
Optimization of Python-bindings

Wim T.L.P. Lavrijsen, LBNL
ROOT Meeting, CERN; 01/15/10

C O M P U T A T I O N A L R E S E A R C H D I V I S I O N

Introductory words ...

● More wish than plan
– No clear idea of time expenditure this year

● Based on proposal hatched last Summer
– Very low change of funding (< 1%)
– Originally mainly looked to PyPy

● Have prototype to play with
– Unladen Swallow may be better direction

● At least initially: less ambitious short term
● No work done on it yet

PyPy

● “Python interpreter written in Python”
– Makes Python code first-class objects

● Allows for analysis and manipulation of code,
including the full interpreter

● Full-fledged translation framework
– Extensible with external types
– Fully customizable with new back-ends
– Transformations such as “stackless”

● Python as high-level description of intent
– Target multi-core, Green Flash, etc.

Optimizations in Python-based Analysis 4

PyPy Architecture

.py

.c

.cli

.class

.mflAnnotator
Generator

Optimizer

LLTypeSystem OOTypeSystem

Builds flow graphs and code
blocks; derives static types

Uses flow graphs to optimize
calls and reduce temporaries

Employs specific back-ends to
write code or VM bytecode

Python code is translated into
lower level, more static code

+ High-Level Reflex Info

+ Low-Level Reflex Info

Optimizations in Python-based Analysis 5

Feeding the Annotator

MethodProxy_1

MethodProxy_2

...

Bound Class

im_func

func_code

1. Pretend to be real Python code
2. Return emulated function
3. Construct appropriate bytecode
4. Allow annotator to analyse

(all on-the-fly for minimal memory impact)

co_argcount

co_code

...

func_code

Generated bytecode delivered:

def method_1(self, *args):
 lvar = long(self)
 return ext_func(lvar, *args)

Optimizations in Python-based Analysis 6

Feeding the Generator

CppCodeDict.so
compilation

info
ExternalCompilationInfo

(ECI)CppCodeDict.so

type info
function ptr

rffi.llexternal
definition

1. Get headers, link libraries, paths
=> for compilation of generated C code

2. Get argument, return types, ptr
=> for FFI calls (e.g. through ctypes)

3. Combine in a definition available
 to the generator. Used directly by PyPy

Generator as appropriate

Optimizations in Python-based Analysis 7

Unladen Swallow

● “Google-sponsored” project
– Basically 2 Google engineers + OS bazaar

● Goal is to make Python 5x faster
– Leverage LLVM and JIT technology
– Get rid of Global Interpreter Lock
– Remain compatible with CPython

● Three releases based on p2.6
● If CINT is LLVM, and Python is LLVM … :^)

Optimizations in Python-based Analysis 8

Bonus Material

PyPy Annotation

● Start with known or given types
– Constants and built-ins (known)
– Function arguments (given [when called])

● Calculate flow graphs
– Locate joint points
– Consolidate code in blocks

● Fill in all known types
– Derived from initial known/given ones
– Add information from dictionary

} graph structure
of possible flows
and outcomes

=>

Annotation Example

>>> def doFillMyHisto(h, val):

... x = ROOT.gRandom.Gaus() * val

... return h.Fill(x)

...

>>> t = Translation(doFillMyHisto)

>>> t.annotate([TH1F, int])
-- type(h) is TH1F and type(val) is int
-- type(x) is float, because:
 Gaus is TRandom::Gaus() which yields (C++)double
 mul((python)float, int) yields (python)float
-- result is None, because:
 Fill is TH1F::Fill which yields (C++)void

>>> doFillMyHisto = t.compile_c()

>>> h, val = TH1F('hpx','px',100,-4,4), 10

>>> doFillMyHisto(h, val) # normal call

Explicitly in translation
or at runtime; different
(non-)choices can coexist

us
er

us
er

be
hi

nd
 th

e
sc

en
es

PyPy Optimizer

● Function inlining
– Equivalent to its C++ brother
– May allow further optimizations

● Malloc removal
– Use values rather than objects

● Esp. for loop variables and iterators
– Dict special case: remove method objects

● Escape analysis and stack allocation
– Use stack for scope-lifetime objects

All for free
from PyPy!

PyPy Generation

● Two type systems
– “Low Level” and “Object Oriented”

result = method(self, *args)
result = self.method(*args)

● Two kinds of back-ends
– Code generation (e.g. C, JS, Lisp)
– VM bytecodes (e.g. CLI/.Net and Java)

● Customizable
– Covers cross-language calls (FFI)
– Add information from dictionary

Optimizations in Python-based Analysis 13

Current Limitations

● PyPy is rather slow in run/use
– Code mgmt needed of compiled functions
– Develop/compile/run cycle unwanted anyway

● Loss of type information => loss of offsets
– No virtual inheritance
– No support of heterogeneous containers
– In need of a solution ...

● No overloading resolution
– Can be (partly) resolved with Python types
– Complication of implicit conversions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

