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Our motivation to study 
three-body amplitudes

• What our motivation is not:

• binding energy calculations of light nuclei/hypernuclei

• What we are interested in:

• Three-meson or two meson-one baryon systems

• study coupled channel dynamics and look for hadrons 
arising from three-body dynamics  (exotic hadrons)



Exotic hadrons
• Various possible configurations of (``valence”) quarks and gluons 

are allowed within QCD

• tetraquark/pentaquark

• molecule-like hadrons

• glueballs

• Large census exist on a two-body molecule-like nature for several 
hadrons: 

• �

• � , �

Λ(1405)

Ds(2317) X(3872)



Exotic hadrons
• Under debate:

• �

• �

• �

• Formalism: low-energy (s-wave) interactions, close to 
threshold. 

• Effective field treatment.

• Our focus: if similar ``binding’’ occurs in three-hadron systems

Pc(4312), Pc(4440), Pc(4457)

Z(3900)

Ds1(2460)



Exotic hadrons
• Three-hadron ``bound state’’ :

• � , �   (former case, discussions on deeply bound state, 
see review A. Gal, E.V. Hungerford, D.J. Millener, 
Rev.Mod.Phys. 88 (2016), 035004)

• DNN 

• �   [ �  ]

K̄NN K̄K̄N

ϕKK̄ ϕ(2150)
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158 The X(2175) as a φKK̄ molecular state
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Figure 7.2: The φKK̄ squared amplitude in the isospin 0 con-
figuration.

factor
Ffsi = [1 + G̃P R(s)tP R(s)], (7.2)

where tP R is the scattering matrix for φ and f0 and G̃P R(s) is
the loop function of the φ and f0 propagators. For G̃P R we use
the standard formula for two mesons [16] with a cut-off (Λ) of
the order of the sum of the two meson masses, as was the case
in [16], and hence Λ ∼ 2 GeV here. We do not have the tP R,
but in the vicinity of the resonance it must be proportional to
the three-body TR [Eq. (1.114)], implying TP R = αTR. The
proportionality coefficient α is readily obtained using a rela-
tion based on unitarity, Im{T−1

P R} = −Im{G̃P R}, implicit in
Eq. (7.1). Assuming the φf0 channel to be the main source of
Im{TR}, as the experimental study suggests [45,46], we have

Im{T−1
P R} = α−1Im{T−1

R } = −Im{G̃P R} =
kφ

8π
√

s
, (7.3)



Exotic hadrons

7.4 Results 159

which determines α. In Eq. (7.3), kφ is the φ momentum in the
φf0 center of mass system.
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Figure 7.3: The cross section for the e+ e− → φ f0 reaction.
The dashed-dotted line shows the result of the calculation of
the cross section in the plane wave approximation [52]. The
dashed (solid) line shows the result of multiplying the amplitude
from Ref. [52] by the final state interaction factor [Eq. (7.2)]
calculated using a cutoff of 2 (2.5) GeV for the G̃P R(s). The
data, which corresponds to the e+ e− → φ (ππ)I=0 reaction
(triangles for charged pions and boxes for neutral pions), have
been taken from [45,46].

With this information we evaluate the e+ e− → φ f0 pro-
duction cross section taking the results for the φf0 production
in the plane wave approximation from [52], and by multiplying
the final state interaction factor of Eq. (7.2) calculated with our
three-body amplitude. We show the results in Fig.7.3. We can
see that taking a cut-off of the order of 2-2.5 GeV for the G̃P R,
we obtain results for the production cross section which are in
fair agreement with the experimental ones. In order to compare
the results with the experimental cross sections in the X (2175)
mass region, the energy argument of the amplitude TR has been
shifted by ∼ 25 MeV. Note, however, that the difference of 25



Formalism
• Three-body scattering equations: Faddeev equations 
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+ . . .+= +

Fig. 2. The blob in fig. 1, which is a t-matrix.

Fig. 3. Different possible diagrams including two successive interactions.
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Following [37], πN , ηN , KΛ and KΣ are taken as the
coupled channels for the pion-nucleon system. For exam-
ple, for total charge zero eq. (2) is solved with the poten-
tial,

see eq. (6) above

and the tπ0n→π0n element of the resulting matrix is used in
eq. (1) as t2and t1. The two-body propagator, g̃ in eq. (2),
is divergent and is calculated using dimensional regulariza-
tion by taking the subtraction constants from [37], where
the authors find the N∗(1535) as a dynamically generated
resonance in the πN system and its coupled channels.

There are six possible three-body diagrams involving
two t-matrices as shown in fig. 3. To calculate all these dia-
grams, we require the ππ t-matrices also, which have been
obtained by solving the Bethe-Salpeter equation (eq. (2))
with ππ, πη and KK̄ as coupled channels [38,39]. The po-
tentials for these channels have been calculated using the
chiral Lagrangian [33–35,38]

LMM =
1

12f2
⟨(∂µΦΦ −Φ∂µΦ)2+ MΦ4⟩, (7)

where

M =

⎛

⎝

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

⎞

⎠

and mπ, mK are the pion and kaon masses, respectively.
The two-body propagator, g̃, in this case has also been
calculated using the dimensional regularization [39]. A de-
tailed study of these systems has been carried out in [38,
39] which revealed the dynamical generation of the σ and
f0 resonances in the isospin-zero sector and that of the a0

in the isospin-1 sector of these mesons.
All the diagrams in fig. 3 can be expressed mathemati-

cally as tigijtj with i ̸= j = 1, 2, 3. In the above discussion
we have taken one channel, π0π0n, as an example but the
calculations have been carried out by taking five coupled
channels into account. Hence ti, gij and tj are matrices
and each element of the gij-matrix is given by

gij
(

k⃗i
′
,k⃗j

)

=

(

D
∏

r=1

Nr

2Er

)

1
√

s−Ei(k⃗i
′
)−El(k⃗i

′
+k⃗j)−Ej(k⃗j)

,

l ̸= i, l ̸= j = 1, 2, 3, (8)

where D is the number of particles propagating between
two t-matrices. Following the normalization of [40], Nr = 1
for a meson and Nr = 2Mr for a baryon with Mr being

the mass of the baryon and k⃗i
′
(k⃗j) is the momentum of

the i-th (j-th) particle in the final (initial) state.

Lowest order diagrams

T1 = t1 + t1G [T2 + T3]
T2 = t2 + t2G [T1 + T3]
T3 = t3 + t3G [T1 + T2]



Formalism
• Three-body scattering equations: Faddeev equations

• Various methods of solving these equations exist.

• particle-dimer scattering 

• separable formulation

• Keeping in mind our interest in low energy scattering:

• we calculate �  by solving Bethe-Salpeter equation 
obtaining kernel from the lowest Lagrangian

ti

T1 = t1 + t1G [T2 + T3]
T2 = t2 + t2G [T1 + T3]
T3 = t3 + t3G [T1 + T2]



Formalism

• More diagrams can contribute

• Three-Body contact terms

• We find more contact interactions 
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Fig. 14. Source of three-body force from the chiral La-
grangians.

leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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Another important result of this work is that we do
not find any resonant structure in the total isospin I =
3/2 and I = 5/2 configuration. Should we have found the
latter, it would be exotic in the sense that it would not
be possible to construct it with just three quarks. But no
structure is found in this isospin state.

To summarize, we have studied the ππN system in the
s-wave, thus in the Jπ = 1/2+ configuration. We find a
resonance, in three-dimensional plots of the squared am-
plitude versus the total energy and the invariant mass of
a sub-system, at 1704MeV, which can be associated with
the N∗(1710) [1]. Our peak has a full width Γ = 375MeV
to be compared with that of the N∗(1710) which ranges
from 90–500MeV [1]. We find that the invariant mass
of the ππ sub-system falls in the region of the mass of
the σ (500 − i200) when the ππN amplitude peaks at√

s = 1704MeV, which means that the large width of
the N∗(1710) could be related to that of the σ-resonance
formed in the ππ sub-system. No evidence for states with
I = 3/2 and I = 5/2 is found in this work. We also do
not find the Roper resonance in our approach. This should
not be seen as a negative result, but as an evidence that
the structure of the Roper is far more complex than that
envisaged by the ππN interaction in the s-wave, which is
what we have investigated in the present work.

Finally, a last remark to call the attention to the fact
that the agreement with data obtained with the ππN pic-
ture for the N∗(1710) should be interpreted as an indica-
tion that the ππN component is large and dominant in
the wave function of the resonance. It does not exclude
other components like πN or genuine three-quark compo-
nents, but they must be relatively suppressed as compared
to the large ππN one. In the future, one could aim at in-
cluding such additional components in a coupled-channel
formalism. For the time being, the realization of the role
of the two-meson cloud in the structure of the resonance
is a very novel result to which one should pay attention
when exploring other static or dynamical properties of the
resonance.

This work is partly supported by DGICYT contract number
FIS2006-03438, and the Generalitat Valenciana. A.M.T. wishes
to acknowledge support from a FPU fellowship of the Minis-
terio de Educación y Ciencia. This research is part of the EU
Integrated Infrastructure Initiative Hadron Physics Project un-
der contract number RII3-CT-2004-506078, and K.P.K. wishes
to acknowledge direct support from it.

Appendix A.

In this appendix we discuss the three-body interactions
including the off-shell parts of the t-matrices that give rise
to a kind of three-body force which, as we show below, gets
cancelled with the three-body force arising from the chiral
Lagrangian.

Let us consider the lowest-order diagrams, which cor-
respond to the first terms of the TR equations, i.e., tigijtj .
There are six terms of this kind shown in the fig. 3, which

=

(a) (b)

k" k"

Fig. 11. A diagrammatic representation of the t1g13t3 term.
The blob in (a) represents a t-matrix which can be expressed
mathematically as v + vg̃v + vg̃vg̃v + vg̃vg̃vg̃v + . . . . (b) shows
the term (v1g̃1v1g̃1v1)g13(v3g̃3v3g̃3v3) of eq. (A.1).

Fig. 12. An induced effective three-body force generated by
the cancellation of the off-shell part of the potential and a
propagator as explained in the text.

can be expanded in terms of the potentials as

tigijtj =
[

vi + vig̃ivi + vig̃ivig̃ivi + · · ·
]

gij

×
[

vj + vj g̃jvj + vj g̃jvj g̃jvj + · · ·
]

=vigijvj + vig̃ivigijvj + vigijvj g̃jvj + · · · (A.1)

For example, a term of t1g13t3expanded as in eq. (A.1) is
shown in fig. 11.

The potentials in chiral dynamics can be split into an
on-shell part which depends on the center-of-mass energy
of the interacting particles and an off-shell part propor-
tional to p2−m2 for each of the meson legs, in case of the
meson-meson interaction (where p is the four-vector of the
off-shell particle and m is its mass). In case of the meson-
baryon interaction, the off-shell part of the potential be-
haves as p0−k0, where p0(k0) is the energy corresponding
to the off-shell (on-shell) momentum. Due to this behav-
ior, the off-shell part of the potential cancels a propagator
in the loops, giving rise effectively to a three-body force,
for example, the one shown in fig. 12 corresponding to the
t1g13t3 term shown in fig. 11.

Similar effective three-body forces arise from other
terms too. We shall now write the contributions for the
first terms of all six tigijtj terms (eq. (A.1)) including the
off-shell parts of the t-matrices, taking the π+π−n chan-
nel as an example and evaluate the total effect of these
three-body forces.

We label the initial (final) four-momentum of the π+

as p (p ′), that of the π− as k (k ′) and that of the neutron
as q (q ′) as shown in fig. 13. We assign a four-vector k′′

to the intermediate states, see fig. 11.
The potentials calculated from the chiral Lagrangians

eqs. (3), (7) for the three possible two-body interactions
are

Vπ+π−→π+π− = −
1

6f2

[

3sππ −
∑

i

(p2
i − m2

i )

]

, (A.2)

Vπ−n→π−n = −
1

4f2
(k0

π + k′
π

0
), (A.3)



Formalism

• More diagrams can contribute

• Three-Body contact terms

• We find more contact interactions 
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leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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Another important result of this work is that we do
not find any resonant structure in the total isospin I =
3/2 and I = 5/2 configuration. Should we have found the
latter, it would be exotic in the sense that it would not
be possible to construct it with just three quarks. But no
structure is found in this isospin state.

To summarize, we have studied the ππN system in the
s-wave, thus in the Jπ = 1/2+ configuration. We find a
resonance, in three-dimensional plots of the squared am-
plitude versus the total energy and the invariant mass of
a sub-system, at 1704MeV, which can be associated with
the N∗(1710) [1]. Our peak has a full width Γ = 375MeV
to be compared with that of the N∗(1710) which ranges
from 90–500MeV [1]. We find that the invariant mass
of the ππ sub-system falls in the region of the mass of
the σ (500 − i200) when the ππN amplitude peaks at√

s = 1704MeV, which means that the large width of
the N∗(1710) could be related to that of the σ-resonance
formed in the ππ sub-system. No evidence for states with
I = 3/2 and I = 5/2 is found in this work. We also do
not find the Roper resonance in our approach. This should
not be seen as a negative result, but as an evidence that
the structure of the Roper is far more complex than that
envisaged by the ππN interaction in the s-wave, which is
what we have investigated in the present work.

Finally, a last remark to call the attention to the fact
that the agreement with data obtained with the ππN pic-
ture for the N∗(1710) should be interpreted as an indica-
tion that the ππN component is large and dominant in
the wave function of the resonance. It does not exclude
other components like πN or genuine three-quark compo-
nents, but they must be relatively suppressed as compared
to the large ππN one. In the future, one could aim at in-
cluding such additional components in a coupled-channel
formalism. For the time being, the realization of the role
of the two-meson cloud in the structure of the resonance
is a very novel result to which one should pay attention
when exploring other static or dynamical properties of the
resonance.
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Appendix A.

In this appendix we discuss the three-body interactions
including the off-shell parts of the t-matrices that give rise
to a kind of three-body force which, as we show below, gets
cancelled with the three-body force arising from the chiral
Lagrangian.

Let us consider the lowest-order diagrams, which cor-
respond to the first terms of the TR equations, i.e., tigijtj .
There are six terms of this kind shown in the fig. 3, which

=

(a) (b)

k" k"

Fig. 11. A diagrammatic representation of the t1g13t3 term.
The blob in (a) represents a t-matrix which can be expressed
mathematically as v + vg̃v + vg̃vg̃v + vg̃vg̃vg̃v + . . . . (b) shows
the term (v1g̃1v1g̃1v1)g13(v3g̃3v3g̃3v3) of eq. (A.1).

Fig. 12. An induced effective three-body force generated by
the cancellation of the off-shell part of the potential and a
propagator as explained in the text.

can be expanded in terms of the potentials as

tigijtj =
[

vi + vig̃ivi + vig̃ivig̃ivi + · · ·
]

gij

×
[

vj + vj g̃jvj + vj g̃jvj g̃jvj + · · ·
]

=vigijvj + vig̃ivigijvj + vigijvj g̃jvj + · · · (A.1)

For example, a term of t1g13t3expanded as in eq. (A.1) is
shown in fig. 11.

The potentials in chiral dynamics can be split into an
on-shell part which depends on the center-of-mass energy
of the interacting particles and an off-shell part propor-
tional to p2−m2 for each of the meson legs, in case of the
meson-meson interaction (where p is the four-vector of the
off-shell particle and m is its mass). In case of the meson-
baryon interaction, the off-shell part of the potential be-
haves as p0−k0, where p0(k0) is the energy corresponding
to the off-shell (on-shell) momentum. Due to this behav-
ior, the off-shell part of the potential cancels a propagator
in the loops, giving rise effectively to a three-body force,
for example, the one shown in fig. 12 corresponding to the
t1g13t3 term shown in fig. 11.

Similar effective three-body forces arise from other
terms too. We shall now write the contributions for the
first terms of all six tigijtj terms (eq. (A.1)) including the
off-shell parts of the t-matrices, taking the π+π−n chan-
nel as an example and evaluate the total effect of these
three-body forces.

We label the initial (final) four-momentum of the π+

as p (p ′), that of the π− as k (k ′) and that of the neutron
as q (q ′) as shown in fig. 13. We assign a four-vector k′′

to the intermediate states, see fig. 11.
The potentials calculated from the chiral Lagrangians

eqs. (3), (7) for the three possible two-body interactions
are

Vπ+π−→π+π− = −
1

6f2

[

3sππ −
∑

i

(p2
i − m2

i )

]

, (A.2)

Vπ−n→π−n = −
1

4f2
(k0

π + k′
π

0
), (A.3)

off-shell part



Formalism

• More diagrams can contribute

• Three-Body contact terms

• We find more contact interactions 
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n
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n

Fig. 14. Source of three-body force from the chiral La-
grangians.

leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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Another important result of this work is that we do
not find any resonant structure in the total isospin I =
3/2 and I = 5/2 configuration. Should we have found the
latter, it would be exotic in the sense that it would not
be possible to construct it with just three quarks. But no
structure is found in this isospin state.

To summarize, we have studied the ππN system in the
s-wave, thus in the Jπ = 1/2+ configuration. We find a
resonance, in three-dimensional plots of the squared am-
plitude versus the total energy and the invariant mass of
a sub-system, at 1704MeV, which can be associated with
the N∗(1710) [1]. Our peak has a full width Γ = 375MeV
to be compared with that of the N∗(1710) which ranges
from 90–500MeV [1]. We find that the invariant mass
of the ππ sub-system falls in the region of the mass of
the σ (500 − i200) when the ππN amplitude peaks at√

s = 1704MeV, which means that the large width of
the N∗(1710) could be related to that of the σ-resonance
formed in the ππ sub-system. No evidence for states with
I = 3/2 and I = 5/2 is found in this work. We also do
not find the Roper resonance in our approach. This should
not be seen as a negative result, but as an evidence that
the structure of the Roper is far more complex than that
envisaged by the ππN interaction in the s-wave, which is
what we have investigated in the present work.

Finally, a last remark to call the attention to the fact
that the agreement with data obtained with the ππN pic-
ture for the N∗(1710) should be interpreted as an indica-
tion that the ππN component is large and dominant in
the wave function of the resonance. It does not exclude
other components like πN or genuine three-quark compo-
nents, but they must be relatively suppressed as compared
to the large ππN one. In the future, one could aim at in-
cluding such additional components in a coupled-channel
formalism. For the time being, the realization of the role
of the two-meson cloud in the structure of the resonance
is a very novel result to which one should pay attention
when exploring other static or dynamical properties of the
resonance.
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Appendix A.

In this appendix we discuss the three-body interactions
including the off-shell parts of the t-matrices that give rise
to a kind of three-body force which, as we show below, gets
cancelled with the three-body force arising from the chiral
Lagrangian.

Let us consider the lowest-order diagrams, which cor-
respond to the first terms of the TR equations, i.e., tigijtj .
There are six terms of this kind shown in the fig. 3, which

=

(a) (b)

k" k"

Fig. 11. A diagrammatic representation of the t1g13t3 term.
The blob in (a) represents a t-matrix which can be expressed
mathematically as v + vg̃v + vg̃vg̃v + vg̃vg̃vg̃v + . . . . (b) shows
the term (v1g̃1v1g̃1v1)g13(v3g̃3v3g̃3v3) of eq. (A.1).

Fig. 12. An induced effective three-body force generated by
the cancellation of the off-shell part of the potential and a
propagator as explained in the text.

can be expanded in terms of the potentials as

tigijtj =
[

vi + vig̃ivi + vig̃ivig̃ivi + · · ·
]

gij

×
[

vj + vj g̃jvj + vj g̃jvj g̃jvj + · · ·
]

=vigijvj + vig̃ivigijvj + vigijvj g̃jvj + · · · (A.1)

For example, a term of t1g13t3expanded as in eq. (A.1) is
shown in fig. 11.

The potentials in chiral dynamics can be split into an
on-shell part which depends on the center-of-mass energy
of the interacting particles and an off-shell part propor-
tional to p2−m2 for each of the meson legs, in case of the
meson-meson interaction (where p is the four-vector of the
off-shell particle and m is its mass). In case of the meson-
baryon interaction, the off-shell part of the potential be-
haves as p0−k0, where p0(k0) is the energy corresponding
to the off-shell (on-shell) momentum. Due to this behav-
ior, the off-shell part of the potential cancels a propagator
in the loops, giving rise effectively to a three-body force,
for example, the one shown in fig. 12 corresponding to the
t1g13t3 term shown in fig. 11.

Similar effective three-body forces arise from other
terms too. We shall now write the contributions for the
first terms of all six tigijtj terms (eq. (A.1)) including the
off-shell parts of the t-matrices, taking the π+π−n chan-
nel as an example and evaluate the total effect of these
three-body forces.

We label the initial (final) four-momentum of the π+

as p (p ′), that of the π− as k (k ′) and that of the neutron
as q (q ′) as shown in fig. 13. We assign a four-vector k′′

to the intermediate states, see fig. 11.
The potentials calculated from the chiral Lagrangians

eqs. (3), (7) for the three possible two-body interactions
are

Vπ+π−→π+π− = −
1

6f2

[

3sππ −
∑

i

(p2
i − m2

i )

]

, (A.2)

Vπ−n→π−n = −
1

4f2
(k0

π + k′
π

0
), (A.3)

off-shell part

cancel
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Fig. 14. Source of three-body force from the chiral La-
grangians.

leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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Another important result of this work is that we do
not find any resonant structure in the total isospin I =
3/2 and I = 5/2 configuration. Should we have found the
latter, it would be exotic in the sense that it would not
be possible to construct it with just three quarks. But no
structure is found in this isospin state.

To summarize, we have studied the ππN system in the
s-wave, thus in the Jπ = 1/2+ configuration. We find a
resonance, in three-dimensional plots of the squared am-
plitude versus the total energy and the invariant mass of
a sub-system, at 1704MeV, which can be associated with
the N∗(1710) [1]. Our peak has a full width Γ = 375MeV
to be compared with that of the N∗(1710) which ranges
from 90–500MeV [1]. We find that the invariant mass
of the ππ sub-system falls in the region of the mass of
the σ (500 − i200) when the ππN amplitude peaks at√

s = 1704MeV, which means that the large width of
the N∗(1710) could be related to that of the σ-resonance
formed in the ππ sub-system. No evidence for states with
I = 3/2 and I = 5/2 is found in this work. We also do
not find the Roper resonance in our approach. This should
not be seen as a negative result, but as an evidence that
the structure of the Roper is far more complex than that
envisaged by the ππN interaction in the s-wave, which is
what we have investigated in the present work.

Finally, a last remark to call the attention to the fact
that the agreement with data obtained with the ππN pic-
ture for the N∗(1710) should be interpreted as an indica-
tion that the ππN component is large and dominant in
the wave function of the resonance. It does not exclude
other components like πN or genuine three-quark compo-
nents, but they must be relatively suppressed as compared
to the large ππN one. In the future, one could aim at in-
cluding such additional components in a coupled-channel
formalism. For the time being, the realization of the role
of the two-meson cloud in the structure of the resonance
is a very novel result to which one should pay attention
when exploring other static or dynamical properties of the
resonance.
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Appendix A.

In this appendix we discuss the three-body interactions
including the off-shell parts of the t-matrices that give rise
to a kind of three-body force which, as we show below, gets
cancelled with the three-body force arising from the chiral
Lagrangian.

Let us consider the lowest-order diagrams, which cor-
respond to the first terms of the TR equations, i.e., tigijtj .
There are six terms of this kind shown in the fig. 3, which

=

(a) (b)

k" k"

Fig. 11. A diagrammatic representation of the t1g13t3 term.
The blob in (a) represents a t-matrix which can be expressed
mathematically as v + vg̃v + vg̃vg̃v + vg̃vg̃vg̃v + . . . . (b) shows
the term (v1g̃1v1g̃1v1)g13(v3g̃3v3g̃3v3) of eq. (A.1).

Fig. 12. An induced effective three-body force generated by
the cancellation of the off-shell part of the potential and a
propagator as explained in the text.

can be expanded in terms of the potentials as

tigijtj =
[

vi + vig̃ivi + vig̃ivig̃ivi + · · ·
]

gij

×
[

vj + vj g̃jvj + vj g̃jvj g̃jvj + · · ·
]

=vigijvj + vig̃ivigijvj + vigijvj g̃jvj + · · · (A.1)

For example, a term of t1g13t3expanded as in eq. (A.1) is
shown in fig. 11.

The potentials in chiral dynamics can be split into an
on-shell part which depends on the center-of-mass energy
of the interacting particles and an off-shell part propor-
tional to p2−m2 for each of the meson legs, in case of the
meson-meson interaction (where p is the four-vector of the
off-shell particle and m is its mass). In case of the meson-
baryon interaction, the off-shell part of the potential be-
haves as p0−k0, where p0(k0) is the energy corresponding
to the off-shell (on-shell) momentum. Due to this behav-
ior, the off-shell part of the potential cancels a propagator
in the loops, giving rise effectively to a three-body force,
for example, the one shown in fig. 12 corresponding to the
t1g13t3 term shown in fig. 11.

Similar effective three-body forces arise from other
terms too. We shall now write the contributions for the
first terms of all six tigijtj terms (eq. (A.1)) including the
off-shell parts of the t-matrices, taking the π+π−n chan-
nel as an example and evaluate the total effect of these
three-body forces.

We label the initial (final) four-momentum of the π+

as p (p ′), that of the π− as k (k ′) and that of the neutron
as q (q ′) as shown in fig. 13. We assign a four-vector k′′

to the intermediate states, see fig. 11.
The potentials calculated from the chiral Lagrangians

eqs. (3), (7) for the three possible two-body interactions
are

Vπ+π−→π+π− = −
1

6f2

[

3sππ −
∑

i

(p2
i − m2

i )

]

, (A.2)

Vπ−n→π−n = −
1

4f2
(k0

π + k′
π

0
), (A.3)

off-shell part

cancel
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• More diagrams can contribute

• Three-Body contact terms

• We find more contact interactions 
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Fig. 14. Source of three-body force from the chiral La-
grangians.

leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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Another important result of this work is that we do
not find any resonant structure in the total isospin I =
3/2 and I = 5/2 configuration. Should we have found the
latter, it would be exotic in the sense that it would not
be possible to construct it with just three quarks. But no
structure is found in this isospin state.

To summarize, we have studied the ππN system in the
s-wave, thus in the Jπ = 1/2+ configuration. We find a
resonance, in three-dimensional plots of the squared am-
plitude versus the total energy and the invariant mass of
a sub-system, at 1704MeV, which can be associated with
the N∗(1710) [1]. Our peak has a full width Γ = 375MeV
to be compared with that of the N∗(1710) which ranges
from 90–500MeV [1]. We find that the invariant mass
of the ππ sub-system falls in the region of the mass of
the σ (500 − i200) when the ππN amplitude peaks at√

s = 1704MeV, which means that the large width of
the N∗(1710) could be related to that of the σ-resonance
formed in the ππ sub-system. No evidence for states with
I = 3/2 and I = 5/2 is found in this work. We also do
not find the Roper resonance in our approach. This should
not be seen as a negative result, but as an evidence that
the structure of the Roper is far more complex than that
envisaged by the ππN interaction in the s-wave, which is
what we have investigated in the present work.

Finally, a last remark to call the attention to the fact
that the agreement with data obtained with the ππN pic-
ture for the N∗(1710) should be interpreted as an indica-
tion that the ππN component is large and dominant in
the wave function of the resonance. It does not exclude
other components like πN or genuine three-quark compo-
nents, but they must be relatively suppressed as compared
to the large ππN one. In the future, one could aim at in-
cluding such additional components in a coupled-channel
formalism. For the time being, the realization of the role
of the two-meson cloud in the structure of the resonance
is a very novel result to which one should pay attention
when exploring other static or dynamical properties of the
resonance.
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FIS2006-03438, and the Generalitat Valenciana. A.M.T. wishes
to acknowledge support from a FPU fellowship of the Minis-
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Appendix A.

In this appendix we discuss the three-body interactions
including the off-shell parts of the t-matrices that give rise
to a kind of three-body force which, as we show below, gets
cancelled with the three-body force arising from the chiral
Lagrangian.

Let us consider the lowest-order diagrams, which cor-
respond to the first terms of the TR equations, i.e., tigijtj .
There are six terms of this kind shown in the fig. 3, which

=

(a) (b)

k" k"

Fig. 11. A diagrammatic representation of the t1g13t3 term.
The blob in (a) represents a t-matrix which can be expressed
mathematically as v + vg̃v + vg̃vg̃v + vg̃vg̃vg̃v + . . . . (b) shows
the term (v1g̃1v1g̃1v1)g13(v3g̃3v3g̃3v3) of eq. (A.1).

Fig. 12. An induced effective three-body force generated by
the cancellation of the off-shell part of the potential and a
propagator as explained in the text.

can be expanded in terms of the potentials as

tigijtj =
[

vi + vig̃ivi + vig̃ivig̃ivi + · · ·
]

gij

×
[

vj + vj g̃jvj + vj g̃jvj g̃jvj + · · ·
]

=vigijvj + vig̃ivigijvj + vigijvj g̃jvj + · · · (A.1)

For example, a term of t1g13t3expanded as in eq. (A.1) is
shown in fig. 11.

The potentials in chiral dynamics can be split into an
on-shell part which depends on the center-of-mass energy
of the interacting particles and an off-shell part propor-
tional to p2−m2 for each of the meson legs, in case of the
meson-meson interaction (where p is the four-vector of the
off-shell particle and m is its mass). In case of the meson-
baryon interaction, the off-shell part of the potential be-
haves as p0−k0, where p0(k0) is the energy corresponding
to the off-shell (on-shell) momentum. Due to this behav-
ior, the off-shell part of the potential cancels a propagator
in the loops, giving rise effectively to a three-body force,
for example, the one shown in fig. 12 corresponding to the
t1g13t3 term shown in fig. 11.

Similar effective three-body forces arise from other
terms too. We shall now write the contributions for the
first terms of all six tigijtj terms (eq. (A.1)) including the
off-shell parts of the t-matrices, taking the π+π−n chan-
nel as an example and evaluate the total effect of these
three-body forces.

We label the initial (final) four-momentum of the π+

as p (p ′), that of the π− as k (k ′) and that of the neutron
as q (q ′) as shown in fig. 13. We assign a four-vector k′′

to the intermediate states, see fig. 11.
The potentials calculated from the chiral Lagrangians

eqs. (3), (7) for the three possible two-body interactions
are

Vπ+π−→π+π− = −
1

6f2

[

3sππ −
∑

i

(p2
i − m2

i )

]

, (A.2)

Vπ−n→π−n = −
1

4f2
(k0

π + k′
π

0
), (A.3)

off-shell part
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FIG. 4. Faddeev diagrams contributing to the process K0π 0η → K0π 0η with three-meson intermediate states. The vertical lines represent
the tree level amplitudes given in Eqs. (A7)–(A10).

with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
k2
i , we can write these amplitudes as

VK0π0→K0π0 = 1
12f 2

[

−3t +
∑

i

(
k2
i −m2

i

)
]

, (A11)

VK0π0→K0η = − 1

12
√

3f 2

[
−9t + 8m2

K + m2
π

+ 3m2
η + 3

∑

i

(
k2
i −m2

i

)
]

, (A12)

VK0η→K0η = 1
12f 2

[

−9t+6m2
η+2m2

π + 3
∑

i

(
k2
i −m2

i

)
]

,

(A13)

with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as

T (e) = 1
144f 4

[
−9#k3

2 + 6m2
η + 2m2

π + 3
(
k̃2 −m2

K

)]

× 1
k̃2 −m2

K

[
−3#k2

2 +
(
k̃2 −m2

K

)]

≡ T (e)
on + T

(e)
off , (A14)

where #ki ≡ ki −k′
i (i = 1, 2, 3) and with T (e)

on (T (e)
off ) the

contribution which comes from the on-shell (off-shell) part

of the amplitudes:

T (e)
on = − 1

48f 4

[
−9#k3

2 + 6m2
η + 2m2

π

] #k2
2

#k2
2 −2k′

1#k2
,

T
(e)

off = 1
144f 4

[
−9#k3

2 −6#k2
2 −6k′

1#k2 + 6m2
η + 2m2

π

]
.

(A15)

For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:

T
(a)

off = − 1
36f 4

m2
π , (A16)

T
(b)

off = − 1
12f 4

m2
π , (A17)

T
(c)

off = − 1
12f 4

m2
π , (A18)

T
(d)

off = − 1
36f 4

m2
π , (A19)

T
(f )

off = 1
144f 4

[
−9#k3

2 −6#k2
2 + 6k1#k2

+6m2
η + 2m2

π

]
, (A20)

T
(g)

off = 1
144f 4

[
−9(k3 −k′

2)2 −9(k2 −k′
3)2

+ 3
2
{(k1 + k3 −k′

2)2 + (k′
1 + k′

3 −k2)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A21)
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FIG. 4. Faddeev diagrams contributing to the process K0π 0η → K0π 0η with three-meson intermediate states. The vertical lines represent
the tree level amplitudes given in Eqs. (A7)–(A10).

with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
k2
i , we can write these amplitudes as

VK0π0→K0π0 = 1
12f 2
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−3t +
∑
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, (A11)
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K + m2
π
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π + 3
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(
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)
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(A13)

with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as

T (e) = 1
144f 4

[
−9#k3

2 + 6m2
η + 2m2

π + 3
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of the amplitudes:
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For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:
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π
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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with mi the mass of the external particles and t given in terms
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as

T (e) = 1
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as
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For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:

T
(a)

off = − 1
36f 4

m2
π , (A16)

T
(b)

off = − 1
12f 4

m2
π , (A17)

T
(c)

off = − 1
12f 4

m2
π , (A18)

T
(d)

off = − 1
36f 4

m2
π , (A19)

T
(f )

off = 1
144f 4

[
−9#k3

2 −6#k2
2 + 6k1#k2

+6m2
η + 2m2

π

]
, (A20)

T
(g)

off = 1
144f 4

[
−9(k3 −k′

2)2 −9(k2 −k′
3)2

+ 3
2
{(k1 + k3 −k′

2)2 + (k′
1 + k′

3 −k2)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A21)

065205-8
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
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Using Eqs. (A11) and (A13), we calculate, for example, the
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
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i , we can write these amplitudes as
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∑
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
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i , we can write these amplitudes as

VK0π0→K0π0 = 1
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
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s + t + u =
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with mi the mass of the external particles and t given in terms
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A. MARTÍNEZ TORRES, D. JIDO, AND Y. KANADA-EN’YO PHYSICAL REVIEW C 83, 065205 (2011)

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

ηk̃

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

ηk̃

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃ k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃

k1

k2

k3

k1

k3

k2

K0

π0

η

K0

η

π0

k̃ k1

k2

k3

k1

k3

k2

K0

π0

η

K0

η

π0

k̃

(a)

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃

(b () c)

(d () e () f )

(g () h)

FIG. 4. Faddeev diagrams contributing to the process K0π 0η → K0π 0η with three-meson intermediate states. The vertical lines represent
the tree level amplitudes given in Eqs. (A7)–(A10).

with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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with mi the mass of the external particles and t given in terms
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
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Using Eqs. (A11) and (A13), we calculate, for example, the
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A. MARTÍNEZ TORRES, D. JIDO, AND Y. KANADA-EN’YO PHYSICAL REVIEW C 83, 065205 (2011)

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

ηk̃

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

ηk̃

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃ k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃

k1

k2

k3

k1

k3

k2

K0

π0

η

K0

η

π0

k̃ k1

k2

k3

k1

k3

k2

K0

π0

η

K0

η

π0

k̃

(a)

k1

k2

k3

k1

k2

k3

K0

π0

η

K0

π0

η

k̃

(b () c)

(d () e () f )

(g () h)

FIG. 4. Faddeev diagrams contributing to the process K0π 0η → K0π 0η with three-meson intermediate states. The vertical lines represent
the tree level amplitudes given in Eqs. (A7)–(A10).

with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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i , we can write these amplitudes as
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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i , we can write these amplitudes as
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
k2
i , we can write these amplitudes as

VK0π0→K0π0 = 1
12f 2

[

−3t +
∑
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, (A11)
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
k2
i , we can write these amplitudes as

VK0π0→K0π0 = 1
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
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with the Mandelstam variables s = (k1 + k2)2, t = (k1 −k3)2,
and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
k2
i , we can write these amplitudes as

VK0π0→K0π0 = 1
12f 2

[

−3t +
∑

i

(
k2
i −m2

i

)
]

, (A11)

VK0π0→K0η = − 1
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√

3f 2

[
−9t + 8m2
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π
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∑
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,

(A13)

with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as

T (e) = 1
144f 4

[
−9#k3

2 + 6m2
η + 2m2

π + 3
(
k̃2 −m2

K

)]

× 1
k̃2 −m2

K

[
−3#k2

2 +
(
k̃2 −m2

K

)]

≡ T (e)
on + T

(e)
off , (A14)

where #ki ≡ ki −k′
i (i = 1, 2, 3) and with T (e)

on (T (e)
off ) the

contribution which comes from the on-shell (off-shell) part

of the amplitudes:

T (e)
on = − 1

48f 4

[
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2 + 6m2
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π
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#k2
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off = 1
144f 4
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For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:
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π
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∑
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
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where #ki ≡ ki −k′
i (i = 1, 2, 3) and with T (e)

on (T (e)
off ) the

contribution which comes from the on-shell (off-shell) part

of the amplitudes:

T (e)
on = − 1

48f 4

[
−9#k3

2 + 6m2
η + 2m2

π

] #k2
2

#k2
2 −2k′

1#k2
,

T
(e)

off = 1
144f 4

[
−9#k3

2 −6#k2
2 −6k′

1#k2 + 6m2
η + 2m2

π

]
.

(A15)

For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:
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π
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =

∑
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i , we can write these amplitudes as

VK0π0→K0π0 = 1
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
contribution of the diagram Fig. 4(e) as

T (e) = 1
144f 4
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2 + 6m2
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(
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contribution which comes from the on-shell (off-shell) part

of the amplitudes:
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For the rest of diagrams in Fig. 4, analogously to Eq. (A15),
we obtain their off-shell parts:
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and u = (k1 −k4)2 for a process P1P2 → P3P4 with ki the four
momenta of the external particles. Considering the identity
s + t + u =
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with mi the mass of the external particles and t given in terms
of the external momenta involved in the two-body amplitudes
of the diagrams shown in Fig. 4.

Using Eqs. (A11) and (A13), we calculate, for example, the
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we obtain their off-shell parts:
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π +

π −

n

π +

π −

n

Fig. 14. Source of three-body force from the chiral La-
grangians.

leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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FIG. 5. Contact term whose origin stands on the Lagrangian of Eq. (A1) (a) and terms with one-meson and five-meson intermediate states
(b),(c) contributing to the process K0π 0η → K0π 0η.

T
(h)

off = 1
144f 4

[
−9(k2 −k′

3)2 −9(k3 −k′
2)2

+ 3
2
{(k1 + k2 −k′

3)2 + (k′
1 + k′

2 −k3)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A22)

where in Eqs. (A21) and (A22) we have used that k1 + k3 −
k′

2 = k′
1 + k′

3 −k2 and k1 + k2 −k′
3 = k′

1 + k′
2 −k3, respec-

tively.
In accordance with the findings of Refs. [26–28], the

contribution of the off-shell part for the different diagrams
of Fig. 4, together with the corresponding three pseudoscalar
contact terms of the chiral Lagrangian [see Fig. 5(b)], is
expected to vanish under some limit. In case of Refs. [26–28],

the cancellation found was exact in the SU(3) limit. For
this case, a three-pseudoscalar system, we show that the
cancellation is exact under the chiral limit. It is interesting
to notice that for a three-pseudoscalar system, apart from
the mentioned contact term, we can have two more diagrams
which involve one-meson and five-meson intermediate states
with the same initial and final states as those shown in Fig. 4
[see Figs. 5(b) and 5(c)]. In the energy range of interest for
the three-body quasibound state, 1300–1500 MeV, the on-shell
contributions of the diagrams Figs. 5(b) and 5(c) are negligibly
small because they have large energy denominators in the
intermediate states.

Let us now evaluate the contribution from the contact term
of Fig. 5(a). To do that we need to expand the Lagrangian of
Eq. (A1) up to terms involving six pseudoscalar meson fields,
obtaining

L6P = 1
360f 4

⟨−9∂µ$$∂µ$$3 + 11∂µ$$2∂µ$$2 −4∂µ$$3∂µ$$ + 2∂µ$$4∂µ$ −4$∂µ$$3∂µ$

+ 11$2∂µ$$2∂µ$ −9$3∂µ$$∂µ$ + 6∂µ$∂µ$$4 + 6$4∂µ$∂µ$ −15$∂µ$∂µ$$3 + 5$∂µ$$∂µ$$2

−10$∂µ$$2∂µ$$ + 5$2∂µ$$∂µ$$ −15$3∂µ$∂µ$$ + 20$2∂µ$∂µ$$2 −2M$6⟩. (A23)

Taking into account Eq. (A3) particularized for the process
K0π0η → K0π0η and Eqs. (A4), and (A23) adopts the form

La = − 1
180f 4

(
m2

K + m2
π

)
K0K̄0π0π0ηη

+ 1
120f 4

[K0K̄0∂µπ0∂µπ0ηη + 6∂µK0∂µK̄0π0π0ηη

−3K0∂µK̄0∂µπ0π0ηη −3∂µK0K̄0∂µπ0π0ηη

−3K0∂µK̄0π0π0∂µηη −3∂µK0K̄0π0π0∂µηη

+ 4K0K̄0π0∂µπ0∂µηη + K0K̄0π0π0∂µη∂µη].

(A24)

Using Eq. (A24) and taking into account that

%k1 + %k2 + %k3 = 0, (A25)

we get for the diagram of Fig. 5(a) the contribution

t
(a)
3 = 1

6f 4
%k1

2 − 1
90f 4

(
16m2

K + 3m2
η + m2

π

)
. (A26)

The contribution of the diagrams in Figs. 5(b) and 5(c) can
be calculated using the amplitude of Eq. (A12). In particular,
for the diagram in Fig. 5(b) we have

t
(b)
3 = 1

144 · 3f 4

[
−9(k2 + k3)2 + 8m2

K + m2
π + 3m2

η

+ 3
(
k̃2 −m2

K

)] 1
k̃2 −m2

K

[
−9(k′

2 + k′
3)2

+ 8m2
K + m2

π + 3m2
η + 3

(
k̃2 −m2

K

)]

≡ t
(b)
3 on + t

(b)
3 off. (A27)

We are interested only in t
(b)
3 off, which is given by

t
(b)
3 off = 1

144f 4

[
−9(k2 + k3)2 −9

(
k′

2 + k′
3

)2

+ 3
2
{(k1 + k2 + k3)2 + (k′

1 + k′
2 + k′

3)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A28)

where we have used the fact that k1 + k2 + k3 = k′
1 + k′

2 + k′
3.

Similarly, for the diagram in Fig. 5(c) we obtain the off-shell
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(b),(c) contributing to the process K0π 0η → K0π 0η.
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off = 1
144f 4

[
−9(k2 −k′

3)2 −9(k3 −k′
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+ 3
2
{(k1 + k2 −k′

3)2 + (k′
1 + k′

2 −k3)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A22)

where in Eqs. (A21) and (A22) we have used that k1 + k3 −
k′

2 = k′
1 + k′

3 −k2 and k1 + k2 −k′
3 = k′

1 + k′
2 −k3, respec-

tively.
In accordance with the findings of Refs. [26–28], the

contribution of the off-shell part for the different diagrams
of Fig. 4, together with the corresponding three pseudoscalar
contact terms of the chiral Lagrangian [see Fig. 5(b)], is
expected to vanish under some limit. In case of Refs. [26–28],

the cancellation found was exact in the SU(3) limit. For
this case, a three-pseudoscalar system, we show that the
cancellation is exact under the chiral limit. It is interesting
to notice that for a three-pseudoscalar system, apart from
the mentioned contact term, we can have two more diagrams
which involve one-meson and five-meson intermediate states
with the same initial and final states as those shown in Fig. 4
[see Figs. 5(b) and 5(c)]. In the energy range of interest for
the three-body quasibound state, 1300–1500 MeV, the on-shell
contributions of the diagrams Figs. 5(b) and 5(c) are negligibly
small because they have large energy denominators in the
intermediate states.

Let us now evaluate the contribution from the contact term
of Fig. 5(a). To do that we need to expand the Lagrangian of
Eq. (A1) up to terms involving six pseudoscalar meson fields,
obtaining

L6P = 1
360f 4

⟨−9∂µ$$∂µ$$3 + 11∂µ$$2∂µ$$2 −4∂µ$$3∂µ$$ + 2∂µ$$4∂µ$ −4$∂µ$$3∂µ$

+ 11$2∂µ$$2∂µ$ −9$3∂µ$$∂µ$ + 6∂µ$∂µ$$4 + 6$4∂µ$∂µ$ −15$∂µ$∂µ$$3 + 5$∂µ$$∂µ$$2

−10$∂µ$$2∂µ$$ + 5$2∂µ$$∂µ$$ −15$3∂µ$∂µ$$ + 20$2∂µ$∂µ$$2 −2M$6⟩. (A23)

Taking into account Eq. (A3) particularized for the process
K0π0η → K0π0η and Eqs. (A4), and (A23) adopts the form

La = − 1
180f 4

(
m2

K + m2
π

)
K0K̄0π0π0ηη

+ 1
120f 4

[K0K̄0∂µπ0∂µπ0ηη + 6∂µK0∂µK̄0π0π0ηη

−3K0∂µK̄0∂µπ0π0ηη −3∂µK0K̄0∂µπ0π0ηη

−3K0∂µK̄0π0π0∂µηη −3∂µK0K̄0π0π0∂µηη

+ 4K0K̄0π0∂µπ0∂µηη + K0K̄0π0π0∂µη∂µη].

(A24)

Using Eq. (A24) and taking into account that

%k1 + %k2 + %k3 = 0, (A25)

we get for the diagram of Fig. 5(a) the contribution

t
(a)
3 = 1

6f 4
%k1

2 − 1
90f 4

(
16m2

K + 3m2
η + m2

π

)
. (A26)

The contribution of the diagrams in Figs. 5(b) and 5(c) can
be calculated using the amplitude of Eq. (A12). In particular,
for the diagram in Fig. 5(b) we have

t
(b)
3 = 1

144 · 3f 4

[
−9(k2 + k3)2 + 8m2

K + m2
π + 3m2

η

+ 3
(
k̃2 −m2

K

)] 1
k̃2 −m2

K

[
−9(k′

2 + k′
3)2

+ 8m2
K + m2

π + 3m2
η + 3

(
k̃2 −m2

K

)]

≡ t
(b)
3 on + t

(b)
3 off. (A27)

We are interested only in t
(b)
3 off, which is given by

t
(b)
3 off = 1

144f 4

[
−9(k2 + k3)2 −9

(
k′

2 + k′
3

)2

+ 3
2
{(k1 + k2 + k3)2 + (k′

1 + k′
2 + k′

3)2}

+ 13m2
K + 2m2

π + 6m2
η

]
, (A28)

where we have used the fact that k1 + k2 + k3 = k′
1 + k′

2 + k′
3.

Similarly, for the diagram in Fig. 5(c) we obtain the off-shell
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π +

π −

n

π +

π −

n

Fig. 14. Source of three-body force from the chiral La-
grangians.

leading to

T off
e =

1

24f4

[

−k0−p ′0−k ′0+p0−3(p ′+k ′)2
(∆q)0

(∆q)2−2k ·∆q

]

.

(A.24)
For the last diagram of fig. 3 we have

Tf = −
1

24f4
[3(p ′ + k ′)2− (p′′

2− m2
π)]

×
1

p′′2− m2
π

(2p0+ p′′
0− p0) (A.25)

≡ T on
f + T off

f , (A.26)

where

T on
f =−

1

4f4
(p ′ + k ′)2

1

(p ′ + k ′ − k)2− m2
π

p0, (A.27)

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0+3(p ′+k ′)2
p′′0−p0

p′′2−m2
π

]

.

(A.28)

Following the same method

p′′0− p0

p′′2− m2
π

= −
(∆q)0

(∆q)2− 2p · ∆q
. (A.29)

then

T off
f =−

1

24f4

[

−p0−p ′0−k ′0+k0−3(p ′+k ′)2
(∆q)0

(∆q)2−2p · ∆q

]

.

(A.30)
On the other hand, genuine three-body forces also orig-

inate directly from the chiral Lagrangian, where we can
find a contact term as the one shown in fig. 14 [43].

At lowest order in momentum, which we consider in
our study, the interaction Lagrangian between mesons and
baryon is given by

L = i⟨B̄γµ[Γµ, B]⟩, (A.31)

where

Γµ =
1

2
(u†∂µu + u∂µu†), u2= ei

√
2Φ/f (A.32)

and φ, B are same as those in eqs. (4), (5). If we expand
Γµ up to the terms which contain four meson fields, we

get

Γµ =
1

32f4

[

1

3
∂µΦΦ3− Φ∂µΦΦ2+ Φ2∂µΦΦ −

1

3
Φ3∂µΦ

]

.

(A.33)
For the case under consideration, i.e., π+π−n, eq. (A.31)
becomes

L =
i

32f4
n̄

[

1

3
̸ ∂π−π+π−π+ − π− ̸ ∂π+π−π+

+π−π+ ̸ ∂π−π+ −
1

3
π−π+π− ̸ ∂π+

]

n (A.34)

In this way, the contribution of the diagram in fig. 14 is

T3b =
1

24f4
ūr(q⃗

′)(2̸ p − 2̸ k ′ − 2̸ k + 2̸ p ′)ur(q⃗ ). (A.35)

We are interested in the low-energy region, thus, only the
γ0 component of eq. (A.35) is relevant, then

T3b =
1

24f4
(2p0− 2k ′0− 2k0+ 2p ′0). (A.36)

Adding this to the off-shell contributions from the Faddeev
equations at second order in t-matrices, we get

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p+k)2(∆q)0
{

1

(∆q)2+2k ′ ·∆q
−

1

(∆q)2+2p ′ ·∆q

}

+3(p ′+k ′)2(∆q)0
{

1

(∆q)2−2p·∆q
−

1

(∆q)2−2k ·∆q

}]

.

(A.37)

If we consider a small momentum transfer for the baryon,
i.e., |∆q⃗ | ≪ 1, eq. (A.37) can be expressed as

6
∑

i=1

T off
i + T3b =

1

24f4

[

− 4k0+ 4p ′0− 4k ′0+ 4p0

+3(p + k)2
{

1

(∆q)0+ 2k ′0
−

1

(∆q)0+ 2p ′0

}

+3(p ′ + k ′)2
{

1

(∆q)0− 2p0
−

1

(∆q)0− 2k0

}]

. (A.38)

There is a cancellation of the terms in the SU(2) limit, as-
suming equal average energies for the pion. Furthermore,
if the propagators in eq. (A.37) are projected over the
s-wave, as we do in our study, the curly brackets become

{

1

2|⃗k ′| |∆⃗q|
ln

(

(∆q)2+ 2k ′0(∆q)0+ 2|⃗k ′| |∆⃗q|
(∆q)2+ 2k ′0(∆q)0− 2|⃗k ′| |∆⃗q|

)

−
1

2|p⃗ ′| |∆⃗q|
ln

(

(∆q)2+ 2p ′0(∆q)0+ 2|p⃗ ′| |∆⃗q|
(∆q)2+ 2p ′0(∆q)0− 2|p⃗ ′| |∆⃗q|

)}
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part as

t
(c)
3 off = 1

144f 4

[
− 9(k′

2 + k′
3)2 − 9(k2 + k3)2 + 3

2
{(k1 − k′

2 − k′
3)2 + (k′

1 − k2 − k3)2} + 13m2
K + 2m2

π + 6m2
η

]
, (A29)

where we make use that k1 − k′
2 − k′

3 = k′
1 − k2 − k3. Summing Eqs. (A15)–(A20) and using Eq. (A25) we get

f∑

i=a

T
(i)

off = − 1
8f 4

#k1
2 + 5

24f 4
#k2#k3 + 1

36f 4

(
3m2

η − 7m2
π

)
. (A30)

If we add Eqs. (A26) and (A30) we obtain
f∑

i=a

T
(i)

off + t
(a)
3 = 1

24f 4

(
#k1

2 + 5#k2#k3
)
− 1

180f 4

(
32m2

K − 9m2
η + 37m2

π

)
. (A31)

Adding now Eqs. (A21), (A22), (A28), and (A29) we find
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = 1

24f 4

[
− 10m2

η − 10m2
π + 2m2

K + 5k3k
′
2 + 5k2k

′
3 − 5k2k3 − 5k′

2k
′
3 + #k1(#k2 + #k3)

]

+ 1
36f 4

(
13m2

K + 2m2
π + 6m2

η

)
= 1

24f 4

[
− 10m2

η − 10m2
π + 2m2

K − 5#k2#k3 − #k1
2]

+ 1
36f 4

(
13m2

K + 2m2
π + 6m2

η

)
, (A32)

which can be reduced to
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = − 1

24f 4

[
#k1

2 + 5#k2#k3
]
+ 1

36f 4
(16m2

K − 13m2
π − 9m2

η). (A33)

Therefore, summing all the contributions, which is obtained by adding Eqs. (A31) and (A33), we find that the term depending
on #ki gets canceled and there is a mass term remaining, which, using Eq. (A5), reads as

h∑

i=a

T
(i)

off +
c∑

i=a

t
(i)
3 off = − m2

π

2f 4
, (A34)

which vanishes in the chiral limit. In this way we obtain an exact cancellation in the chiral limit.
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A. MARTÍNEZ TORRES, D. JIDO, AND Y. KANADA-EN’YO PHYSICAL REVIEW C 83, 065205 (2011)

part as

t
(c)
3 off = 1

144f 4

[
− 9(k′

2 + k′
3)2 − 9(k2 + k3)2 + 3

2
{(k1 − k′

2 − k′
3)2 + (k′

1 − k2 − k3)2} + 13m2
K + 2m2

π + 6m2
η

]
, (A29)

where we make use that k1 − k′
2 − k′

3 = k′
1 − k2 − k3. Summing Eqs. (A15)–(A20) and using Eq. (A25) we get

f∑

i=a

T
(i)

off = − 1
8f 4

#k1
2 + 5

24f 4
#k2#k3 + 1

36f 4

(
3m2

η − 7m2
π

)
. (A30)

If we add Eqs. (A26) and (A30) we obtain
f∑

i=a

T
(i)

off + t
(a)
3 = 1

24f 4

(
#k1

2 + 5#k2#k3
)
− 1

180f 4

(
32m2

K − 9m2
η + 37m2

π

)
. (A31)

Adding now Eqs. (A21), (A22), (A28), and (A29) we find
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = 1

24f 4

[
− 10m2

η − 10m2
π + 2m2

K + 5k3k
′
2 + 5k2k

′
3 − 5k2k3 − 5k′

2k
′
3 + #k1(#k2 + #k3)

]

+ 1
36f 4

(
13m2

K + 2m2
π + 6m2

η

)
= 1

24f 4

[
− 10m2

η − 10m2
π + 2m2

K − 5#k2#k3 − #k1
2]

+ 1
36f 4

(
13m2

K + 2m2
π + 6m2

η

)
, (A32)

which can be reduced to
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = − 1

24f 4

[
#k1

2 + 5#k2#k3
]
+ 1

36f 4
(16m2

K − 13m2
π − 9m2

η). (A33)
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which vanishes in the chiral limit. In this way we obtain an exact cancellation in the chiral limit.
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part as

t
(c)
3 off = 1

144f 4

[
− 9(k′

2 + k′
3)2 − 9(k2 + k3)2 + 3

2
{(k1 − k′

2 − k′
3)2 + (k′

1 − k2 − k3)2} + 13m2
K + 2m2

π + 6m2
η

]
, (A29)

where we make use that k1 − k′
2 − k′

3 = k′
1 − k2 − k3. Summing Eqs. (A15)–(A20) and using Eq. (A25) we get

f∑

i=a

T
(i)

off = − 1
8f 4

#k1
2 + 5

24f 4
#k2#k3 + 1

36f 4

(
3m2

η − 7m2
π

)
. (A30)

If we add Eqs. (A26) and (A30) we obtain
f∑

i=a

T
(i)

off + t
(a)
3 = 1

24f 4

(
#k1

2 + 5#k2#k3
)
− 1

180f 4

(
32m2

K − 9m2
η + 37m2

π

)
. (A31)

Adding now Eqs. (A21), (A22), (A28), and (A29) we find
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = 1

24f 4

[
− 10m2

η − 10m2
π + 2m2

K + 5k3k
′
2 + 5k2k

′
3 − 5k2k3 − 5k′

2k
′
3 + #k1(#k2 + #k3)

]

+ 1
36f 4

(
13m2

K + 2m2
π + 6m2

η

)
= 1

24f 4

[
− 10m2

η − 10m2
π + 2m2

K − 5#k2#k3 − #k1
2]

+ 1
36f 4

(
13m2

K + 2m2
π + 6m2

η

)
, (A32)

which can be reduced to
h∑

i=g

T
(i)

off +
c∑

i=b

t
(i)
3 off = − 1

24f 4

[
#k1

2 + 5#k2#k3
]
+ 1

36f 4
(16m2

K − 13m2
π − 9m2

η). (A33)

Therefore, summing all the contributions, which is obtained by adding Eqs. (A31) and (A33), we find that the term depending
on #ki gets canceled and there is a mass term remaining, which, using Eq. (A5), reads as

h∑

i=a

T
(i)

off +
c∑

i=a

t
(i)
3 off = − m2

π

2f 4
, (A34)

which vanishes in the chiral limit. In this way we obtain an exact cancellation in the chiral limit.
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Formalism1.4 Reformulation of the Faddeev equations 73

summing all the diagrams with the same last two t-matrices

T 12
R = t1g12t2 + t1

[

G 121 T 21
R + G 123 T 23

R

]

T 13
R = t1g13t3 + t1

[

G 131 T 31
R + G 132 T 32

R

]

T 21
R = t2g21t1 + t2

[

G 212 T 12
R + G 213 T 13

R

]

(1.112)

T 23
R = t2g23t3 + t2

[

G 231 T 31
R + G 232 T 32

R

]

T 31
R = t3g31t1 + t3

[

G 312 T 12
R + G 313 T 13

R

]

T 32
R = t3g32t2 + t3

[

G 321 T 21
R + G 323 T 23

R

]

In Eq. (1.112) all the loop dependence is assembled in the loop
function Gijk, therefore, they are algebraic equations. The T ij

R
partitions consider all the different contributions to the three-
body T - matrix in which the last interactions are given in terms
of the two-body t-matrices tj and ti, respectively. The T ij

R ma-
trices are related to the Faddeev partitions T i through

T i = δ̃3(⃗ki − k⃗ ′
i )t

i +
3
∑

i=1

3
∑

j≠i=1

T ij
R (1.113)

with j ≠ k ≠ i = 1, 2, 3 and δ̃3 (⃗ki− k⃗ ′
i ) ≡

[

(2π)3Ñiδ3(⃗ki − k⃗ ′
i )
]

where

Ñl =

⎧

⎨

⎩

√

2ω(⃗ki)
√

2ω(⃗k′
i) l = 1, 2

(

√

2ω(⃗ki)
√

2ω(⃗k′
i)
)

/
(√

2m3

√

2m′
3

)

l = 3.

The k⃗i (⃗k′
i) is the initial (final) momentum of the particle i.

The subscription R on T ij signifies that these equations do not
contain the terms corresponding to the disconnected diagrams
but are composed of the rest of all the terms for the connected

• Solve the Faddeev equations (connected diagrams) using the on shell part of the 
t-matrices.

• Solve Bethe-Salpeter equation in on-shell factorization approach to obtain 
(coupled channel formalism)

Six coupled matrix 
equations
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In Eq. (1.112) all the loop dependence is assembled in the loop
function Gijk, therefore, they are algebraic equations. The T ij
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partitions consider all the different contributions to the three-
body T - matrix in which the last interactions are given in terms
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trices are related to the Faddeev partitions T i through
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(2π)3Ñiδ3(⃗ki − k⃗ ′
i )
]

where
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)

l = 3.

The k⃗i (⃗k′
i) is the initial (final) momentum of the particle i.

The subscription R on T ij signifies that these equations do not
contain the terms corresponding to the disconnected diagrams
but are composed of the rest of all the terms for the connected
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Fig. 2. The blob in fig. 1, which is a t-matrix.

Fig. 3. Different possible diagrams including two successive interactions.
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1

C

C

C

C

C

C

C

C

C

C

C

A

(6)

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1√
2
Σ0+

1√
6
Λ Σ+ p

Σ− −
1√
2
Σ0+

1√
6
Λ n

Ξ− Ξ0 −
2√
6
Λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (5)

Following [37], πN , ηN , KΛ and KΣ are taken as the
coupled channels for the pion-nucleon system. For exam-
ple, for total charge zero eq. (2) is solved with the poten-
tial,

see eq. (6) above

and the tπ0n→π0n element of the resulting matrix is used in
eq. (1) as t2and t1. The two-body propagator, g̃ in eq. (2),
is divergent and is calculated using dimensional regulariza-
tion by taking the subtraction constants from [37], where
the authors find the N∗(1535) as a dynamically generated
resonance in the πN system and its coupled channels.

There are six possible three-body diagrams involving
two t-matrices as shown in fig. 3. To calculate all these dia-
grams, we require the ππ t-matrices also, which have been
obtained by solving the Bethe-Salpeter equation (eq. (2))
with ππ, πη and KK̄ as coupled channels [38,39]. The po-
tentials for these channels have been calculated using the
chiral Lagrangian [33–35,38]

LMM =
1

12f2
⟨(∂µΦΦ −Φ∂µΦ)2+ MΦ4⟩, (7)

where

M =

⎛

⎝

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

⎞

⎠

and mπ, mK are the pion and kaon masses, respectively.
The two-body propagator, g̃, in this case has also been
calculated using the dimensional regularization [39]. A de-
tailed study of these systems has been carried out in [38,
39] which revealed the dynamical generation of the σ and
f0 resonances in the isospin-zero sector and that of the a0

in the isospin-1 sector of these mesons.
All the diagrams in fig. 3 can be expressed mathemati-

cally as tigijtj with i ̸= j = 1, 2, 3. In the above discussion
we have taken one channel, π0π0n, as an example but the
calculations have been carried out by taking five coupled
channels into account. Hence ti, gij and tj are matrices
and each element of the gij-matrix is given by

gij
(

k⃗i
′
,k⃗j

)

=

(

D
∏

r=1

Nr

2Er

)

1
√

s−Ei(k⃗i
′
)−El(k⃗i

′
+k⃗j)−Ej(k⃗j)

,

l ̸= i, l ̸= j = 1, 2, 3, (8)

where D is the number of particles propagating between
two t-matrices. Following the normalization of [40], Nr = 1
for a meson and Nr = 2Mr for a baryon with Mr being

the mass of the baryon and k⃗i
′
(k⃗j) is the momentum of

the i-th (j-th) particle in the final (initial) state.
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kint
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t3

FIG. 1. Diagrammatic representation of the terms (a) t1g12t2,
(b) t1g(13)t3.

give

T i = tigij tj + tigiktk + tigij tjgjktk + tigij tjgjiti

+ tigiktkgkj tj + tigiktkgkiti + · · · . (3)

The first two terms of the Eq. (3), for the case i = 1, are
represented diagrammatically in Fig. 1, where the t-matrices
are required to be off-shell. However, the chiral amplitudes,
which we use, can be split into an “on-shell” part (obtained
when the only propagating particle of the diagrams, labeled
with k⃗int in Fig. 1, is placed on-shell), which depends only on
the c.m. energy of the interacting pair, and an off-shell part
proportional to the inverse of the propagator of the off-shell
particle. This term would cancel the particle propagator (for
example that of the third particle in Fig. 1(a) resulting in a
three-body force [Fig. 2(a)]. In addition to this, three-body
forces also stem directly from the chiral Lagrangians [19]
[Fig. 2(b)].

We find that the sum of the off-shell parts of all six tigij tj

terms, together with the contribution from Fig. 2(b) cancels
exactly if the SU(3) limit is considered and the momentum
transfer for the baryon is assumed to be small. In a realistic
case we find this sum to be smaller than 5% of the total on-
shell contribution. Hence, only the on-shell part of the two
body (chiral) t-matrices is significant. The diagrams in Fig. 1
can then be expressed mathematically (reading the diagrams
from right to left as a convention) as t1g12t2 and t1g13t3,
respectively, where the ti-matrices depend only on the center
of mass energy of the interacting particles.

The tigij tj terms correspond to the situation where there
are no loops and hence the gij propagators are written in terms
of the on-shell variables

gij =
(

D∏

r=1

Nr

2Er

)
1

√
s −Ei(k⃗′

i) −Ej (k⃗j ) −Ek(k⃗′
i + k⃗j ) + iϵ

with
√

s being the total energy in the global c.m. system.

El =
√
k⃗2
l + m2

l is the total energy of the particle l and Nl

is a normalization constant (Nl = 1 for the meson-meson

FIG. 2. The origin of the three body forces (a) due to cancellation
of the propagator in Fig. 1(a) with the off-shell part of the chiral
amplitude, (b) at the tree level.

interaction and Nl = 2Ml for the meson-baryon interaction,
where Ml is the corresponding baryon mass) and D is the
number of particles propagating between two consecutive
interactions.

These propagators (and all other angle dependent expres-
sions in the formalism) are projected in S-wave. A proper
Lorentz boost has been made for transformation of the
momenta from the center of mass frame of two particles to
the global center of mass frame whenever needed. A technical
remark is here in order: to avoid the evident divergence in
these on-shell propagators at the threshold of a channel and
to continue the Faddeev equations analytically below the
threshold, we fix the momentum of the particle to a minimum
value, Pmin = (for example, 50 MeV). It should be mentioned
that the results are almost insensitive to a change in the value
of the Pmin, since a change in Pmin of ∼40–50% results into a
shift in the peak position by less than 2 MeV.

The first term with a non trivial structure, from the point
of view of the on-shell factorization of the t-matrices in
the Faddeev equations, is the one involving three successive
pair interactions, where a loop function of three particle
propagators appears for the first time. We show the diagrams
with such a structure for the T 1 partition in Figs. 3(a)–3(d).

We write all these tigij tjgjktk terms as tiGijk

(tjgjktk)|on-shell where

Gi j k =
∫

d3k′′

(2π )3

Nl

2El

Nm

2Em

F i j k(
√

s, k⃗′′)
√

slm −El(k⃗′′) −Em(k⃗′′) + iϵ

(4)

with i ̸= j, j ̸= k, i ̸= l ̸= m and
√

slm is the invariant mass
of the (lm) pair. Equation (4) consists of the two particle
propagator in the first cut [shown as a dashed line in
Fig. 3(a) as an example] and the F i j k function, which is
defined as

F i j k = tj (
√

sint(k⃗′′))
(

gjk|off-shell

gjk|on-shell

) [
tj

(√
sint(k⃗j ′)

)]−1
. (5)

sint(k⃗′′) = s −m2
j − 2

√
sEj (k⃗′′) denotes the invariant mass

required to calculate the tj -matrix in the loop integral of
Gijk . The term gjk|−1

on-shell[t
j (

√
sint(k⃗j ′))]−1 appearing in F i j k

of Eq. (5) cancels the (tjgjk)|on-shell of tiGijk(tjgjktk)|on-shell
and produces the tigij tjgjktk term with gij tj depending on the
proper off-shell variable, k⃗′′ of the loop. This procedure allows
us to render the Faddeev equations into a set of algebraic
equations, as we see below. To regularize the integrals of
Eq. (4) we shall use the cut off as in [6,7] which is of the
order of 1 GeV. The results are rather insensitive to this cut
off, due to the convergence of these loops which involve three
propagators.

So far we have discussed diagrams with two or three
t-matrices. It has been shown that the introduction of a third
interaction replaces the propagator g by a loop function G.
The formalism is further developed by making the same
substitution whenever a new interaction is added.
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summing all the diagrams with the same last two t-matrices
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R

]

(1.112)

T 23
R = t2g23t3 + t2

[
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R + G 232 T 32

R

]
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R = t3g31t1 + t3

[
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R

]

T 32
R = t3g32t2 + t3

[
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R

]

In Eq. (1.112) all the loop dependence is assembled in the loop
function Gijk, therefore, they are algebraic equations. The T ij

R
partitions consider all the different contributions to the three-
body T - matrix in which the last interactions are given in terms
of the two-body t-matrices tj and ti, respectively. The T ij

R ma-
trices are related to the Faddeev partitions T i through

T i = δ̃3(⃗ki − k⃗ ′
i )t

i +
3
∑

i=1

3
∑

j≠i=1

T ij
R (1.113)

with j ≠ k ≠ i = 1, 2, 3 and δ̃3 (⃗ki− k⃗ ′
i ) ≡

[

(2π)3Ñiδ3(⃗ki − k⃗ ′
i )
]

where

Ñl =

⎧

⎨

⎩

√

2ω(⃗ki)
√

2ω(⃗k′
i) l = 1, 2

(

√

2ω(⃗ki)
√

2ω(⃗k′
i)
)

/
(√

2m3

√

2m′
3

)

l = 3.

The k⃗i (⃗k′
i) is the initial (final) momentum of the particle i.

The subscription R on T ij signifies that these equations do not
contain the terms corresponding to the disconnected diagrams
but are composed of the rest of all the terms for the connected
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Fig. 3. Different possible diagrams including two successive interactions.
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...
...

...

vK0Σ0→π0n vK0Σ0→π−p vK0Σ0→ηn

...
...

...

vK0Λ→π0n vK0Λ→π−p vK0Λ→ηn

...
...

...

1

C

C

C

C

C

C

C

C

C

C

C

A

(6)

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1√
2
Σ0+

1√
6
Λ Σ+ p

Σ− −
1√
2
Σ0+

1√
6
Λ n

Ξ− Ξ0 −
2√
6
Λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (5)

Following [37], πN , ηN , KΛ and KΣ are taken as the
coupled channels for the pion-nucleon system. For exam-
ple, for total charge zero eq. (2) is solved with the poten-
tial,

see eq. (6) above

and the tπ0n→π0n element of the resulting matrix is used in
eq. (1) as t2and t1. The two-body propagator, g̃ in eq. (2),
is divergent and is calculated using dimensional regulariza-
tion by taking the subtraction constants from [37], where
the authors find the N∗(1535) as a dynamically generated
resonance in the πN system and its coupled channels.

There are six possible three-body diagrams involving
two t-matrices as shown in fig. 3. To calculate all these dia-
grams, we require the ππ t-matrices also, which have been
obtained by solving the Bethe-Salpeter equation (eq. (2))
with ππ, πη and KK̄ as coupled channels [38,39]. The po-
tentials for these channels have been calculated using the
chiral Lagrangian [33–35,38]

LMM =
1

12f2
⟨(∂µΦΦ −Φ∂µΦ)2+ MΦ4⟩, (7)

where

M =

⎛

⎝

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

⎞

⎠

and mπ, mK are the pion and kaon masses, respectively.
The two-body propagator, g̃, in this case has also been
calculated using the dimensional regularization [39]. A de-
tailed study of these systems has been carried out in [38,
39] which revealed the dynamical generation of the σ and
f0 resonances in the isospin-zero sector and that of the a0

in the isospin-1 sector of these mesons.
All the diagrams in fig. 3 can be expressed mathemati-

cally as tigijtj with i ̸= j = 1, 2, 3. In the above discussion
we have taken one channel, π0π0n, as an example but the
calculations have been carried out by taking five coupled
channels into account. Hence ti, gij and tj are matrices
and each element of the gij-matrix is given by

gij
(

k⃗i
′
,k⃗j

)

=

(

D
∏

r=1

Nr

2Er

)

1
√

s−Ei(k⃗i
′
)−El(k⃗i

′
+k⃗j)−Ej(k⃗j)

,

l ̸= i, l ̸= j = 1, 2, 3, (8)

where D is the number of particles propagating between
two t-matrices. Following the normalization of [40], Nr = 1
for a meson and Nr = 2Mr for a baryon with Mr being

the mass of the baryon and k⃗i
′
(k⃗j) is the momentum of

the i-th (j-th) particle in the final (initial) state.
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give

T i = tigij tj + tigiktk + tigij tjgjktk + tigij tjgjiti

+ tigiktkgkj tj + tigiktkgkiti + · · · . (3)

The first two terms of the Eq. (3), for the case i = 1, are
represented diagrammatically in Fig. 1, where the t-matrices
are required to be off-shell. However, the chiral amplitudes,
which we use, can be split into an “on-shell” part (obtained
when the only propagating particle of the diagrams, labeled
with k⃗int in Fig. 1, is placed on-shell), which depends only on
the c.m. energy of the interacting pair, and an off-shell part
proportional to the inverse of the propagator of the off-shell
particle. This term would cancel the particle propagator (for
example that of the third particle in Fig. 1(a) resulting in a
three-body force [Fig. 2(a)]. In addition to this, three-body
forces also stem directly from the chiral Lagrangians [19]
[Fig. 2(b)].

We find that the sum of the off-shell parts of all six tigij tj

terms, together with the contribution from Fig. 2(b) cancels
exactly if the SU(3) limit is considered and the momentum
transfer for the baryon is assumed to be small. In a realistic
case we find this sum to be smaller than 5% of the total on-
shell contribution. Hence, only the on-shell part of the two
body (chiral) t-matrices is significant. The diagrams in Fig. 1
can then be expressed mathematically (reading the diagrams
from right to left as a convention) as t1g12t2 and t1g13t3,
respectively, where the ti-matrices depend only on the center
of mass energy of the interacting particles.

The tigij tj terms correspond to the situation where there
are no loops and hence the gij propagators are written in terms
of the on-shell variables

gij =
(

D∏

r=1

Nr

2Er

)
1

√
s −Ei(k⃗′

i) −Ej (k⃗j ) −Ek(k⃗′
i + k⃗j ) + iϵ

with
√

s being the total energy in the global c.m. system.

El =
√
k⃗2
l + m2

l is the total energy of the particle l and Nl

is a normalization constant (Nl = 1 for the meson-meson

FIG. 2. The origin of the three body forces (a) due to cancellation
of the propagator in Fig. 1(a) with the off-shell part of the chiral
amplitude, (b) at the tree level.

interaction and Nl = 2Ml for the meson-baryon interaction,
where Ml is the corresponding baryon mass) and D is the
number of particles propagating between two consecutive
interactions.

These propagators (and all other angle dependent expres-
sions in the formalism) are projected in S-wave. A proper
Lorentz boost has been made for transformation of the
momenta from the center of mass frame of two particles to
the global center of mass frame whenever needed. A technical
remark is here in order: to avoid the evident divergence in
these on-shell propagators at the threshold of a channel and
to continue the Faddeev equations analytically below the
threshold, we fix the momentum of the particle to a minimum
value, Pmin = (for example, 50 MeV). It should be mentioned
that the results are almost insensitive to a change in the value
of the Pmin, since a change in Pmin of ∼40–50% results into a
shift in the peak position by less than 2 MeV.

The first term with a non trivial structure, from the point
of view of the on-shell factorization of the t-matrices in
the Faddeev equations, is the one involving three successive
pair interactions, where a loop function of three particle
propagators appears for the first time. We show the diagrams
with such a structure for the T 1 partition in Figs. 3(a)–3(d).

We write all these tigij tjgjktk terms as tiGijk

(tjgjktk)|on-shell where

Gi j k =
∫

d3k′′

(2π )3

Nl

2El

Nm

2Em

F i j k(
√

s, k⃗′′)
√

slm −El(k⃗′′) −Em(k⃗′′) + iϵ

(4)

with i ̸= j, j ̸= k, i ̸= l ̸= m and
√

slm is the invariant mass
of the (lm) pair. Equation (4) consists of the two particle
propagator in the first cut [shown as a dashed line in
Fig. 3(a) as an example] and the F i j k function, which is
defined as

F i j k = tj (
√

sint(k⃗′′))
(

gjk|off-shell

gjk|on-shell

) [
tj

(√
sint(k⃗j ′)

)]−1
. (5)

sint(k⃗′′) = s −m2
j − 2

√
sEj (k⃗′′) denotes the invariant mass

required to calculate the tj -matrix in the loop integral of
Gijk . The term gjk|−1

on-shell[t
j (

√
sint(k⃗j ′))]−1 appearing in F i j k

of Eq. (5) cancels the (tjgjk)|on-shell of tiGijk(tjgjktk)|on-shell
and produces the tigij tjgjktk term with gij tj depending on the
proper off-shell variable, k⃗′′ of the loop. This procedure allows
us to render the Faddeev equations into a set of algebraic
equations, as we see below. To regularize the integrals of
Eq. (4) we shall use the cut off as in [6,7] which is of the
order of 1 GeV. The results are rather insensitive to this cut
off, due to the convergence of these loops which involve three
propagators.

So far we have discussed diagrams with two or three
t-matrices. It has been shown that the introduction of a third
interaction replaces the propagator g by a loop function G.
The formalism is further developed by making the same
substitution whenever a new interaction is added.
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The first two terms of the Eq. (3), for the case i = 1, are
represented diagrammatically in Fig. 1, where the t-matrices
are required to be off-shell. However, the chiral amplitudes,
which we use, can be split into an “on-shell” part (obtained
when the only propagating particle of the diagrams, labeled
with k⃗int in Fig. 1, is placed on-shell), which depends only on
the c.m. energy of the interacting pair, and an off-shell part
proportional to the inverse of the propagator of the off-shell
particle. This term would cancel the particle propagator (for
example that of the third particle in Fig. 1(a) resulting in a
three-body force [Fig. 2(a)]. In addition to this, three-body
forces also stem directly from the chiral Lagrangians [19]
[Fig. 2(b)].

We find that the sum of the off-shell parts of all six tigij tj

terms, together with the contribution from Fig. 2(b) cancels
exactly if the SU(3) limit is considered and the momentum
transfer for the baryon is assumed to be small. In a realistic
case we find this sum to be smaller than 5% of the total on-
shell contribution. Hence, only the on-shell part of the two
body (chiral) t-matrices is significant. The diagrams in Fig. 1
can then be expressed mathematically (reading the diagrams
from right to left as a convention) as t1g12t2 and t1g13t3,
respectively, where the ti-matrices depend only on the center
of mass energy of the interacting particles.

The tigij tj terms correspond to the situation where there
are no loops and hence the gij propagators are written in terms
of the on-shell variables

gij =
(

D∏
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)
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of the propagator in Fig. 1(a) with the off-shell part of the chiral
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interaction and Nl = 2Ml for the meson-baryon interaction,
where Ml is the corresponding baryon mass) and D is the
number of particles propagating between two consecutive
interactions.

These propagators (and all other angle dependent expres-
sions in the formalism) are projected in S-wave. A proper
Lorentz boost has been made for transformation of the
momenta from the center of mass frame of two particles to
the global center of mass frame whenever needed. A technical
remark is here in order: to avoid the evident divergence in
these on-shell propagators at the threshold of a channel and
to continue the Faddeev equations analytically below the
threshold, we fix the momentum of the particle to a minimum
value, Pmin = (for example, 50 MeV). It should be mentioned
that the results are almost insensitive to a change in the value
of the Pmin, since a change in Pmin of ∼40–50% results into a
shift in the peak position by less than 2 MeV.

The first term with a non trivial structure, from the point
of view of the on-shell factorization of the t-matrices in
the Faddeev equations, is the one involving three successive
pair interactions, where a loop function of three particle
propagators appears for the first time. We show the diagrams
with such a structure for the T 1 partition in Figs. 3(a)–3(d).

We write all these tigij tjgjktk terms as tiGijk

(tjgjktk)|on-shell where

Gi j k =
∫

d3k′′

(2π )3

Nl

2El

Nm

2Em

F i j k(
√

s, k⃗′′)
√

slm −El(k⃗′′) −Em(k⃗′′) + iϵ

(4)

with i ̸= j, j ̸= k, i ̸= l ̸= m and
√

slm is the invariant mass
of the (lm) pair. Equation (4) consists of the two particle
propagator in the first cut [shown as a dashed line in
Fig. 3(a) as an example] and the F i j k function, which is
defined as

F i j k = tj (
√

sint(k⃗′′))
(

gjk|off-shell

gjk|on-shell

) [
tj

(√
sint(k⃗j ′)

)]−1
. (5)

sint(k⃗′′) = s −m2
j − 2

√
sEj (k⃗′′) denotes the invariant mass

required to calculate the tj -matrix in the loop integral of
Gijk . The term gjk|−1

on-shell[t
j (

√
sint(k⃗j ′))]−1 appearing in F i j k

of Eq. (5) cancels the (tjgjk)|on-shell of tiGijk(tjgjktk)|on-shell
and produces the tigij tjgjktk term with gij tj depending on the
proper off-shell variable, k⃗′′ of the loop. This procedure allows
us to render the Faddeev equations into a set of algebraic
equations, as we see below. To regularize the integrals of
Eq. (4) we shall use the cut off as in [6,7] which is of the
order of 1 GeV. The results are rather insensitive to this cut
off, due to the convergence of these loops which involve three
propagators.

So far we have discussed diagrams with two or three
t-matrices. It has been shown that the introduction of a third
interaction replaces the propagator g by a loop function G.
The formalism is further developed by making the same
substitution whenever a new interaction is added.
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FIG. 3. Different diagrams involving three
pair interactions corresponding to the T 1 partition.

The Faddeev partitions of Eq. (3) in this prescription can
be rewritten as

T i = {tigijtj + tiGijktjgjktk + tiGijitjgjiti + · · ·}
+ {tigiktk + tiGikjtkgkjtj + tiGikitkgkiti + · · ·}

= T
ij
R + T ik

R , (6)

where the T i partition has been rewritten in terms of the two
infinite series T

ij
R and T ik

R , which sum all the diagrams with
the last two interactions written in terms of ti,tj and ti,tk ,
respectively. Hence, we obtain six partitions (which is double
of those in the original Faddeev equations):

T
ij
R = tigijtj + ti

[
GijiT

ji
R + GijkT

jk
R

]
(7)

with i ̸= j ̸= k.
It remains to define the invariant masses on which the two-

body t-matrices and the propagators depend. The expression

for the s12 and s13 obtained from the energy conservation in
terms of the external (on-shell) variables is

sij = s + m2
k −

√
s(

√
s − E1)

(
s23 + m2

k − m2
j

)

s23
(8)

with E1 = (s − s23 + m2
1)/(2

√
s). However, it should be noted

that the t-matrices tj (
√

sint(k⃗′′)) in the loop [Eq. (4)] are
calculated in terms of a running variable as required.

There are two independent variables in the formalism√
s,

√
s23, as a function of which we plot the squared T ∗

R -matrix
(T ∗

R =
∑
ij

(T ij
R − tigijtj )), since the tigijtj terms evidently do

not have a resonance structure and just provide a background
to the amplitudes.

We now report the four isospin one states found in our
study. In Fig. 4, we show a plot of the squared T ∗

R -matrix and
its projection, for ππ" → ππ" in the total isospin I = 1
configuration obtained by keeping the two pions in isospin
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Formalism
• The final three-body t-matrix needs to be projected on an isospin base

• Defined in terms of total isospin and isospin of a two-body subsystem

•  Example: � -� -� -�  coupled channelsππN πKΛ πKΣ πηN
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Fig. 6. The comparison of the modulus square of eq. (19) and
eq. (20) shown as dashed and solid lines, respectively, in units
of 10−15 MeV−6.

and

F2(q⃗2)=g21(q⃗2)=
1

2E1(q⃗2)

M3

E3(q⃗2)

1
√

s13−E1(q⃗2)−E3(q⃗2)
.

(23)
This factorization, which simplifies the calculations to a
great extent, leads to very similar results to those ob-
tained with the concatenated loop function as can be seen
in fig. 6, where we show the mod-square of eq. (19) and
eq. (20) as a function of

√
s, in the energy region of our

interest. The agreement of the results depicted in fig. 6
shows that eq. (19) is a good approximation of eq. (20).
Hence, this scheme is used to write the rest of the higher-
order diagrams which contribute to the three-body ampli-
tude.

If we sum eqs. (1), (13), (18) and all the other possible
diagrams with the last two t-matrices as t2 and t1, we get
the series

t1g12t2 + t1G121t2g21t1 + t1G121t2G212t1g12t2 + · · ·

+t1G123t2g23t3 + t1G123t2G232t3g32t2 + · · · , (24)

which we define as T 12
R . Similarly, we consider all other

possible diagrams obtained by permutating different inter-
actions between the three hadrons and get the following
equations upon summing all the diagrams with the same
last two t-matrices:

T 12
R = t1g12t2 + t1

[

G 121 T 21
R + G 123 T 23

R

]

,

T 13
R = t1g13t3 + t1

[

G 131 T 31
R + G 132 T 32

R

]

,

T 21
R = t2g21t1 + t2

[

G 212 T 12
R + G 213 T 13

R

]

,

T 23
R = t2g23t3 + t2

[

G 231 T 31
R + G 232 T 32

R

]

,

T 31
R = t3g31t1 + t3

[

G 312 T 12
R + G 313 T 13

R

]

,

T 32
R = t3g32t2 + t3

[

G 321 T 21
R + G 323 T 23

R

]

. (25)

These are six coupled equations which are summed to get

TR = T 12
R + T 13

R + T 21
R + T 23

R + T 31
R + T 32

R . (26)

The T ij
R can be related to the Faddeev partitions T i of the

Faddeev equations

T = T 1 + T 2 + T 3 (27)

as
T i = tiδ3(k⃗ ′

i − k⃗i) + T ij
R + T ik

R . (28)

3 Results and discussions

The TR in eq. (26) has been calculated in s-wave for the
coupled channels π0π0n, π+π−n, π−π+n, π0π−p, π−π0p
as a function of

√
s and

√
s23. All the angle-dependent

expressions have thus been projected into the s-wave. The
TR-matrix (eq. (26)) is then projected on the isospin base
defined in terms of the total isospin of the three-body
system, I, and the total isospin of two pions, Iππ, defining
the states as |I, Iππ⟩. These states are obtained assuming
the phase convention for |π+⟩ as −|1, 1⟩. We write the
state |π0π0n⟩, for example, as

|π0π0n⟩ = |1, 0⟩ ⊗ |1, 0⟩ ⊗ |1/2,−1/2⟩

=

{

√

2

3
|Iππ =2, Iz

ππ =0⟩−
√

1

3
|Iππ =0, Iz

ππ =0⟩

}

⊗|1/2,−1/2⟩

=

√

2

5
|I = 5/2, Iππ = 2⟩+

2√
15

|I = 3/2, Iππ =2⟩

−
√

1

3
|I = 1/2, Iππ = 0⟩.

To simplify the notation, we omit the label I and Iππ and
write

|π0π0n⟩ =

√

2

5
|5/2, 2⟩+

2√
15

|3/2, 2⟩−
√

1

3
|1/2, 0⟩. (29)

Similarly,

|π+ π− n⟩ = −
√

1

10
|5/2, 2⟩ −

√

1

15
|3/2, 2⟩

−
√

1

3
|3/2, 1⟩ −

√

1

6
|1/2, 1⟩ −

√

1

3
|1/2, 0⟩,

|π− π+ n⟩ = −
√

1

10
|5/2, 2⟩ −

√

1

15
|3/2, 2⟩

+

√

1

3
|3/2, 1⟩ +

√

1

6
|1/2, 1⟩ −

√

1

3
|1/2, 0⟩,

|π− π0p⟩ =

√

1

5
|5/2, 2⟩ −

√

3

10
|3/2, 2⟩

−
√

1

6
|3/2, 1⟩ +

√

1

3
|1/2, 1⟩,

|π0π− p⟩ =

√

1

5
|5/2, 2⟩ −

√

3

10
|3/2, 2⟩

+

√

1

6
|3/2, 1⟩ −

√

1

3
|1/2, 1⟩. (30)
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and

F2(q⃗2)=g21(q⃗2)=
1

2E1(q⃗2)

M3

E3(q⃗2)

1
√

s13−E1(q⃗2)−E3(q⃗2)
.

(23)
This factorization, which simplifies the calculations to a
great extent, leads to very similar results to those ob-
tained with the concatenated loop function as can be seen
in fig. 6, where we show the mod-square of eq. (19) and
eq. (20) as a function of

√
s, in the energy region of our

interest. The agreement of the results depicted in fig. 6
shows that eq. (19) is a good approximation of eq. (20).
Hence, this scheme is used to write the rest of the higher-
order diagrams which contribute to the three-body ampli-
tude.

If we sum eqs. (1), (13), (18) and all the other possible
diagrams with the last two t-matrices as t2 and t1, we get
the series

t1g12t2 + t1G121t2g21t1 + t1G121t2G212t1g12t2 + · · ·

+t1G123t2g23t3 + t1G123t2G232t3g32t2 + · · · , (24)

which we define as T 12
R . Similarly, we consider all other

possible diagrams obtained by permutating different inter-
actions between the three hadrons and get the following
equations upon summing all the diagrams with the same
last two t-matrices:

T 12
R = t1g12t2 + t1

[

G 121 T 21
R + G 123 T 23

R

]

,

T 13
R = t1g13t3 + t1

[

G 131 T 31
R + G 132 T 32

R

]

,

T 21
R = t2g21t1 + t2

[

G 212 T 12
R + G 213 T 13

R

]

,

T 23
R = t2g23t3 + t2

[

G 231 T 31
R + G 232 T 32

R

]

,

T 31
R = t3g31t1 + t3

[

G 312 T 12
R + G 313 T 13

R

]

,

T 32
R = t3g32t2 + t3

[

G 321 T 21
R + G 323 T 23

R

]

. (25)

These are six coupled equations which are summed to get

TR = T 12
R + T 13

R + T 21
R + T 23

R + T 31
R + T 32

R . (26)

The T ij
R can be related to the Faddeev partitions T i of the

Faddeev equations

T = T 1 + T 2 + T 3 (27)

as
T i = tiδ3(k⃗ ′

i − k⃗i) + T ij
R + T ik

R . (28)

3 Results and discussions

The TR in eq. (26) has been calculated in s-wave for the
coupled channels π0π0n, π+π−n, π−π+n, π0π−p, π−π0p
as a function of

√
s and

√
s23. All the angle-dependent

expressions have thus been projected into the s-wave. The
TR-matrix (eq. (26)) is then projected on the isospin base
defined in terms of the total isospin of the three-body
system, I, and the total isospin of two pions, Iππ, defining
the states as |I, Iππ⟩. These states are obtained assuming
the phase convention for |π+⟩ as −|1, 1⟩. We write the
state |π0π0n⟩, for example, as

|π0π0n⟩ = |1, 0⟩ ⊗ |1, 0⟩ ⊗ |1/2,−1/2⟩

=

{

√

2

3
|Iππ =2, Iz

ππ =0⟩−
√

1

3
|Iππ =0, Iz

ππ =0⟩

}

⊗|1/2,−1/2⟩

=

√

2

5
|I = 5/2, Iππ = 2⟩+

2√
15

|I = 3/2, Iππ =2⟩

−
√

1

3
|I = 1/2, Iππ = 0⟩.

To simplify the notation, we omit the label I and Iππ and
write

|π0π0n⟩ =

√

2

5
|5/2, 2⟩+

2√
15

|3/2, 2⟩−
√

1

3
|1/2, 0⟩. (29)

Similarly,

|π+ π− n⟩ = −
√

1

10
|5/2, 2⟩ −

√

1

15
|3/2, 2⟩

−
√

1

3
|3/2, 1⟩ −

√

1

6
|1/2, 1⟩ −

√

1

3
|1/2, 0⟩,

|π− π+ n⟩ = −
√

1

10
|5/2, 2⟩ −

√

1

15
|3/2, 2⟩

+

√

1

3
|3/2, 1⟩ +

√

1

6
|1/2, 1⟩ −

√

1

3
|1/2, 0⟩,

|π− π0p⟩ =

√

1

5
|5/2, 2⟩ −

√

3

10
|3/2, 2⟩

−
√

1

6
|3/2, 1⟩ +

√

1

3
|1/2, 1⟩,

|π0π− p⟩ =

√

1

5
|5/2, 2⟩ −

√

3

10
|3/2, 2⟩

+

√

1

6
|3/2, 1⟩ −

√

1

3
|1/2, 1⟩. (30)
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Fig. 6. The comparison of the modulus square of eq. (19) and
eq. (20) shown as dashed and solid lines, respectively, in units
of 10−15 MeV−6.

and

F2(q⃗2)=g21(q⃗2)=
1

2E1(q⃗2)

M3

E3(q⃗2)

1
√

s13−E1(q⃗2)−E3(q⃗2)
.

(23)
This factorization, which simplifies the calculations to a
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√
s, in the energy region of our

interest. The agreement of the results depicted in fig. 6
shows that eq. (19) is a good approximation of eq. (20).
Hence, this scheme is used to write the rest of the higher-
order diagrams which contribute to the three-body ampli-
tude.
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R can be related to the Faddeev partitions T i of the

Faddeev equations
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as
T i = tiδ3(k⃗ ′
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R + T ik
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3 Results and discussions

The TR in eq. (26) has been calculated in s-wave for the
coupled channels π0π0n, π+π−n, π−π+n, π0π−p, π−π0p
as a function of

√
s and

√
s23. All the angle-dependent

expressions have thus been projected into the s-wave. The
TR-matrix (eq. (26)) is then projected on the isospin base
defined in terms of the total isospin of the three-body
system, I, and the total isospin of two pions, Iππ, defining
the states as |I, Iππ⟩. These states are obtained assuming
the phase convention for |π+⟩ as −|1, 1⟩. We write the
state |π0π0n⟩, for example, as

|π0π0n⟩ = |1, 0⟩ ⊗ |1, 0⟩ ⊗ |1/2,−1/2⟩

=

{
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}
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=

√

2

5
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|I = 3/2, Iππ =2⟩

−
√

1
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|I = 1/2, Iππ = 0⟩.

To simplify the notation, we omit the label I and Iππ and
write

|π0π0n⟩ =

√

2
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|5/2, 2⟩+

2√
15

|3/2, 2⟩−
√

1

3
|1/2, 0⟩. (29)

Similarly,

|π+ π− n⟩ = −
√

1

10
|5/2, 2⟩ −

√

1

15
|3/2, 2⟩

−
√

1

3
|3/2, 1⟩ −

√

1

6
|1/2, 1⟩ −

√

1

3
|1/2, 0⟩,

|π− π+ n⟩ = −
√

1

10
|5/2, 2⟩ −

√

1

15
|3/2, 2⟩

+

√

1

3
|3/2, 1⟩ +

√

1

6
|1/2, 1⟩ −

√

1

3
|1/2, 0⟩,

|π− π0p⟩ =

√

1

5
|5/2, 2⟩ −

√

3

10
|3/2, 2⟩

−
√

1

6
|3/2, 1⟩ +

√

1

3
|1/2, 1⟩,

|π0π− p⟩ =

√

1

5
|5/2, 2⟩ −

√

3

10
|3/2, 2⟩

+

√

1

6
|3/2, 1⟩ −

√

1

3
|1/2, 1⟩. (30)



K.P. Khemchandani et al.: The N∗(1710) as a resonance in the ππN system 239

 1400 1600 1800 2000 2200 2400
s (MeV)

 1200
 1300

 1400
 1500

 1600

s23 (MeV)

 0.4

 0.8

 1.2

 1.6

|T*
R|2 (10-9 MeV-6)

√

√

Fig. 7. The squared amplitude for the ππN system in isospin-
1/2 configuration as a function of

√
s and

√
s23.

 1300 1500 1700 1900 2100 2300

√s (MeV)

 1200

 1300

 1400

 1500

 1600

√s23 (MeV)

Fig. 8. The projection of the amplitude shown in fig. 7.

From eqs. (30), one can obtain

|5/2, 2⟩ =

√

1

5

(√
2|π0π0n⟩ + |π0π− p⟩ + |π− π0p⟩

−
√

1

2
|π+ π− n⟩ −

√

1

2
|π− π+ n⟩

)

,

|3/2, 2⟩ =

√

1

15

(

2|π0π0n⟩ −
3√
2
|π0π− p⟩ −

3√
2
|π− π0p⟩

−|π+ π− n⟩ − |π− π+ n⟩
)

,

|1/2, 0⟩ = −
√

1

3

(

|π0π0n⟩ + |π+ π− n⟩ + |π− π+ n⟩
)

.

One could equivalently define the states in terms of
the total isospin and the isospin of a pion-nucleon sub-
system (IπN ) by repeating the former procedure or using
the Racah coefficients for the transformation of |I, Iππ⟩
states to |I, IπN ⟩ states.

In fig. 7 we show the squared amplitude |T ∗
R|2 =

|TR−
∑3

i≠j=1 tigijtj |2 for the ππN system, calculated in s-
wave and projected on the isospin base |I, Iππ⟩ = |1/2, 0⟩.
The

∑

tgt has been subtracted out of the TR (follow-
ing [25]) since it does not give rise to any three-body
structure and only provides a background to the ampli-
tude. The squared amplitude shown in fig. 7 has a peak
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Fig. 9. The same as shown in fig. 7 but as a function of the
ππ invariant mass and that of the πN system.
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Fig. 10. The projection of the amplitude shown in fig. 9.

at
√

s = 1704MeV, with a full width at half maximum of
375MeV (see also fig. 8). These results are in good agree-
ment with the characteristics of the N∗(1710) [1] and,
hence, we relate the resonance shown in fig. 7 with the
N∗(1710). To get further physical meaning of this peak,
we show the same amplitude depicted in fig. 7, but as a
function of

√
s23 and

√
s12 in fig. 9. The peak in

√
s12

is very wide (width ∼ 270MeV) and is in the energy re-
gion of the σ-resonance (see also fig. 10). This means that
the N∗(1710) has a large ππN component where the ππ
sub-system rearranges itself as the σ-resonance.

Although we find evidence for the N∗(1710), this work
fails to find any clear trace of the Roper resonance, which
means that considering the ππN system in the s-wave
interaction does not suffice to generate the Roper reso-
nance, which is not surprising. Other works such as the
Juelich model [21], which successfully describes the dy-
namical generation of the Roper resonance, contains ad-
ditional information on the πN , π∆, ρN coupled chan-
nels and σN forces beyond the three-body contact term
of the chiral Lagrangians which we include here and which
cancels the off-shell dependence of the amplitudes. An im-
portant contribution of the π∆ channel and ππ final-state
interaction (with one of the pions coming from the decay
of the ∆-resonance) to the Roper resonance has also been
claimed in [42]. Such information is not present in our for-
malism. Things are different in the case of the N∗(1710)
with its large empirical coupling to ππN and weaker to
πN and other coupled channels.
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Recent applications
• In recent times, focus has widened to charm, bottom hadrons. 

• Lots of attention being paid to explicit charm, double charm, 
etc. systems (� , � , 
� )

• With data available in 3-5 GeV, the non-charm, non-bottom 
physics can also be explored

• Example: Kaon physics, last kaon listed K(3100), +25 years ago.

• There is data on processes like �

Tcc, Ξ+
cc, Ξ++

cc , Ω+
cc ΞccD, ΞccD* ΞccΛc, ΞccΣc

BDD̄, BDD, BBB*

B → J/ψKππ



Recent applications

DD

K K

D D̄*

!D − D*s0(2317) DD*K → DD̄*K

DK, Dsη, Dsπ D*s0(2317)
DD
DDs

Vector meson  
exchange t, u  
channels

DDK, DDsη, DDsπ K K

X(3872)/
Zc(3900)

X(3872)/
Zc(3900)



DD

K

III. RESULTS

In Fig. 2 we show the modulus squared three-body amplitude, |TR|2, for the process DDK !

DDK for total isospin I = 1/2 and I23 = 0, as a function of the energy of the three-body

system,
p
s, and the invariant mass

p
s23 of one of the DK subsystems. As can be seen, a peak at

FIG. 2. Modulus squared of the TR-matrix related to the process DDK ! DDK in the (I, I23) = (1/2, 0)

configuration.

p
s = 4140 MeV is found when the invariant mass of the DK subsystem in isospin 0 is ⇠ 2318

MeV, which corresponds to the mass of the D⇤
s0(2317) formed in the subsystem. This result

is in line with the one found in Ref. [44], in which the two body D � D⇤
s0(2317) system was

studied without explicitly considering the three-body dynamics involved. Note that in Ref. [44]

two descriptions were taken into account for D⇤
s0(2317): as a compact cs̄ state and as a DK

bound state. In both cases, predictions for the existence of a D � D⇤
s0 state were made. However,

as mentioned by the authors, the uncertainty involved in the former description is larger than in

the latter case. In the present work, we have considered that the properties of D⇤
s0(2317) are

predominantly understood in terms of the DK and Ds⌘ interactions, as indicated from recent

lattice studies and theoretical calculations [43, 68–70].

The result shown in Fig. 2 implies that a state with charm 2, strangeness +1, and isospin 1/2 is

formed as a consequence of the dynamics involved in the system. It is interesting to notice that the

DD pair alone do not form a bound state, but adding a Kaon to the system binds it and produces an

10

I=1/2, 4140 MeV

Phys. Rev. D99, 
076017 (2019)
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this work. One relevant property is the size of such an
exotic state. It is important to know if the state is compact,
since the interaction in two subsystems is attractive. Or,
knowing that adding a charm meson to a kaon produces
D!

s0ð2317Þ, which is a molecule like state, does adding a D
to such a system leads to an extended object. One way to
answer this question would be to solve the Faddeev
equations in the configuration space, as done in
Refs. [54,73,74], which, however, is out of the scope of
this work. Alternatively, we could treat the state found here
as a D −D!

s0ð2317Þ state of mass MR to estimate the mean
square distance among the constituent hadrons. For this,
following Refs. [75–77], on one hand, we can write the
wave function hx⃗jψi of the state generated as a conse-
quence of the DD!

s0 dynamics, as

hx⃗jψi¼α

ffiffiffi
2

π

r
1

r
Im

"Z
Λ

0
dpp

eipr

MR−MD−MD!
s0
−p2

2μ

#
; ð21Þ

with μ being the reduced mass of the system. On the other
hand, we can write the DD!

s0 T-matrix in the Breit-Wigner
form as

TDDsðsÞ ¼
g2

s −M2
Rþ iΓRMR

; ð22Þ

with ΓRbeing the width of the state and here s corresponds
to the center of mass energy of the DD!

s0 system. The
quantum mechanical coupling α in Eq. (21) and the field
theoretical coupling g in Eq. (22) are related through

g2 ¼ −
"
dG
ds

$$$$
s¼M2

R

#−1
¼ 64π3μB 2α2; ð23Þ

where GðsÞ and B are, respectively, the loop function and
binding energy [with respect to the D −D!

s0ð2317Þ thresh-
old] of the DD!

s0ð2317Þ system,

GðsÞ¼
Z

Λ

0

dp
ð2πÞ2

p2
EDþED!

s0

EDED!
s0
½s−ðE DþED!

s0
Þ2þ iϵ'

; ð24Þ

E i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q
: ð25Þ

In Eq. (24), Λ ∼ 700–1000 MeV corresponds to the cutoff
used to regularize the DD!

s0ð2317Þ loop GðsÞ of Eq. (24)
when solving the scattering problem DD!

s0ð2317Þ →
DD!

s0ð2317Þ. As discussed in Ref. [75], the value of α
obtained from Eq. (23) has a very smooth dependence on
the cutoff Λ, so it is mostly determined by the binding
energy.

Using the wave function in Eq. (21), and varying
Λ ∼ 700–1000 MeV, we can determine the mean square
distance hr2i for the system, and we get

ffiffiffiffiffiffiffiffi
hr2i

q
∼ 1.0–1.4 fm: ð26Þ

This result when compared with the mean square distance
for theDK bound stateD!

s0ð2317Þ,
ffiffiffiffiffiffiffiffi
hr2i

p
∼ 0.7 fm [78], is

about 1.4–2 times larger. We can also compare Eq. (26)
with the corresponding value obtained in Ref. [44],
∼1.0–1.6 fm, and conclude that both results are
compatible.
A question might arise about the possibility of exper-

imental investigations of the state found in the present work
and how its three-body nature can be confirmed in experi-
ments. The recent detection of a charm þ2 baryon by the
LHCb collaboration [10], and the search of the double
charm tetraquark Tcc state in heavy ion collisions [79],
indicate that the detection of the Rþþ state can be
accomplished. A signal for the state Rþþ should be looked
for in systems like Dþ

s D!þ, DþD!þ
s , since it can decay to

such channels, as shown in Fig. 3, or in three-body
channels like DDsγ, DDsπ, where the invariant mass of
Dsγ and Dsπ should be compatible with the formation of
the D!

s0ð2317Þ. These decay widths depend on the under-
lying structure of the decaying particle through the cou-
pling constants ofRþþ toD!

s0ð2317ÞD and ofD!
s0ð2317Þ to

DK, Dsη, Dγ, etc., thus, the values obtained for the widths
will be a clear projection of the underlying three-body
dynamics considered in the present work. A theoretical
calculation of such processes is currently in progress and
should be reported shortly. Similarly, the three-body nature
of theRþþ state has its implications on the size of the state,
and as we have shown in this work, the mean square
distance can be around a factor 1.4–2 bigger than that of
D!

s0ð2317Þ. The size of Rþþ can be investigated by
determining the value of the production yield of the state
in heavy ion collisions, where molecular states have bigger
production yields as compared to compact bound quark
states [79]. A precise determination of the production yield
of Rþþ in heavy ion collisions should also be obtained in
future works.
Finally, we must mention that we have also calculated

the total isospin 3=2 three-body T-matrix and we find no
states formed.
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this work. One relevant property is the size of such an
exotic state. It is important to know if the state is compact,
since the interaction in two subsystems is attractive. Or,
knowing that adding a charm meson to a kaon produces
D!

s0ð2317Þ, which is a molecule like state, does adding a D
to such a system leads to an extended object. One way to
answer this question would be to solve the Faddeev
equations in the configuration space, as done in
Refs. [54,73,74], which, however, is out of the scope of
this work. Alternatively, we could treat the state found here
as a D −D!

s0ð2317Þ state of mass MR to estimate the mean
square distance among the constituent hadrons. For this,
following Refs. [75–77], on one hand, we can write the
wave function hx⃗jψi of the state generated as a conse-
quence of the DD!

s0 dynamics, as

hx⃗jψi¼α

ffiffiffi
2

π

r
1

r
Im

"Z
Λ

0
dpp

eipr

MR−MD−MD!
s0
−p2

2μ

#
; ð21Þ

with μ being the reduced mass of the system. On the other
hand, we can write the DD!

s0 T-matrix in the Breit-Wigner
form as

TDDsðsÞ ¼
g2

s −M2
Rþ iΓRMR

; ð22Þ

with ΓRbeing the width of the state and here s corresponds
to the center of mass energy of the DD!

s0 system. The
quantum mechanical coupling α in Eq. (21) and the field
theoretical coupling g in Eq. (22) are related through
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¼ 64π3μB 2α2; ð23Þ
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In Eq. (24), Λ ∼ 700–1000 MeV corresponds to the cutoff
used to regularize the DD!

s0ð2317Þ loop GðsÞ of Eq. (24)
when solving the scattering problem DD!

s0ð2317Þ →
DD!

s0ð2317Þ. As discussed in Ref. [75], the value of α
obtained from Eq. (23) has a very smooth dependence on
the cutoff Λ, so it is mostly determined by the binding
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Using the wave function in Eq. (21), and varying
Λ ∼ 700–1000 MeV, we can determine the mean square
distance hr2i for the system, and we get
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This result when compared with the mean square distance
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s0ð2317Þ,
ffiffiffiffiffiffiffiffi
hr2i

p
∼ 0.7 fm [78], is

about 1.4–2 times larger. We can also compare Eq. (26)
with the corresponding value obtained in Ref. [44],
∼1.0–1.6 fm, and conclude that both results are
compatible.
A question might arise about the possibility of exper-

imental investigations of the state found in the present work
and how its three-body nature can be confirmed in experi-
ments. The recent detection of a charm þ2 baryon by the
LHCb collaboration [10], and the search of the double
charm tetraquark Tcc state in heavy ion collisions [79],
indicate that the detection of the Rþþ state can be
accomplished. A signal for the state Rþþ should be looked
for in systems like Dþ

s D!þ, DþD!þ
s , since it can decay to

such channels, as shown in Fig. 3, or in three-body
channels like DDsγ, DDsπ, where the invariant mass of
Dsγ and Dsπ should be compatible with the formation of
the D!

s0ð2317Þ. These decay widths depend on the under-
lying structure of the decaying particle through the cou-
pling constants ofRþþ toD!

s0ð2317ÞD and ofD!
s0ð2317Þ to

DK, Dsη, Dγ, etc., thus, the values obtained for the widths
will be a clear projection of the underlying three-body
dynamics considered in the present work. A theoretical
calculation of such processes is currently in progress and
should be reported shortly. Similarly, the three-body nature
of theRþþ state has its implications on the size of the state,
and as we have shown in this work, the mean square
distance can be around a factor 1.4–2 bigger than that of
D!

s0ð2317Þ. The size of Rþþ can be investigated by
determining the value of the production yield of the state
in heavy ion collisions, where molecular states have bigger
production yields as compared to compact bound quark
states [79]. A precise determination of the production yield
of Rþþ in heavy ion collisions should also be obtained in
future works.
Finally, we must mention that we have also calculated

the total isospin 3=2 three-body T-matrix and we find no
states formed.
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this work. One relevant property is the size of such an
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since the interaction in two subsystems is attractive. Or,
knowing that adding a charm meson to a kaon produces
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s0ð2317Þ, which is a molecule like state, does adding a D
to such a system leads to an extended object. One way to
answer this question would be to solve the Faddeev
equations in the configuration space, as done in
Refs. [54,73,74], which, however, is out of the scope of
this work. Alternatively, we could treat the state found here
as a D −D!

s0ð2317Þ state of mass MR to estimate the mean
square distance among the constituent hadrons. For this,
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form as
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In Eq. (24), Λ ∼ 700–1000 MeV corresponds to the cutoff
used to regularize the DD!

s0ð2317Þ loop GðsÞ of Eq. (24)
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s0ð2317Þ. As discussed in Ref. [75], the value of α
obtained from Eq. (23) has a very smooth dependence on
the cutoff Λ, so it is mostly determined by the binding
energy.

Using the wave function in Eq. (21), and varying
Λ ∼ 700–1000 MeV, we can determine the mean square
distance hr2i for the system, and we get
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This result when compared with the mean square distance
for theDK bound stateD!
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∼ 0.7 fm [78], is

about 1.4–2 times larger. We can also compare Eq. (26)
with the corresponding value obtained in Ref. [44],
∼1.0–1.6 fm, and conclude that both results are
compatible.
A question might arise about the possibility of exper-

imental investigations of the state found in the present work
and how its three-body nature can be confirmed in experi-
ments. The recent detection of a charm þ2 baryon by the
LHCb collaboration [10], and the search of the double
charm tetraquark Tcc state in heavy ion collisions [79],
indicate that the detection of the Rþþ state can be
accomplished. A signal for the state Rþþ should be looked
for in systems like Dþ
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s , since it can decay to

such channels, as shown in Fig. 3, or in three-body
channels like DDsγ, DDsπ, where the invariant mass of
Dsγ and Dsπ should be compatible with the formation of
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s0ð2317Þ. These decay widths depend on the under-
lying structure of the decaying particle through the cou-
pling constants ofRþþ toD!

s0ð2317ÞD and ofD!
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DK, Dsη, Dγ, etc., thus, the values obtained for the widths
will be a clear projection of the underlying three-body
dynamics considered in the present work. A theoretical
calculation of such processes is currently in progress and
should be reported shortly. Similarly, the three-body nature
of theRþþ state has its implications on the size of the state,
and as we have shown in this work, the mean square
distance can be around a factor 1.4–2 bigger than that of
D!

s0ð2317Þ. The size of Rþþ can be investigated by
determining the value of the production yield of the state
in heavy ion collisions, where molecular states have bigger
production yields as compared to compact bound quark
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Fig. 3. Modulus squared of the K X(3872) scattering amplitude. The solid, dashed, 
and dotted lines represent the results obtained with the cutoff ! = 700, 725, and 
750 MeV, respectively.

is chosen to be the same as the cutoff used to regularize the 
loop D D̄∗ to get the cluster (X(3872) or Zc(3900)). We take 
! ∼ 700 MeV from Refs. [17,39,40] and vary it up to 750 MeV 
to estimate the uncertainties involved in the results.

Using Eqs. (1) and (2), the total amplitude T can be written as 
T = T31 + T32, with

T31 = [1 − t31G0t32G0]− 1 [t31 + t31G0t32],
T32 = [1 − t32G0t31G0]− 1 [t32 + t32G0t31], (21)

and is calculated as a function of the three-body invariant mass, √
s. For a given 

√
s, the two-body amplitudes are obtained at the 

invariant masses s31 and s32 of the relevant subsystem [41].
In Fig. 3 we show the results found for the T -matrix of the K X

system for isospin 1/2 and spin-parity J P = 1− . It can be seen 
from Fig. 3 that a narrow peak appears around 4310 MeV, which 
almost does not vary with the cut-off.

In the last years, the existence of several exotic companions 
of the X(3872) has been claimed experimentally as well as the-
oretically (for reviews, see Refs. [10,42]). Particularly, Zc states, 
with isospin 1, have been reported in the same energy region of 
the X(3872), like the Zc(3900) found by the BESIII [43], or the 
Zc(3894) claimed by the Belle collaboration [44] or the Zc(3886 )
reported by the CLEO collaboration [45]. At the present moment 
it is unclear, given the experimental uncertainties in the masses 
and widths, if all these experimental findings do, or do not, corre-
spond to the manifestation of the same state. Such a discussion is 
beyond the scope of the present work, but it would be interesting 
to study under the same formalism as for K X the existence of K ∗

with hidden charm which could be interpreted as K Zc molecule-
like states. Due to the present experimental uncertainty, we are 
using the name Z to denote the isospin 1 partner of X found in 
Ref. [40], which has a mass around 3872 MeV and width around 
30 MeV. In case of the scattering of K with Z , to obtain reliable 
results, the width, ", of the Z can play a relevant role. In our 
formalism such information can be introduced by replacing the 
mass M of the cluster with M − i"/2 in the expression of the 
form factor. Since "Z ∼ 28 MeV (compatible with the fit to the ex-
perimental data done in Ref. [40] and from the experimental data 
summarized in Ref. [47]) is not too large, and we are interested in 
studying the formation of states below the K Z threshold, we can 
still rely on the FCA formalism to calculate the K Z → K Z ampli-
tude.

In Fig. 4 we show the modulus squared amplitude for K Z
scattering in isospin 1/2 (see Table 1 for the input two body 
t-matrices used in Eq. (21)). A clear signal for the formation of 

Fig. 4. Modulus squared of the K Z scattering amplitude in I = 1/2.

a state around 4292 MeV and a width of 20 MeV is seen. If we 
neglect the width of the Z state, a peak at ∼ 4300 MeV with a 
small width,1 ∼ 1 MeV, is observed. In both cases, the mass of 
the state is about 70 MeV below the K Z threshold (considering Z
as a stable particle). This energy region is well within the range 
of the reliability of the results obtained within the FCA. The re-
sult obtained is also very stable with the cut-off !, as can be 
seen in Fig. 4. Thus we find an isospin 1/2, J P = 1− , state with 
M − i"/2 = 4292 − i10 MeV in the K Z scattering.

The K Z system can also have total isospin 3/2. If a state ap-
pears in this case, it would be associated with an exotic strange 
meson with isospin 3/2 and spin-parity 1− . We have studied this 
configuration of the K Z system but find no state formed in it.

Comparing the results of the K X and K Z systems in isospin 
1/2, it can be concluded that both interactions result in formation 
of a state in the same energy region. However, the D D̄∗ system 
can reorganize itself in different isospin configurations during the 
scattering with kaon, while conserving the total isospin of the 
three-body system producing transitions between the configura-
tions K X and K Z , and due to the similar mass of X and Z , the 
state found around 4300 MeV should have sizable internal K X
and K Z structures. Such a possibility can be studied by treating 
K X and K Z as coupled channels, as done in Ref. [41] for the state 
N∗(1910), which can be considered as a molecular state with im-
portant N f0(980) and Na0(980) components in its wave function. 
In such a case the t31, t32 and G0 appearing in Eq. (21) are matri-
ces in the coupled channel space2:

t31 =
[

(t31)11 (t31)12
(t31)21 (t31)22

]
,

t32 =
[

(t32)11 (t32)12
(t32)21 (t32)22

]
,

G0 =
[

(G0)11 0
0 (G0)22

]
, (22)

1 The origin of this small width, even though the peak position lies below the K Z
and K D D̄∗ thresholds, comes from the intermediate open channels, like, π Ds D̄∗ , 
which are implicitly considered in our formalism through the input K D amplitude 
in isospin 1. This amplitude is obtained by solving the Bethe–Salpeter equation con-
sidering K D and π Ds as coupled channels. In fact, if the coupling to two-body open 
channels is switched off when getting the K D , K D̄∗ amplitudes in isospin 1, we in-
deed find a zero width state in the T -matrix.

2 Note that Eq. (21), when written in a matrix form in terms of the matrices 
given in Eq. (22), represent a more compact notation for writing the set of coupled 
equations (3)–(12) given in Ref. [41].
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Figure 6: Modulus squared of the KX and KZ scattering amplitudes
in I = 1/2. These results have been obtained by solving scattering
equations while treating KX and KZ as coupled channels and con-
sidering �(Z) = 28 MeV. A cusp related to the three-body KDD̄⇤

threshold is observed in the KX ! KX amplitude.

where the DD̄⇤ is treated as a cluster forming X(3872)
or Zc(3900). We find that this dynamics leads to the
generation of a new state of molecular nature (see
Fig. 1) which corresponds to a K⇤ meson with hidden
charm and important K-X and K-Zc components in
its wave function. The mass of the state is (4307 ± 2)
MeV with a width of (9 ± 2) MeV. Interestingly, a re-
cent study [46] solving the Schrödinger equation for the
DD̄⇤K system, but with a very different dynamics than
the one used here, found a state with a mass of 4317
MeV.

So far there is no experimental data available on K⇤

states in the energy region investigated in the present
work [47], so the result found here is a prediction
for a K⇤ meson with hidden charm and of molecular
three-body nature. Such state can be found at facilities,
such as BEPC, in processes with final states, such as
K̄0D+

s D
�. We hope that our work encourages such

experimental investigations.
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Figure 6: Modulus squared of the KX and KZ scattering amplitudes
in I = 1/2. These results have been obtained by solving scattering
equations while treating KX and KZ as coupled channels and con-
sidering �(Z) = 28 MeV. A cusp related to the three-body KDD̄⇤

threshold is observed in the KX ! KX amplitude.

where the DD̄⇤ is treated as a cluster forming X(3872)
or Zc(3900). We find that this dynamics leads to the
generation of a new state of molecular nature (see
Fig. 1) which corresponds to a K⇤ meson with hidden
charm and important K-X and K-Zc components in
its wave function. The mass of the state is (4307 ± 2)
MeV with a width of (9 ± 2) MeV. Interestingly, a re-
cent study [46] solving the Schrödinger equation for the
DD̄⇤K system, but with a very different dynamics than
the one used here, found a state with a mass of 4317
MeV.

So far there is no experimental data available on K⇤

states in the energy region investigated in the present
work [47], so the result found here is a prediction
for a K⇤ meson with hidden charm and of molecular
three-body nature. Such state can be found at facilities,
such as BEPC, in processes with final states, such as
K̄0D+

s D
�. We hope that our work encourages such

experimental investigations.
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Figure 1. Decay mechanisms of the K⇤
R state predicted in Ref [29] to the J/ K⇤ channel. The

vertex X ! J/ ⇢(!) on the diagram (b) involves yet another triangular loop, as shown in Fig. 3
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Figure 2. Main two-body decay channels for the K⇤
R state found in the theoretical investigation

of Ref [29].

2 Theoretical Framework

The coupled channel calculation of Ref. [29] shows that the rescattering of a Kaon with the

D and D̄⇤, which cluster to form X(3872) in isospin 0 and Zc(3900) in isospin 1, generates

a I(JP ) = 1/2(1�) K⇤ state with a mass around 4307 MeV, which is below the KDD̄⇤

threshold, thus, it is a bound state. When considering the width of Zc(3900), which is

around 28 MeV, a width close to 18 MeV is found for the K⇤(4307) state. A K⇤ state

with such an internal structure can naturally decay to three-body channels, like J/ ⇡K,

since the state itself is obtained as a consequence of the three-body dynamics involved in

the KDD̄⇤ system. However, it can also decay to two-body channels. In this latter case,

due to the nature found for K⇤(4307) in Ref. [29], such a decay mechanism can proceed

through triangular loops (see Fig. 1) and we can have as main decay channels J/ K⇤(892),

D̄D⇤
s , D̄

⇤D⇤
s , and D̄Ds (see Fig. 2). In order to avoid confusion between K⇤(4307) and

K⇤(892) and to simplify the notation, we shall, henceforth, denote the former as K⇤
R
and

the latter as K⇤.

From the results of Ref. [29], the coupling of K⇤
R

to KZc(3900) is around 4 times

bigger than that to KX(3872), thus, when calculating the decay width of K⇤
R

(which is

proportional to the squared coupling of K⇤
R
to KZc or KX), the contribution arising from

– 3 –

Γa ∼ 7 MeV, Γb ∼ Γc ∼ 0.5 MeV,
Γd ∼ 1 MeV

JHEP 1905, 103 (2019) 
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involving the isospin breaking is via triangle diagrams such
as those shown in Fig. 1. These processes conserve isospin
and therefore should be the dominant ones compared to the
ones that violating isospin. In the following, we explain how
to calculate the two diagrams shown in Fig. 1.

R++(k0)

D+
s0(k1)

D+(k2)

⌘(q)

D+
s (p1)

D⇤+(p2)

R++(k0)

D+
s0(k1)

D+(k2)

K0(q)

D+(p1)

D⇤+
s (p2)

(a) (b)

FIG. 1: Diagrams representing the decay of the R
++ state to D

+
s
D
⇤+

and D
+

D
⇤+
s

.

In order to calculate the Feynman diagrams shown in Fig. 2,
we need to determine the relevant vertices. For the vertex of
R
++

D
⇤
s0D, since the R

++ is a bound state of D
⇤
s0D, this cou-

pling can be determined by the Weinberg compositeness con-
dition. In the present work, we adopt the method developed in
Refs. [51–67]. In this framework, the interacting Lagrangian
between R, Ds0, and D can be written as [51, 52]

R++(k0)

D+
s0(2317)(k1)

D+(k2)

R++(k0)

FIG. 2: Self-energy of the R
++ state.

LR(x) = gRDs0D(x)RT (x)
Z

dy�R(y2)Ds0(x + !Dy)

⇥ D(x � !Ds0 y) + H.c., (1)

where !i = mi/(mi + mj) is a kinematical parameter with mi

and mj being the masses of the involved mesons. In the La-
grangian, an e↵ective correlation function �(y2) is introduced
to reflect the distribution of the two constituents, D

+
s0(2317)

and D
+, in the hadronic molecular R

++ state. The introduced
correlation function also serves the purpose of making the
Feynman diagrams ultraviolate finite. Here we choose the
Fourier transformation of the correlation function in terms of
a Gaussian form,

�(p
2) ⌘ exp(�p

2
E
/⇤2) (2)

with ⇤ ⇠ 1.0 GeV [51–67] being the size parameter which
characterizes the distribution of the molecular components in-
side the molecule.

The coupling constant gRDs0D in Eq. (1) could be deter-
mined by the compositeness conditions [51, 52], where the
renormalization constant of the composite particle should be
zero, i.e.,

ZR++ ⌘ 1 � ⌃R++ (m2
R++

) = 0, (3)

with ⌃R++ (m2
R++

) being the derivative of the mass operator of
the R

++. The concrete forms of the mass operator of the R
++

corresponding to diagram Fig. 2 is

⌃R++ (k0) =
g

2
RDs0D

16⇡2

Z 1

0
d↵

Z 1

0
d�

1
z2 exp{� 1

⇤2

⇥ [�2k
2
0!

2
Ds0
+ ↵m

2
Ds0
+ �(�k

2
0 + m

2
D

) +
�2

M

4z
]}, (4)

where z = 2 + ↵ + �, � = �4!Ds0 k0 � 2�k0, and k
2
0 = m

2
R++

with k0, mR++ denoting the four-momenta and mass of the R
++,

respectively. Here, we set mR++ = mDs0 +mD � Eb with Eb the
binding energy of R

++, k1, and mDs0 are the four-momenta and
mass of the Ds0, and mD is the mass of the D, respectively.

In the present work, we calculate the two-body decay
width of the R

++ via the triangle diagrams shown in Fig. 1.
To evaluate the diagrams, in addition to the Lagrangian of
Eq. (1), the following e↵ective Lagrangian terms, responsi-
ble for the interactions between heavy-light pseudoscalar and
vector mesons are needed as well [33]

LPP⇤� = igtr(P⇤µu
µ
P
† � Pu

µ
P
⇤†
µ ), (5)

where P = (D0,D+,D+
s
) and P

⇤ = (D⇤0,D⇤+,D⇤+
s

), u
µ is the

axial vector combination of the pseudoscalar-meson fields and
its derivatives,

u
µ = i(u†@µu � u@µu†), (6)

where u
2 = U = exp(i

p
2�
f0

), f0=92.4 MeV, and the
pseudoscalar-meson octet � are represented by the 3⇥3 matrix

� =
p

2

0
BBBBBBBBBBB@

⇡0
p

2
+
⌘p
6

⇡+ K
+

⇡� � ⇡0
p

2
+
⌘p
6

K
0

K
�

K̄
0 � 2p

6
⌘

1
CCCCCCCCCCCA
. (7)

From Eqs.( 5-7), one can obtain the Lagrangian for the ver-
tices ⌘D+D

⇤+,K0
D
+

D
⇤+
s

, and D
⇤+⇡+D

0,

L⌘D+D⇤+ = �
igp
3 f0

(D⇤+µ @
µ⌘D+ � D

+@µ⌘D⇤+µ ), (8)

LK0D+D
⇤+
s
= �
p

2ig

f0
D
+@µK0

D
⇤+
sµ , (9)

LD⇤+⇡+D0 = �
p

2ig

f0
D

0@µ⇡+D
⇤+
µ . (10)

The coupling constant g can be determined from the strong
decay width �(D⇤+ ! D

0⇡+) = 56.46±1.22 keV together with
the branching ratio BR(D⇤+ ! D

0⇡+) = (67.7 ± 0.5)% [68].

. .
. . .B

J/ψ

K

Zc(3900)

π

K*(4300)

Zc(3900)

K

J/ψ

π

Outlook/work in progress:


