s^{\alpha}}{s_{th\,D\bar{D}}^{\alpha}} \frac{2\kappa_{2}}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi+\alpha} \left[\left(\frac{c+bk_{1}^{2}-ik_{1}}{c+bk_{1}^{2}+ik_{1}}\right) \left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right) \right]^{\frac{1}{2}}, \ s < s_{th\,D\bar{D}}$$

$$= -i \frac{2k_{2}}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi} \left(\frac{m_{0}}{s-m_{0}}\right)^{\beta} \left[\left(\frac{c+bk_{1}^{2}-ik_{1}}{c+bk_{1}^{2}+ik_{1}}\right) \left(\frac{\frac{1}{a}-ik_{2}}{\frac{1}{a}+ik_{2}}\right) \right]^{\frac{1}{2}}, \ s \ge s_{th\,D\bar{D}}$$
fix by data!

28

$$\bullet T_{\bar{D^0}D^0 \to KK}(s) = \frac{s^{\alpha}}{s_{th\,D\bar{D}}^{\alpha}} \frac{2\kappa_2}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi+\alpha} \left[\left(\frac{c+bk_1^2-ik_1}{c+bk_1^2+ik_1}\right) \left(\frac{\frac{1}{a}+\kappa_2}{\frac{1}{a}-\kappa_2}\right) \right]^{\frac{1}{2}}, \ s < s_{th\,D\bar{D}} \quad \Rightarrow \quad \text{parameters}$$

$$= -i \frac{2k_2}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi} \left(\frac{m_0}{s-m_0}\right)^{\beta} \left[\left(\frac{c+bk_1^2-ik_1}{c+bk_1^2+ik_1}\right) \left(\frac{\frac{1}{a}-ik_2}{\frac{1}{a}+ik_2}\right) \right]^{\frac{1}{2}}, \ s \ge s_{th\,D\bar{D}} \quad \Rightarrow \quad \text{fix by data!}$$

charm rescattering

Retinha 2019

patricia@if.usp.br

•
$$T_{\bar{D}^{0}D^{0}\rightarrow KK}(s) = \frac{s^{\alpha}}{s_{th\,D\bar{D}}^{\alpha}} \frac{2\kappa_{2}}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi+\alpha} \left[\left(\frac{c+bk_{1}^{2}-ik_{1}}{c+bk_{1}^{2}+ik_{1}}\right) \left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right) \right]^{\frac{1}{2}}, \ s < s_{th\,D\bar{D}}$$

$$= -i \frac{2k_{2}}{\sqrt{s_{th\,D\bar{D}}}} \left(\frac{s_{th\,D\bar{D}}}{s+s_{QCD}}\right)^{\xi} \left(\frac{m_{0}}{s-m_{0}}\right)^{\beta} \left[\left(\frac{c+bk_{1}^{2}-ik_{1}}{c+bk_{1}^{2}+ik_{1}}\right) \left(\frac{\frac{1}{a}-ik_{2}}{\frac{1}{a}+ik_{2}}\right) \right]^{\frac{1}{2}}, \ s \ge s_{th\,D\bar{D}}$$
fix by data!

charm rescattering

Retinha 2019

patricia@if.usp.br

28

hadronic loop

hadronic loop

hadronic loop

Final Amplitude

Final Amplitude

Final Amplitude

