$\Lambda(1405)$: brief theoretical review

Luis Roca
University of Murcia (Spain)

\checkmark A brief history of its nature and its double pole structure

PWA11/ATHOS6, Rio de Janeiro, September 3, 2019

Remarks on the $\Lambda(1405)$

\checkmark Predicted in 1959:

R.H. Dalitz and S.F. Tuan, PRL 2 (1959) 425, Ann Phys 10 (1960) 307

Input from KN scattering lengths and implement unitarity with $\overline{\mathrm{KN}}-\pi \Sigma$ coupled channels within K-matrix approach
\checkmark Discovered experimentally in 1961

$$
\begin{aligned}
& K^{-}+p \rightarrow \Sigma^{+}+\pi^{-}+\pi^{-}+\pi^{+}, \\
& K^{-}+p \rightarrow \Sigma^{-}+\pi^{+}+\pi^{+}+\pi^{-}, \\
& K^{-}+p \rightarrow \Sigma^{0}+\pi^{0}+\pi^{+}+\pi^{-}
\end{aligned}
$$

The qqq conundrum:
\checkmark The $\Lambda(1405)$ is the ugly duckling of the quark model:

Isgur, Karl PRD18,11 (1978)

$H_{\mathrm{HO}}=$	$\frac{p_{1}{ }^{2}}{2 m}+\frac{p_{2}{ }^{2}}{2 m}+\frac{p_{3}{ }^{2}}{2 m^{\prime}}$
	$+\frac{1}{2} K\left\|\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}\right\|^{2}+\frac{1}{2} K\left\|\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathbf{r}}_{3}\right\|^{2}+\frac{1}{2} K\left\|\overrightarrow{\mathrm{r}}_{2}-\overrightarrow{\mathrm{r}}_{3}\right\|^{2}$

\checkmark Traditionally difficult to accomodate within quark models as qqq:

- $\Lambda(1405)(1 / 2)$ is the lightest negative parity baryon,
in spite it has an s quark, it is lighter than its nucleon counterpart $N(1535)(1 / 2)$
- Too large difference in mass with $\Lambda(1520)(3 / 2)$
- L=1 excitation costs around $N(1535)-N(940)=600 \mathrm{MeV}$ but $\Lambda(1405)-\Lambda(1115)=290 \mathrm{MeV}$
\checkmark Mass 200 MeV above experiment and $\pi \Sigma$ width 5 times larger than exp in any realistic qqq picture

Physical $\Lambda(1405)$ state is a mix of infinite contributions:

What is the weight α_{i} of the different contributions?

dominantly $\chi^{\rho} \psi^{\lambda}$ state ${ }^{23}$ as predicted. Our belief is there-
fore that the poorly predicted mass of this state does not
point to a fundamental flaw in our model, but rather to
the fact that effects outside of the scope of the model can
occasionally be significant. In this case we believe that
the simplification we have made that is most likely faulty
is our restriction to the $q q q$ sector of Fock space. Indeed,
\checkmark Cloudy bag model (dominant KN bound state + small qqq component
\checkmark Hybrids (qqq-gluon) Azizi et al. Eur.Phys.J.Plus 133 (2018) no.3, 121 , ...
\checkmark Pentaquarks Inoue, Nucl.Phys. A790 (2007) 530, ...

Lattice: supports KN molecular picture

Measures strange contribution to the magnetic form factor: if $\Lambda(1405)$ is $\overline{\mathrm{KN}}$ molecule instead of qqq, then the s is in a spin- 0 cluster (the K) and cannot contribute to the form factor

FIG. 3. The light (u or d) and strange (s) quark contributions to the magnetic form factor of the $\Lambda(1405)$ at $Q^{2} \simeq 0.16 \mathrm{GeV}^{2} / c^{2}$ are presented as a function of the light u and d quark masses, indicated by the squared pion mass, m_{π}^{2}. Sector contributions are for single quarks of unit charge. The vertical dashed line indicates the physical pion mass.

FIG. 4. The overlap of the basis state, \mid state \rangle, with the energy eigenstate $|E\rangle$ for the $\Lambda(1405)$, illustrating the composition of the $\Lambda(1405)$ as a function of pion mass. Basis states include the single particle state, denoted by m_{0}, and the two-particle states $\pi \Sigma$ and $\bar{K} N$. A sum over all two-particle momentum states is done in re-

\checkmark Mass 30 MeV below $\overline{\mathrm{K} N}$ threshold
\checkmark Couple channels is mandatory:

Crucial step forward: Chiral Lagrangians + unitarity (UChPT)
Kaiser, Siegel,Weise NPA (1995)

Basic idea of UChPT:

Input:
lowest order chiral Lagrangian

+ implementation of unitarity in coupled channels
+ exploitation of analytic properties

Extended range of applicability of ChPT to higher energies (resonance region)

Kaiser, Siegel, Weise, NPA 594 (1995) 325

Input: MB chiral Lagrangian
$\mathcal{L}^{(1)}=\operatorname{Tr}\left(\bar{\Psi}_{B}\left(i \gamma_{\mu} D^{\mu}-M_{0}\right) \Psi_{B}\right)+F \operatorname{Tr}\left(\bar{\Psi}_{B} \gamma_{\mu} \gamma_{5}\left[A^{\mu}, \Psi_{B}\right]\right)+D \operatorname{Tr}\left(\bar{\Psi}_{B} \gamma_{\mu} \gamma_{5}\left\{A^{\mu}, \Psi_{B}\right\}\right)$
$\mathcal{L}_{\text {int }}^{(1)}=\frac{i}{8 f^{2}} \operatorname{Tr}\left(\bar{B}\left[\left[\phi, \partial_{0} \phi\right], B\right]\right)>V_{i j}(\vec{r})=\frac{C_{i j}}{2 f^{2}} \sqrt{\frac{M_{i} M_{j}}{s \omega_{i} \omega_{j}}} \delta^{3}(\vec{r})$
Chiral perturbation series not convergent (strong $\overline{\mathrm{K} N}-\pi \Sigma$ coupling and pole below $\overline{\mathrm{K} N}$ threshold)
Resummation and regularization required: Lippmann-Schwinger:

$$
T_{i j}\left(k_{i}, k_{j}\right)=V_{i j}\left(k_{i}, k_{j}\right)+\sum_{n} \int_{0}^{\infty} \frac{q^{2} d q 2 \omega_{n} V_{i n}\left(k_{i}, q\right) T_{n j}\left(q, k_{j}\right)}{q^{2}-k_{n}^{2}+i \epsilon} \Delta(\mathbf{1 4 0 5)} \text { dynamically generated }
$$

$\Lambda(1405)$ predicted as a $\overline{\mathrm{K} N}$ bound state coupled to the open $\pi \Sigma$ channel

Unitarity of the S-matrix implies :
Effectively, one is summing this infinite series of diagrams

$V_{i j}(\sqrt{s})$	$=-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right)$
	$\times\left(\frac{M_{i}+E_{i}}{2 M_{i}}\right)^{1 / 2}\left(\frac{M_{j}+E_{j}}{2 M_{j}}\right)^{1 / 2}$

$(\ldots+\pi \Lambda+\eta \Sigma+K \Xi)$
$G=\int_{0}^{\varphi_{\text {man. }}} \frac{q^{2} d q}{(2 \pi)^{2}} \frac{\omega_{1}+\omega_{2}}{\omega_{1} \omega_{2}\left[\left(P^{0}\right)^{2}-\left(\omega_{1}+\omega_{2}\right)^{2}+i \epsilon\right]}$

On-shell approximation: off-shell effects are reabsorbed in renormalization of the couplings

$$
T=[1-V G]^{-1} V
$$

Algebraic equation!

Subtracted dispersion relations: removes sensibility to the regulator

$\operatorname{Im} T^{-1}(W)_{i j}=-\rho(W)_{i} \delta_{i j}$
$T(W)=[I+\mathcal{T}(W) \cdot g(s)]^{-1} \cdot \mathcal{T}(W)$

Allows matching with ChPT amplitudes order by order
$\boldsymbol{g}(\boldsymbol{s})=\frac{1}{16 \pi^{2}} \Omega+\log \frac{m_{1}^{2}}{\mu^{2}}+\frac{m_{2}^{2}-m_{1}^{2}+s}{2 s} \log \frac{m_{2}^{2}}{m_{1}^{2}}$
$\left.+\frac{p}{\sqrt{s}}\left(\log \frac{s-m_{2}^{2}+m_{1}^{2}+2 p \sqrt{s}}{-s+m_{2}^{2}-m_{1}^{2}+2 p \sqrt{s}}+\log \frac{s+m_{2}^{2}-m_{1}^{2}+2 p \sqrt{s}}{-s-m_{2}^{2}+m_{1}^{2}+2 p \sqrt{s}}\right)\right)$

(Data from Hemingway, NPB253,742(1985))
\checkmark First appearance of the double pole structure in UChPT!

> pole positions change appreciably from one sheet to the other, which is a clear indication of a large mesonbaryon component. For the second and third sheets, which are the closest ones to the physical sheet, we have the following pole positions. Sheet II: $(1379.2-$ $i 27.6) \mathrm{MeV},(1433.7-i 11.0) \mathrm{MeV}(I=0)$ and
\checkmark But double pole already obtained before in 1990 with potential from cloudy bag model!

Fink, He, Landau, Schnick PRC41,6 (1990)

$$
\bar{K} N, \Sigma \pi, \Lambda \pi, \quad(I=0,1)
$$

The dynamics arise from the coupled LippmannSchwinger equations

$$
\begin{aligned}
T\left(k^{\prime}, k ; E\right)= & V\left(k^{\prime}, k\right) \\
& +\frac{2}{\pi} \int_{0}^{\infty} d p p^{2} V\left(k^{\prime}, p\right) G_{E}(p) T(p, k ; E)
\end{aligned}
$$

$\Lambda(1405) 1 / 2^{-} \quad I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right)$Status: $* * * *$

The nature of the $\Lambda(1405)$ has been a puzzle for decades: threequark state or hybrid; two poles or one. We cannot here survey the rather extensive literature. See, for example, CIEPLY 10 , KISSLINGER 11, SEKIHARA 11, and SHEVCHENKO 12A for discussions and earlier references.

It seems to be the universal opinion of the chiral-unitary community that there are two poles in the $1400-\mathrm{MeV}$ region. ZYCHOR 06 presents experimental evidence against the two-pole model, but this is disputed by GENG 07A. See also REVAI 09, which finds little basis for choosing between one- and two-pole models; and IKEDA 12, which favors the two-pole model.
A single, ordinary three-quark $\Lambda(1405)$ fits nicely into a $J^{P}=$ $1 / 2^{-} \mathrm{SU}(4) \overline{4}$ multiplet, whose other members are the $\Lambda_{c}(2595)^{+}$ $\bar{\Xi}_{c}(2790)^{+}$, and $\Xi_{c}(2790)^{0}$; see Fig. 1 of our note on "Charmed Baryons."

UChPT (chiral dynamics + unitarity) generates dynamically the Λ (1405)

Kaiser, Siegle, Weise, Oset, Ramos, Oller, Meissner, ... and many more

\checkmark UChPT predicts a two-pole structure

^(1405) MASS

PRODUCTION EXPERIMENTS

EXTRAPOLATIONS BELOW $\boldsymbol{N} \bar{K}$ THRESHOLD
VALUE (MeV)

- - We do not use the following data for averages, fits, limits, etc. - -

1407.56 or 1407.50	${ }^{3}$ KIMURA	00	potential model
1411	4 MARTIN	81	K-matrix fit
1406	5 CHAO	73	DPWA 0 -range fit (sol. B)
1421	MARTIN	70	RVUE Constant K-matrix

Jido, Oller, Oset, Ramos, Meissner,...

\checkmark Mass 30MeV below K N threshold
Not possible in direct K beam exp.
Current PDG mass value comes from old $\pi \Sigma$ production experiments

$\Lambda(1405) 1 / 2^{-}$

$$
I\left(J^{P}\right)=0\left(\frac{1}{2}^{-}\right) \text {Status: } * * * *
$$

In the 1998 Note on the $\Lambda(1405)$ in PDG 98, R.H. Dalitz discussed the S-shaped cusp behavior of the intensity at the $N-\bar{K}$ threshold observed in THOMAS 73 and HEMINGWAY 85. He commented that this behavior "is characteristic of S-wave coupling; the other below threshold hyperon, the $\Sigma(1385)$, has no such threshold distortion because its $N-\bar{K}$ coupling is P-wave. For $\Lambda(1405)$ this asymmetry is the sole direct evidence that $J^{P}=1 / 2^{-}$."

A recent measurement by the CLAS collaboration, MORIYA 14, definitively established the long-assumed $J^{P}=1 / 2^{-}$spin-parity assignment of the $\Lambda(1405)$. The experiment produced the $\Lambda(1405)$ spin-polarized in the photoproduction process $\gamma p \rightarrow$ $K^{+} \Lambda(1405)$ and measured the decay of the $\Lambda(1405)$ (polarized) \rightarrow $\Sigma^{+}($polarized $) \pi^{-}$. The observed isotropic decay of $\Lambda(1405)$ is consistent with spin $J=1 / 2$. The polarization transfer to the Σ^{+}(polarized) direction revealed negative parity, and thus established $J^{P}=1 / 2^{-}$.

See the related review(s):
 Pole Structure of the $\Lambda(1405)$ Region Hyodo, Meissner

^(1405) REGION POLE POSITIONS

REAL PART
 VALUE (MeV)

DOCUMENT ID TECN

- - We do not use the following data for averages, fits, limits, etc. - -

$1429+8$	${ }^{1} \mathrm{MAI}$	15	DPWA
1325 ${ }_{-15}^{+15}$	2 MAI	15	DPWA
$1434-2$	${ }^{3} \mathrm{MAI}$	15	DPWA
$1330-4$	${ }^{4} \mathrm{MAI}$	15	DPWA
$1421-3$	5 GUO	13	DPWA
1388 ± 9	${ }^{6}$ GUO	13	DPWA
$1424_{-23}^{+}+7$	7 IKEDA	12	DPWA
$1381-18$	8^{1} IKEDA	12	DPWA

Why two poles?

Octet mesons x octet baryons: $8 \otimes 8=1 \oplus 8_{s} \oplus 8_{a} \oplus 10 \oplus \overline{10} \oplus 27$
Potential from ChPT in $\operatorname{SU}(3)$ basis: $V_{\alpha \beta}=\operatorname{diag}(6,3,3,0,0,-2)$
Attractive for $1,8_{\mathrm{s}}$ and 8_{a} : expect 3 bound states!
UNAVOIDABLE from chiral symmetry + unitarity!
Jido, Oller, Oset, Ramos, Meissner NPA635 (2003)

In SU(3) limit there is 1 pole for the singlet and 2 degenerate poles for the octet
In the physical limit they mix producing two poles close to $\overline{K N}$ threshold and one for the $\Lambda(1670)$

Two poles in the complex plane

Couplings to different channels:

z_{R}	$1390+66 i$		$1426+16 i$	
$(I=0)$	g_{i}	$\left\|g_{i}\right\|$	g_{i}	$\left\|g_{i}\right\|$
$\pi \Sigma$	$-2.5-1.5 i$	2.9	$0.42-1.4 i$	1.5
$\bar{K} N$	$1.2+1.7 i$	2.1	$-2.5+0.94 i$	2.7
$\eta \Lambda$	$0.010+0.77 i$	0.77	$-1.4+0.21 i$	1.4
$K \Xi$	$-0.45-0.41$	0.61	$0.11-0.33 i$	0.35

Lowest pole dominated by $\pi \Sigma$

Resonance shape may be different for different reactions!

If Λ (1405) is dynamically generated we have to produce first the meson-baryon pair and then the rescattering produces the $\Lambda(1405)$.
Scattering data is not enough
Magas, Oset, Ramos. PRL'05

Two poles always found by all groups using chiral unitary approach:

García-Recio, Nieves, Ruiz-Arriola, Vicente-Vacas,PRD67, 076009 (2003)
Hyodo, Nam, Jido, Hosaka PRC68, 018201(2003)
Borasoy, Niessler, Weise, EPJA27,79(2005)
Hyodo, Weise, PRC77,035204 (2008)
Ikeda, Hyodo, Weise, NPA881,98 (2012)
Guo, Oller, PRC87,035202 (2013)
Mai, Meissner, EPJA51,30 (2015)
Molina, Döring, PRD94 (2016)

Two poles always found by all groups using chiral unitary approach:

García-Recio, Nieves, Ruiz-Arriola, Vicente-Vacas,PRD67, 076009 (2003)
Hyodo, Nam, Jido, Hosaka PRC68, 018201(2003)
Borasoy, Niessler, Weise, EPJA27,79(2005)
Hyodo, Weise, PRC77,035204 (2008)
Ikeda, Hyodo, Weise, NPA881,98 (2012)
Guo, Oller, PRC87,035202 (2013)
Mai, Meissner, EPJA51,30 (2015)
Molina, Döring, PRD94 (2016)

Ikeda, Hyodo, Weise, NPA881,98 (2012)

NLO ChPT input:

```
\mp@subsup{\mathcal{L}}{MB}{(2)}=\mp@subsup{b}{0}{}}\operatorname{Tr}(\overline{\mathcal{B}}\mathcal{B})\operatorname{Tr}(\mp@subsup{\chi}{+}{})+\mp@subsup{b}{D}{}\operatorname{Tr}(\overline{\mathcal{B}}{\mp@subsup{\chi}{+}{\prime},\mathcal{B}})+\mp@subsup{b}{F}{}\operatorname{Tr}(\overline{\mathcal{B}}\\mp@subsup{\chi}{+}{},\mathcal{B}]
    +d
    +d, }\operatorname{Tr}(\overline{\mathcal{B}}\mp@subsup{u}{\mu}{})\operatorname{Tr}(\mathcal{B}\mp@subsup{u}{}{\mu})+\mp@subsup{d}{4}{}\operatorname{Tr}(\overline{\mathcal{B}}\mathcal{B})\operatorname{Tr}(\mp@subsup{u}{\mu}{}\mp@subsup{u}{}{\mu}
```

Little effect in scattering data and $\Lambda(1405)$ pole positions
Important to reproduce also amplitude at threshold (SIDDHARTA data for kaonic atoms) and extrapolation to subthreshold

Off-shell effects small:
Mai, Meissner, NPA900,51 (2013)
Dong, Sun, Pang Chinese Phys, C41, (2017)

+ Siddharta datum

In cieply, Mai, Meissner, Smejkal, oller, PRC87,035202 (2013) the different models are compared and give different results for subthreshold amplitudes and poles

Fig. 1. Kaonic hydrogen characteristics and pole positions for the various approaches.

Fit to photoproduction data

L.R., E.Oset, Phys.Rev.C 87 (2013) 055201
L.R., E.Oset, Phys.Rev.C 88 (2013) 055206
$\gamma p \rightarrow K^{+} \pi^{ \pm} \Sigma^{\mp}$
Exp data from Moriya et al., [CLAS coll. @Jlab] PhysRev. C. 87 (2013) 3, 035206

General expression for the photoproduction scattering amplitude:

$$
t(W)=b(W) G_{\pi \Sigma} T_{\pi \Sigma, \pi \Sigma}^{I=0}+c(W) G_{\bar{K} N} T_{\bar{K} N, \pi \Sigma}^{I=0} \quad \underset{\text { only l=0 }}{\gamma p \rightarrow K^{+} \pi^{0} \Sigma^{0}}
$$

b and c (complex) coefficients fitted for each energy!

Red: $\pi^{0} \Sigma^{0}$; blue: $\pi^{-} \Sigma^{+}$, green: $\pi^{+} \Sigma^{-}$

Results of the global fit:

	$I=0$		$I=1$
poles	$1352-48 i$	$1419-29 i$	-
$\left\|g_{\bar{K} N}\right\|$	2.71	3.06	-
$\left\|g_{\pi \Sigma}\right\|$	2.96	1.96	-

Other analysis similar to ours:

Mai, Meissner, EPJA51,30 (2015)

Global fit including: NLO + fit to (scattering + photoproduction + SIDDHARTA)

solution	pole 1	pole 2
$\# 2$	$1434_{-2}^{+2}-i 10_{-1}^{+2}$	$1330_{-5}^{+4}-i 56_{-11}^{+17}$
$\# 4$	$1429_{-7}^{+8}-i 12_{-3}^{+2}$	$1325_{-15}^{+15}-i 90_{-18}^{+12}$

PDG 2018 review by Hyodo and Meissner

Table 100.1: Comparison of the pole positions of $\Lambda(1405)$ in the complex energy plane from next-to-leading order chiral unitary coupled-channel approaches in the SIDDHARTA constraint.

	approach	pole 1 $[\mathrm{MeV}]$	pole 2 $[\mathrm{MeV}]$
Ikeda et al.	Refs. 11,12, NLO	$1424_{-23}^{+7}-i 26_{-14}^{+3}$	$1381_{-6}^{+18}-i 81_{-8}^{+19}$
Guo, Oller	Ref. 14, Fit II	$1421_{-2}^{+3}-i 19_{-5}^{+8}$	$1388_{-9}^{+9}-i 114_{-25}^{+24}$
Mai, Meissner. 15, solution \#2	$1434_{-2}^{+2}-i 10_{-1}^{+2}$	$1330_{-5}^{+4}-i 56_{-11}^{+17}$	
	Ref. 15, solution \#4	$1429_{-7}^{+8}-i 12_{-3}^{+2}$	$1325_{-15}^{+15}-i 90_{-18}^{+12}$

References:

1. R.H. Dalitz, S.F. Tuan Phys. Rev. Lett. 2, 425 (1959).
2. V. Bernard et al., Int. J. Mod. Phys. E4, 193 (1995).
3. N. Kaiser et al., Nucl. Phys. A594, 325 (1995).
4. T. Hyodo, D. Jido, Prog. in Part. Nucl. Phys. 67, 55 (2012).
5. J.A. Oller, U.-G. Meißner, Phys. Lett. B500, 263 (2001).
6. D. Jido et al., Nucl. Phys. A725, 181 (2003).
7. T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008).
8. M. Bazzi et al., Phys. Lett. B704, 113 (2011).
9. M. Bazzi et al., Nucl. Phys. A881, 88 (2012).
10. U.-G. Meißner et al., Eur. Phys. J. C35, 349 (2004).
11. Y. Ikeda et al., Phys. Lett. B706, 63 (2011).
12. Y. Ikeda et al., Nucl. Phys. A881, 98 (2012).
13. M. Mai, U.-G. Meißner, Nucl. Phys. A900, 51 (2013).
14. Z.-H. Guo. .J. Oller. Phvs. Rev. C87. 035202 (2013).
15. M. Mai, U.-G. Meißner, Eur. Phys. J. A51, 30 (2015).
16. M. Niiyama et al., Phys. Rev. C78, 035202 (2098).
17. K. Moriya et al., Phys. Rev. C87, 035206 (2013).
18. K. Moriya et al., Phys. Rev. Lett. 112, 082004 (2014).
19. H.Y. Lu et al., Phys. Rev. C88, 045202 (2013).
20. I. Zychor et al., Phys. Lett. B660, 167 (2008).
21. G. Agakishiev et al., Phys. Rev. C87, 025201 (2013).
22. L. Roca, E. Oset, Phys. Rev. C87, 055201 (2013).
23. M. Hassanvand et al., Phys. Rev. C87, 055202 (2013).

More on the compositeness of the $\Lambda(1405)$
Recall:

What is the weight α_{i} of the different contributions?

More on the compositeness of the $\Lambda(1405)$

We have already seen that qqq fails and Lattice obtains KN molecule

More reasons why we consider it a molecule:
\checkmark Large N_{c} behaviour not compatible with qqq

Hyodo, Jido, L.R., PRD77,056010 (2008)
Hyodo, Jido, L.R., NPA809,65 (2008)
\checkmark Weinberg compositeness condition S. Weinberg, Phys. Rev. 137 (1965) applied to coupled channels:

Gamermann, Nieves, Oset, Ruiz-Arriola, PRD81,014028 (2010) Molina, Döring, PRD94 (2016)
Hyodo, Jido,Hosaka, PRC85, 015201 (2012)
Hyodo, JMP A, 28, 1330045. (2013)

Bare component (qqq)

Compositeness: $\mathrm{X}=1$, pure MB molecule $\mathrm{X}=0$, pure bare state
(overlap with scattering states (MB))

	$1-\mathcal{Z}$	\mathcal{Z}
Lowest pole	$0.28+0.47 i$	$0.72-0.47 i$
Highest pole	$0.82-0.16 i$	$0.18+0.16 i$
Lowest pole	$0.73_{-0.10}^{+0.15}$	$0.27_{-0.10}^{+0.15}$
Highest pole	$1.00_{-0.25}^{+0.49}$	$0.00_{-0.25}^{+0.49}$

Molina, Döring, PRD94 (2016)
(similar to other UchPT results)

Guo, Oller, PRD93,096001 (2016)
\checkmark Spatial distribution of the higher mass pole

$$
\sqrt{\left\langle r^{2}\right\rangle}=1.44 \mathrm{fm}
$$

Other production reactions

$\Lambda_{c} \rightarrow \pi^{+} M B$
Miyahara, Hyodo, Oset, Phys. Rev. C 92 (5) (2015) 055204.

Dominated by $\mathrm{I}=0$
$|M B\rangle=\left|K^{-} p\right\rangle+\left|\bar{K}^{0} n\right\rangle-\frac{\sqrt{2}}{3}|\eta \Lambda\rangle$
Weighs the highest mass pole

$\Lambda_{b} \rightarrow J / \psi \pi \Sigma \quad \Lambda_{b} \rightarrow J / \psi \bar{K} N$
Roca, Mai, Oset, Meissner Eur.Phys.J. C75 (2015) no.5, 218

Also weighs more the highest mass pole

Weighs more lower pole $(\pi \Sigma)$

Role of the triangle singularity in $\Lambda(1405)$ production in the $\pi^{-} p \rightarrow K^{0} \pi \Sigma$ and $p p \rightarrow p K^{+} \pi \Sigma$ processes
M. Bayar, ${ }^{1,2,{ }^{*}}$ R. Pavao, ${ }^{2}$ S. Sakai, ${ }^{2}$ and E. Oset ${ }^{2}$

$K^{-} d \rightarrow \pi \Sigma n$
Jido, Oset, Sekihara, Eur.Phys.J. A42 (2009) 257-268
Jido, Oset, Sekihara, Eur.Phys.J. A49 (2013) 95

Exp. data from Braun et al., Nucl. Phys. B 129, 1 (1977)

Ohnishi, Ikeda, Hyodo, Weise PRC93 (2016)

Summary

$\checkmark \Lambda(1405)$ well established but until recently poorly understood in quark models
\checkmark SU(3) chiral dynamics and unitarity produce a double pole structure, dynamically generated from $\pi \Sigma$ and KN (basically)

- Higher mass pole position (closer to KN threshold) better detemined
(for this it is important the datum on K p scattering length, SIDDHARTA)
Double pole appears naturally and produce actual shapes of the mass distribution in the real axis (not just Breit-Wigner like combinations)
\checkmark Different reactions can weigh differently the different MB channels and, therefore, the different poles. In general, the amplitude is a combination of both, and has a shape very different to a Breit-Wigner
- WARNING for experimentalists: two poles are not always necessary to fit the data: depending on the reaction it might weigh much more one of the two poles
\checkmark Wide evidence for the molecular picture, (specially for the highest mass pole)

BACKUP SLIDES

Next we allow for a small variation of the kernel of the unitarization procedure:

(coefficients of the potential fitted but of natural order ~1)

Also:

α_{i} coefficients are fitted

For $\quad \gamma p \rightarrow K^{+} \pi^{ \pm} \Sigma^{\mp}$ also I=1 contributes

Fit to photoproduction data
$\gamma p \rightarrow K^{+} \pi^{ \pm} \Sigma^{\mp}$
$\gamma p \rightarrow K^{+} \pi^{0} \Sigma^{0}$

$$
\text { L.R., E.Oset, Phys.Rev.C } 87 \text { (2013) } 055201
$$

L.R., E.Oset, Phys.Rev.C 88 (2013) 055206

Experimental data:
Exp data from Moriya et al., [CLAS coll. @Jlab] PhysRev. C. 87 (2013) 3, 035206

Clear Λ (1405) shape, but how to extract its physical properties given its double pole structure?

Our analysis: Idea: as model independent as possible but double pole from chiral dynamics

General expression for the photoproduction scattering amplitude:

b and c (complex) coefficients fitted for each energy!

Next we allow for a small variation of the kernel of the unitarization procedure:

$$
\begin{aligned}
V_{i j}(\sqrt{s}) & =-C_{i j} \frac{1}{4 f^{2}}\left(2 \sqrt{s}-M_{i}-M_{j}\right) \\
& \times\left(\frac{M_{i}+E_{i}}{2 M_{i}}\right)^{1 / 2}\left(\frac{M_{j}+E_{j}}{2 M_{j}}\right)^{1 / 2}
\end{aligned}
$$

Also:

$$
a_{K N} \rightarrow \alpha_{4} a_{K N}, a_{\pi \Sigma} \rightarrow \alpha_{5} a_{\pi \Sigma} \quad \text { (subtraction constants) }
$$

α_{i} coefficients are fitted

Results of the global fit:

α_{11}^{0}	α_{12}^{0}	α_{22}^{0}	α_{11}^{1}	α_{12}^{1}	α_{13}^{1}	α_{22}^{1}	β_{1}	β_{2}	β_{3}
1.037	1.466	1.668	0.85	0.93	1.056	0.77	1.187	0.722	1.119

For $\quad \gamma p \rightarrow K^{+} \pi^{ \pm} \Sigma^{\mp}$ also I=1 contributes:

$$
\begin{aligned}
\left|\pi^{0} \Sigma^{0}\right\rangle & =\sqrt{\frac{2}{3}}|20\rangle-\frac{1}{\sqrt{3}}|00\rangle \\
\left|\pi^{+} \Sigma^{-}\right\rangle & =-\frac{1}{\sqrt{6}}|20\rangle-\frac{1}{\sqrt{2}}|10\rangle-\frac{1}{\sqrt{3}}|00\rangle \\
\left|\pi^{-} \Sigma^{+}\right\rangle & =-\frac{1}{\sqrt{6}}|20\rangle+\frac{1}{\sqrt{2}}|10\rangle-\frac{1}{\sqrt{3}}|00\rangle
\end{aligned}
$$

$$
\begin{aligned}
& t_{\gamma p} \rightarrow K^{+} \pi^{0} \Sigma^{0}(W) \\
& \quad=b_{0}(W) G_{\pi \Sigma}^{I=0} T_{\pi \Sigma, \pi \Sigma}^{I=0}+c_{0}(W) G_{\bar{K} N}^{I=0} T_{\bar{K} N, \pi \Sigma}^{I=0} \\
& t_{\gamma p} \rightarrow K^{+} \pi^{ \pm} \Sigma \mp \\
& \\
& \quad=b_{0}(W) G_{\pi \Sigma}^{I=0} T_{\pi \Sigma, \pi \Sigma}^{I=0}+c_{0}(W) G_{\bar{K} N}^{I=0} T_{\bar{K} N, \pi \Sigma}^{I=0}
\end{aligned}
$$

$$
\pm \sqrt{\frac{3}{2}}\left(b_{1}(W) G_{\pi \bar{\Sigma}}^{I=} T_{\pi \Sigma, \pi \Sigma}^{I=1}+c_{1}(W) G_{\overline{K N}}^{I=1} T_{\bar{K} N, \pi \Sigma}^{I=1}\right.
$$

$$
\left.+d_{1}(W) G_{\pi \Lambda}^{I=1} T_{\pi \Lambda, \pi \Sigma}^{I=1}\right)
$$

$a_{K N} \rightarrow \beta_{1} a_{K N}, a_{\pi \Sigma} \rightarrow \beta_{2} a_{\pi \Sigma}$ and $a_{\pi \Lambda} \rightarrow \beta_{3} a_{\pi \Lambda}$

Prediction. Not fitted!

1s kaonic hydrogen energy shift:

$\Delta E-i \Gamma / 2=$
 $(194 \pm 4)-i(301 \pm 9) \mathrm{eV}$

EXP.: SIDDHARTA exp. @ Daphne, PLB704, 113 (2011)

$$
(283 \pm 42)-i(271 \pm 55) \mathrm{eV} .
$$

FIG. 10. Predicted $K^{-} p$ cross sections (in mb). Experimental data from ref. [53]

The $\Lambda(1405)$ in $\Lambda_{b} \rightarrow J / \psi \Lambda(1405)$

L.R., M.Mai, E.Oset and U.G.Meißner, Eur.Phys.J.C 75 (2015) 5, 218

$\Lambda_{b} \rightarrow J / \psi \pi \Sigma \quad \Lambda_{b} \rightarrow J / \psi \bar{K} N$

Reflects the highest mass Λ (1405) pole

Two different UChPT models:

Higher order meson-baryon Lagrangians fitted to photoproduction and meson-baryon cross sections

Bruns, Mai, Meißner, Phys.Lett. B697 (2011) 254

Lowest order chiral Lagrangian with modified kernel
(Our model explained above)
L.R., E.Oset, Phys.Rev.C 88 (2013) 055206

