## PWA/ATHOS

05/09/2019
Three body dynamics and resonance formation
K.P. Khemchandani

Universidade federal de São Paulo


## Collaborators on the topic (over the years)

- A. Martínez Torres (USP, São Paulo)
-E. Oset (IFIC, Valencia)
- D. Jido (YITP, Kyoto)
- A. Hosaka (RCNP, Osaka)
- Y. Kanada-En'yo (Kyoto univ.)
-L. Geng (Beihang univ, Beijing)
-D. Gamermann(URGS, Rio grande do Sul)
- F. Navarra (USP, São Paulo)
- M. Nielsen (USP, São Paulo)


## Our motivation to study three-body amplitudes

- What our motivation is not:
- binding energy calculations of light nuclei/hypernuclei
- What we are interested in:
- Three-meson or two meson-one baryon systems
- study coupled channel dynamics and look for hadrons arising from three-body dynamics (exotic hadrons)


## Exotic hadrons

- Various possible configurations of (`valence") quarks and gluons are allowed within QCD
- tetraquark/pentaquark
- molecule-like hadrons
- glueballs
- Large census exist on a two-body molecule-like nature for several hadrons:
- $\Lambda(1405)$
- $D_{s}(2317), X(3872)$


## Exotic hadrons

- Under debate:
- $P_{c}(4312), P_{c}(4440), P_{c}(4457)$
- Z(3900)
- $D_{s 1}(2460)$
- Formalism: low-energy (s-wave) interactions, close to threshold.
- Effective field treatment.
- Our focus: if similar " $b$ binding" occurs in three-hadron systems


## Exotic hadrons

- Three-hadron "bound state" :
- $\bar{K} N N, \bar{K} \bar{K} N$ (former case, discussions on deeply bound state, see review A. Gal, E.V. Hungerford, D.J. Millener, Rev.Mod.Phys. 88 (2016), 035004)
- DNN
- $\phi K \bar{K}[\phi(2150)]$


## Exotic hadrons

- Three-hadron "bound state" :
- $\bar{K} N N, \bar{K} \bar{K} N$ (former case, discussions on deeply bound state, see review A. Gal, E.V. Hungerford, D.J. Millener, Rev.Mod.Phys. 88 (2016), 035004)

$\mathrm{IT}_{\mathrm{R}} \mathrm{I}^{2}\left(\mathrm{MeV}^{-4}\right)$

- DNN
- $\phi K \bar{K}[\phi(2150)]$



## Exotic hadrons



## Formalism

- Three-body scattering equations: Faddeev equations


## Lowest order diagrams


(a)

(d)

(b)

(e)

(c)


$$
\begin{aligned}
& T_{1}=t_{1}+t_{1} G\left[T_{2}+T_{3}\right] \\
& T_{2}=t_{2}+t_{2} G\left[T_{1}+T_{3}\right] \\
& T_{3}=t_{3}+t_{3} G\left[T_{1}+T_{2}\right]
\end{aligned}
$$

## Formalism

- Three-body scattering equations: Faddeev equations
- Various methods of solving these equations exist.
- particle-dimer scattering

$$
\begin{aligned}
& T_{1}=t_{1}+t_{1} G\left[T_{2}+T_{3}\right] \\
& T_{2}=t_{2}+t_{2} G\left[T_{1}+T_{3}\right] \\
& T_{3}=t_{3}+t_{3} G\left[T_{1}+T_{2}\right]
\end{aligned}
$$

- separable formulation
- Keeping in mind our interest in low energy scattering:
- we calculate $t_{i}$ by solving Bethe-Salpeter equation obtaining kernel from the lowest Lagrangian


## Formalism

- More diagrams can contribute
- Three-Body contact terms

- We find more contact interactions



## Formalism

- More diagrams can contribute
- Three-Body contact terms

- We find more contact interactions
off-shell part



## Formalism

- More diagrams can contribute
- Three-Body contact terms

- We find more contact interactions
off-shell part



## Formalism

- More diagrams can contribute
- Three-Body contact terms

- We find more contact interactions
off-shell part



## Formalism

- More diagrams can contribute
- Three-Body contact terms

- We find more contact interactions
off-shell part



## Formalism

- Example of cancellation:

(a)


(b)


(c)



## Formalism

- Example of cancellation:

$$
\begin{aligned}
& V_{K^{0} \pi^{0} \rightarrow K^{0} \pi^{0}}= \frac{1}{12 f^{2}}\left[-3 t+\sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
& \begin{aligned}
& V_{K^{0} \pi^{0} \rightarrow K^{0} \eta}=-\frac{1}{12 \sqrt{3} f^{2}}\left[-9 t+8 m_{K}^{2}+m_{\pi}^{2}\right. \\
&\left.+3 m_{\eta}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
& V_{K^{0} \eta K^{0} \eta}=\frac{1}{12 f^{2}}\left[-9 t+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
&+\left.2 m_{\pi}^{2}+3\left(\tilde{k}^{2}-m_{K}^{2}\right)\right] \frac{1}{\tilde{k}^{2}-m_{k}^{2}} \\
& {\left[-3\left(k_{2}-k_{2}^{\prime}\right)^{2}+\left(\tilde{k}^{2}-m_{k}^{2}\right)\right] }
\end{aligned}
\end{aligned}
$$



$$
T=\frac{1}{144 f^{4}}\left[-9\left(k_{3}-k_{3}^{\prime}\right)^{2}+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3\left(\tilde{k}^{2}-m_{K}^{2}\right)\right] \frac{1}{\tilde{k}^{2}-m_{k}^{2}}
$$

## Formalism

- Example of cancellation:

$$
\begin{aligned}
& V_{K^{0} \pi^{0} \rightarrow K^{0} \pi^{0}}=\frac{1}{12 f^{2}}\left[-3 t+\sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
& V_{K^{0} \pi^{0} \rightarrow K^{0} \eta}=-\frac{1}{12 \sqrt{3} f^{2}}\left[-9 t+8 m_{K}^{2}+m_{\pi}^{2}\right. \\
&\left.+3 m_{\eta}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right], \\
& V_{K^{0} \eta K^{0} \eta}=\frac{1}{12 f^{2}}\left[-9 t+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
&+ {\left[\begin{array}{l}
m_{\pi}^{2}+ \\
\\
{\left[-3\left(k_{2}-k_{2}^{\prime}\right)^{2}+\left(\tilde{k}^{2}-m_{k}^{2}\right)\right]}
\end{array}\right.}
\end{aligned}
$$

$$
T=\frac{1}{144 f^{4}}\left[-9\left(k_{3}-k_{3}^{\prime}\right)^{2}+6 m_{\eta}^{2}+2 m_{\pi}^{2}+\quad\right] \frac{1}{\tilde{k}^{2}-m_{k}^{2}}
$$

## Formalism

- Example of cancellation:

$$
T=\frac{1}{144 f^{4}}\left[-9\left(k_{3}-k_{3}^{\prime}\right)^{2}+6 m_{\eta}^{2}+2 m_{\pi}^{2}+\right.
$$

$$
\begin{aligned}
& V_{K^{0} \pi^{0} \rightarrow K^{0} \pi^{0}}=\frac{1}{12 f^{2}}\left[-3 t+\sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
& V_{K^{0} \pi^{0} \rightarrow K^{0} \eta}=-\frac{1}{12 \sqrt{3} f^{2}}\left[-9 t+8 m_{K}^{2}+m_{\pi}^{2}\right. \\
&\left.+3 m_{\eta}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right], \\
& V_{K^{0} \eta K^{0} \eta}=\frac{1}{12 f^{2}}\left[-9 t+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
&+ {\left[2 m_{\pi}^{2}+\right.} \\
& {\left[-3\left(k_{2}-k_{2}^{\prime}\right)^{2}\right.}
\end{aligned}
$$

## Formalism

- Example of cancellation:

$$
\begin{aligned}
& V_{K^{0} \pi^{0} \rightarrow K^{0} \pi^{0}}=\frac{1}{12 f^{2}}\left[-3 t+\sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
& V_{K^{0} \pi^{0} \rightarrow K^{0} \eta}=-\frac{1}{12 \sqrt{3} f^{2}}\left[-9 t+8 m_{K}^{2}+m_{\pi}^{2}\right. \\
&\left.+3 m_{\eta}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right], \\
& V_{K^{0} \eta K^{0} \eta}=\frac{1}{12 f^{2}}\left[-9 t+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
&+\left.2 m_{\pi}^{2}+3\left(\tilde{k}^{2}-m_{K}^{2}\right)\right] \frac{1}{\tilde{k}^{2}-m_{k}^{2}} \\
& {\left[-3\left(k_{2}-k_{2}^{\prime}\right)^{2}\right.}
\end{aligned}
$$



$$
T=\frac{1}{144 f^{4}}\left[-9\left(k_{3}-k_{3}^{\prime}\right)^{2}+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3\left(\tilde{k}^{2}-m_{K}^{2}\right)\right] \frac{1}{\tilde{k}^{2}-m_{k}^{2}}
$$

## Formalism

- Example of cancellation:

$$
T=\frac{1}{144 f^{4}}[
$$

$$
\begin{aligned}
& V_{K^{0} \pi^{0} \rightarrow K^{0} \pi^{0}}=\frac{1}{12 f^{2}}\left[-3 t+\sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
& V_{K^{0} \pi^{0} \rightarrow K^{0} \eta}=-\frac{1}{12 \sqrt{3} f^{2}}\left[-9 t+8 m_{K}^{2}+m_{\pi}^{2}\right. \\
&\left.+3 m_{\eta}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right], \\
& V_{K^{0} \eta K^{0} \eta}=\frac{1}{12 f^{2}}\left[-9 t+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
&\left.+3\left(\tilde{k}^{2}-m_{K}^{2}\right)\right] \frac{1}{\tilde{k}^{2}-m_{k}^{2}} \\
& {\left[-3\left(k_{2}-k_{2}^{\prime}\right)^{2}\right.}
\end{aligned}
$$

## Formalism

- Example of cancellation: $\quad V_{K^{0} \pi^{0} \rightarrow K^{0} \pi^{0}}=\frac{1}{12 f^{2}}\left[-3 t+\sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right]$


$$
\begin{aligned}
V_{K^{0} \pi^{0} \rightarrow K^{0} \eta}= & -\frac{1}{12 \sqrt{3} f^{2}}\left[-9 t+8 m_{K}^{2}+m_{\pi}^{2}\right. \\
& \left.+3 m_{\eta}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right] \\
V_{K^{0} \eta \rightarrow K^{0} \eta}= & \frac{1}{12 f^{2}}\left[-9 t+6 m_{\eta}^{2}+2 m_{\pi}^{2}+3 \sum_{i}\left(k_{i}^{2}-m_{i}^{2}\right)\right]
\end{aligned}
$$

$$
T_{\mathrm{on}}=-\frac{1}{48 f^{4}}\left[-9 \Delta k_{3}^{2}+6 m_{\eta}^{2}+2 m_{\pi}^{2}\right] \frac{\Delta k_{2}^{2}}{\Delta k_{2}^{2}-2 k_{1}^{\prime} \Delta k_{2}}
$$

$$
T_{\mathrm{off}}=\frac{1}{144 f^{4}}\left[-9 \Delta k_{3}^{2}-6 \Delta k_{2}^{2}-6 k_{1}^{\prime} \Delta k_{2}+6 m_{\eta}^{2}+2 m_{\pi}^{2}\right]
$$

## Formalism

## - Example of cancellation:

$$
t_{3}=\frac{1}{6 f^{4}} \Delta k_{1}^{2}-\frac{1}{90 f^{4}}\left(16 m_{K}^{2}+3 m_{\eta}^{2}+m_{\pi}^{2}\right) .
$$

$$
\begin{aligned}
\mathcal{L}_{6 P}= & \frac{1}{360 f^{4}}\left\langle-9 \partial_{\mu} \Phi \Phi \partial^{\mu} \Phi \Phi^{3}+11 \partial_{\mu} \Phi \Phi^{2} \partial^{\mu} \Phi \Phi^{2}-4 \partial_{\mu} \Phi \Phi^{3} \partial^{\mu} \Phi \Phi+2 \partial_{\mu} \Phi \Phi^{4} \partial^{\mu} \Phi-4 \Phi \partial_{\mu} \Phi \Phi^{3} \partial^{\mu} \Phi\right. \\
& +11 \Phi^{2} \partial_{\mu} \Phi \Phi^{2} \partial^{\mu} \Phi-9 \Phi^{3} \partial_{\mu} \Phi \Phi \partial^{\mu} \Phi+6 \partial_{\mu} \Phi \partial^{\mu} \Phi \Phi^{4}+6 \Phi^{4} \partial_{\mu} \Phi \partial^{\mu} \Phi-15 \Phi \partial_{\mu} \Phi \partial^{\mu} \Phi \Phi^{3}+5 \Phi \partial_{\mu} \Phi \Phi \partial^{\mu} \Phi \Phi^{2} \\
& \left.-10 \Phi \partial_{\mu} \Phi \Phi^{2} \partial^{\mu} \Phi \Phi+5 \Phi^{2} \partial_{\mu} \Phi \Phi \partial^{\mu} \Phi \Phi-15 \Phi^{3} \partial_{\mu} \Phi \partial^{\mu} \Phi \Phi+20 \Phi^{2} \partial_{\mu} \Phi \partial^{\mu} \Phi \Phi^{2}-2 M \Phi^{6}\right\rangle .
\end{aligned}
$$

## Formalism

- SUM of all contact like diagrams

$$
\begin{aligned}
\sum_{i=g}^{h} T_{\text {off }}^{(i)}+\sum_{i=b}^{c} t_{3 \text { off }}^{(i)}= & \frac{1}{24 f^{4}}\left[-10 m_{\eta}^{2}-10 m_{\pi}^{2}+2 m_{K}^{2}+5 k_{3} k_{2}^{\prime}+5 k_{2} k_{3}^{\prime}-5 k_{2} k_{3}-5 k_{2}^{\prime} k_{3}^{\prime}+\Delta k_{1}\left(\Delta k_{2}+\Delta k_{3}\right)\right] \\
& +\frac{1}{36 f^{4}}\left(13 m_{K}^{2}+2 m_{\pi}^{2}+6 m_{\eta}^{2}\right)=\frac{1}{24 f^{4}}\left[-10 m_{\eta}^{2}-10 m_{\pi}^{2}+2 m_{K}^{2}-5 \Delta k_{2} \Delta k_{3}-\Delta k_{1}^{2}\right] \\
& +\frac{1}{36 f^{4}}\left(13 m_{K}^{2}+2 m_{\pi}^{2}+6 m_{\eta}^{2}\right),
\end{aligned} r \begin{aligned}
& \sum_{i=a}^{f} T_{\text {off }}^{(i)}+t_{3}^{(a)}=\frac{1}{24 f^{4}}\left(\Delta k_{1}^{2}+5 \Delta k_{2} \Delta k_{3}\right)-\frac{1}{180 f^{4}}\left(32 m_{K}^{2}-9 m_{\eta}^{2}+37 m_{\pi}^{2}\right) \\
&<5 \% \text { of the on } \\
& \sum_{i=a}^{h} T_{\text {off }}^{(i)}+\sum_{i=a}^{c} t_{3 \text { off }}^{(i)}=-\frac{m_{\pi}^{2}}{2 f^{4}} \quad \text { zero in the } \text { chiral limit!! } \quad \text { contribution in }
\end{aligned}
$$

## Formalism

$$
\begin{aligned}
& T_{R}^{12}=t^{1} g^{12} t^{2}+t^{1}\left[G^{121} T_{R}^{21}+G^{123} T_{R}^{23}\right] \\
& T_{R}^{13}=t^{1} g^{13} t^{3}+t^{1}\left[G^{131} T_{R}^{31}+G^{132} T_{R}^{32}\right] \\
& T_{R}^{21}=t^{2} g^{21} t^{1}+t^{2}\left[G^{212} T_{R}^{12}+G^{213} T_{R}^{13}\right] \\
& T_{R}^{23}=t^{2} g^{23} t^{3}+t^{2}\left[G^{231} T_{R}^{31}+G^{232} T_{R}^{32}\right] \\
& T_{R}^{31}=t^{3} g^{31} t^{1}+t^{3}\left[G^{312} T_{R}^{12}+G^{313} T_{R}^{13}\right] \\
& T_{R}^{32}=t^{3} g^{32} t^{2}+t^{3}\left[G^{321} T_{R}^{21}+G^{323} T_{R}^{23}\right]
\end{aligned}
$$

## Six coupled matrix equations

- Solve the Faddeev equations (connected diagrams) using the on shell part of the $t$-matrices.
- Solve Bethe-Salpeter equation in on-shell factorization approach to obtain (coupled channel formalism)


## Formalism

$$
\begin{aligned}
& T_{R}^{12}=t^{1} g^{12} t^{2}+t^{1}\left[G^{121} T_{R}^{21}+G^{123} T_{R}^{23}\right] \\
& T_{R}^{13}=t^{1} g^{13} t^{3}+t^{1}\left[G^{131} T_{R}^{31}+G^{132} T_{R}^{32}\right] \\
& T_{R}^{21}=t^{2} g^{21} t^{1}+t^{2}\left[G^{212} T_{R}^{12}+G^{213} T_{R}^{13}\right] \\
& T_{R}^{23}=t^{2} g^{23} t^{3}+t^{2}\left[G^{231} T_{R}^{31}+G^{232} T_{R}^{32}\right] \\
& T_{R}^{31}=t^{3} g^{31} t^{1}+t^{3}\left[G^{312} T_{R}^{12}+G^{313} T_{R}^{13}\right] \\
& T_{R}^{32}=t^{3} g^{32} t^{2}+t^{3}\left[G^{321} T_{R}^{21}+G^{323} T_{R}^{23}\right] \\
& \qquad g^{i j}\left(\overrightarrow{k_{i}}, \overrightarrow{k_{j}}\right)=\left(\prod_{r=1}^{D} \frac{N_{r}}{2 E_{r}}\right) \overrightarrow{\sqrt{s}-E_{i}\left(\overrightarrow{k_{i}^{\prime}}\right)-E_{l}\left(\overrightarrow{k_{i}^{\prime}}+\overrightarrow{k_{j}}\right)-E_{j}\left(\overrightarrow{k_{j}}\right)}, \\
& \quad l \neq i, l \neq j=1,2,3,
\end{aligned}
$$

$$
G^{i j k}=\int \frac{d^{3} k^{\prime \prime}}{(2 \pi)^{3}} \frac{N_{l}}{2 E_{l}} \frac{N_{m}}{2 E_{m}} \frac{F^{i j k}\left(\sqrt{s}, \overrightarrow{k^{\prime \prime}}\right)}{\sqrt{s_{l m}}-E_{l}\left(\overrightarrow{k^{\prime \prime}}\right)-E_{m}\left(\vec{k}^{\prime \prime}\right)+i \epsilon}
$$

## Formalism

$$
\begin{aligned}
& T_{R}^{12}=t^{1} g^{12} t^{2}+t^{1}\left[G^{121} T_{R}^{21}+G^{123} T_{R}^{23}\right] \\
& T_{R}^{13}=t^{1} g^{13} t^{3}+t^{1}\left[G^{131} T_{R}^{31}+G^{132} T_{R}^{32}\right] \\
& T_{R}^{21}=t^{2} g^{21} t^{1}+t^{2}\left[G^{212} T_{R}^{12}+G^{213} T_{R}^{13}\right] \\
& T_{R}^{23}=t^{2} g^{23} t^{3}+t^{2}\left[G^{231} T_{R}^{31}+G^{232} T_{R}^{32}\right] \\
& T_{R}^{31}=t^{3} g^{31} t^{1}+t^{3}\left[G^{312} T_{R}^{12}+G^{313} T_{R}^{13}\right] \\
& T_{R}^{32}=t^{3} g^{32} t^{2}+t^{3}\left[G^{321} T_{R}^{21}+G^{323} T_{R}^{23}\right] \\
& g^{i j}\left(\overrightarrow{k_{i}}, \overrightarrow{k_{j}}\right)=\left(\prod_{r=1}^{D} \frac{N_{r}}{2 E_{r}}\right) \frac{1}{\sqrt{s}-E_{i}\left(\overrightarrow{k_{i}^{\prime}}\right)-E_{l}\left(\vec{k}_{i}^{\prime}+\overrightarrow{k_{j}}\right)-E_{j}\left(\overrightarrow{k_{j}}\right)}, \\
& l \neq i, l \neq j=1,2,3, \\
& G^{i j k}=\int \frac{d^{3} k^{\prime \prime}}{(2 \pi)^{3}} \frac{N_{l}}{2 E_{l}} \frac{N_{m}}{2 E_{m}} \frac{F^{i j k}\left(\sqrt{s}, \overrightarrow{k^{\prime \prime}}\right)}{\sqrt{s_{l m}}-E_{l}\left(\overrightarrow{k^{\prime \prime}}\right)-E_{m}\left(\vec{k}^{\prime \prime}\right)+i \epsilon} \\
& F^{i j k}=t^{j}\left(\sqrt{s_{\text {int }}}\left(\vec{k}^{\prime \prime}\right)\right)\left(\frac{\left.g^{j k}\right|_{\text {off-shell }}}{\left.g^{j k}\right|_{\text {on-shell }}}\right)\left[t^{j}\left(\sqrt{s_{\text {int }}}\left(\vec{k}_{j^{\prime}}\right)\right)\right]^{-1}
\end{aligned}
$$

## Formalism

- The final three-body t-matrix needs to be projected on an isospin base
- Defined in terms of total isospin and isospin of a two-body subsystem
- Example: $\pi \pi N-\pi K \Lambda-\pi K \Sigma-\pi \eta N$ coupled channels

$$
\begin{aligned}
\left|\pi^{0} \pi^{0} n\right\rangle= & |1,0\rangle \otimes|1,0\rangle \otimes|1 / 2,-1 / 2\rangle \\
= & \left\{\sqrt{\frac{2}{3}}\left|I_{\pi \pi}=2, I_{\pi \pi}^{z}=0\right\rangle-\sqrt{\frac{1}{3}}\left|I_{\pi \pi}=0, I_{\pi \pi}^{z}=0\right\rangle\right\} \\
& \otimes|1 / 2,-1 / 2\rangle \\
= & \sqrt{\frac{2}{5}}\left|I=5 / 2, I_{\pi \pi}=2\right\rangle+\frac{2}{\sqrt{15}}\left|I=3 / 2, I_{\pi \pi}=2\right\rangle \\
& -\sqrt{\frac{1}{3}}\left|I=1 / 2, I_{\pi \pi}=0\right\rangle \\
\left|\pi^{0} \pi^{0} n\right\rangle= & \sqrt{\frac{2}{5}}|5 / 2,2\rangle+\frac{2}{\sqrt{15}}|3 / 2,2\rangle-\sqrt{\frac{1}{3}}|1 / 2,0\rangle
\end{aligned}
$$

## Formalism

$$
\begin{aligned}
\left|\pi^{+} \pi^{-} n\right\rangle= & -\sqrt{\frac{1}{10}}|5 / 2,2\rangle-\sqrt{\frac{1}{15}}|3 / 2,2\rangle \\
& -\sqrt{\frac{1}{3}}|3 / 2,1\rangle-\sqrt{\frac{1}{6}}|1 / 2,1\rangle-\sqrt{\frac{1}{3}}|1 / 2,0\rangle \\
\left|\pi^{-} \pi^{+} n\right\rangle= & -\sqrt{\frac{1}{10}}|5 / 2,2\rangle-\sqrt{\frac{1}{15}}|3 / 2,2\rangle \\
& +\sqrt{\frac{1}{3}}|3 / 2,1\rangle+\sqrt{\frac{1}{6}}|1 / 2,1\rangle-\sqrt{\frac{1}{3}}|1 / 2,0\rangle \\
\left|\pi^{-} \pi^{0} p\right\rangle= & \sqrt{\frac{1}{5}}|5 / 2,2\rangle-\sqrt{\frac{3}{10}}|3 / 2,2\rangle \\
& -\sqrt{\frac{1}{6}}|3 / 2,1\rangle+\sqrt{\frac{1}{3}}|1 / 2,1\rangle \\
\left|\pi^{0} \pi^{-} p\right\rangle= & \sqrt{\frac{1}{5}}|5 / 2,2\rangle-\sqrt{\frac{3}{10}}|3 / 2,2\rangle \\
& +\sqrt{\frac{1}{6}}|3 / 2,1\rangle-\sqrt{\frac{1}{3}}|1 / 2,1\rangle
\end{aligned}
$$

## Formalism

$$
\begin{aligned}
& |5 / 2,2\rangle=\sqrt{\frac{1}{5}}\left(\sqrt{2}\left|\pi^{0} \pi^{0} n\right\rangle+\left|\pi^{0} \pi^{-} p\right\rangle+\left|\pi^{-} \pi^{0} p\right\rangle\right. \\
& \left.-\sqrt{\frac{1}{2}}\left|\pi^{+} \pi^{-} n\right\rangle-\sqrt{\frac{1}{2}}\left|\pi^{-} \pi^{+} n\right\rangle\right) \text {, } \\
& |3 / 2,2\rangle=\sqrt{\frac{1}{15}}\left(2\left|\pi^{0} \pi^{0} n\right\rangle-\frac{3}{\sqrt{2}}\left|\pi^{0} \pi^{-} p\right\rangle-\frac{3}{\sqrt{2}}\left|\pi^{-} \pi^{0} p\right\rangle\right. \\
& \left.-\left|\pi^{+} \pi^{-} n\right\rangle-\left|\pi^{-} \pi^{+} n\right\rangle\right) \text {, } \\
& |1 / 2,0\rangle=-\sqrt{\frac{1}{3}}\left(\left|\pi^{0} \pi^{0} n\right\rangle+\left|\pi^{+} \pi^{-} n\right\rangle+\left|\pi^{-} \pi^{+} n\right\rangle\right) . \\
& N^{*}(1710) \sim \sigma(600) N
\end{aligned}
$$

## Recent applications

- In recent times, focus has widened to charm, bottom hadrons.
- Lots of attention being paid to explicit charm, double charm, etc. systems $\left(T_{c c}, \Xi_{c c}^{+}, \Xi_{c c}^{++}, \Omega_{c c}^{+}, \Xi_{c c} D, \Xi_{c c} D^{*} \Xi_{c c} \Lambda_{c}, \Xi_{c c} \Sigma_{c}\right.$, $\left.B D \bar{D}, B D D, B B B^{*}\right)$
- With data available in $3-5 \mathrm{GeV}$, the non-charm, non-bottom physics can also be explored
- Example: Kaon physics, last kaon listed $\mathrm{K}(3100)$, +25 years ago.
- There is data on processes like $B \rightarrow J / \psi K \pi \pi$


## Recent applications



$$
D-D_{s 0}^{*}(2317)
$$

$D D K, D D_{s} \eta, D D_{s} \pi$
$D K, D_{s} \eta, D_{s} \pi \rightarrow D_{s 0}^{*}(2317)$
$D D \longrightarrow$ Vector meson $D D_{s}$ exchange $t, u$


## Results: Recent applications



## Results: Recent applications

## Effective $D-D_{s 0}^{*}(2317)$

$$
\langle\vec{x} \mid \psi\rangle=\alpha \sqrt{\frac{2}{\pi}} 1=\operatorname{lm}\left[\int_{0}^{\Lambda} d p p \frac{e^{i p r}}{M_{R}-M_{D}-M_{D_{s 0}^{*}}-\frac{p^{2}}{2 \mu}}\right]
$$

$$
\begin{aligned}
& -\left[\left.\frac{d G}{d s}\right|_{s=M_{R}^{2}}\right]^{-1}=64 \pi^{3} \mu B^{2} \alpha^{2} \\
& \sqrt{\left\langle r^{2}\right\rangle} \sim 1.0-1.4 \mathrm{fm}
\end{aligned}
$$

Sanchez, Geng, Lu, Hyodo, Valderrama PRD98, 054001 (2018): 1.0-1.6 fm

Wu, Liu, Geng, Hiyama, Valderrama, Gaussian Expansio Method, arxiv: 1906.11995 [hep-ph].
Gamermann, Nieves, Oset, Arriola, PRD81, 014029 (2010)

## Results: Recent applications

##  <br> $\mathrm{I}=1 / 2,4307 \mathrm{MeV}$, <br> $\Gamma \sim 18 \mathrm{MeV}$



Phys. Lett. B785,
112-117(2018)

## Results: Recent applications



Phys. Lett. B785, 112-117(2018)



## Results: Recent applications


$\mathrm{I}=1 / 2,4307 \mathrm{MeV}$,
$\Gamma \sim 18 \mathrm{MeV}$

Phys. Lett. B785, 112-117(2018)

(a)

$\Gamma_{a} \sim 7 \mathrm{MeV}, \Gamma_{b} \sim \Gamma_{c} \sim 0.5 \mathrm{MeV}$,
$\Gamma_{d} \sim 1 \mathrm{MeV}$
JHEP 1905, 103 (2019)

## Outlook/work in progress:



