Searching for t-channel mediated dark matter

Haipeng An (Tsinghua University)

With Lian-Tao Wang and Hao Zhang

1308.0592

The simplified model

- Dark matter is a spin-1/2 particle
- Dark matter couples universally to righthanded quarks
- The dark mediators are degenerate

Dark matter, can be Dirac or Majorana Important differences in the signal.

Two type of signals

- Mono-jet
 - ISR and single mediator production.
 - Harder jet from mediator production.
- Di-jet+MET
 - Similar to SUSY squark pair production.

Mono-jet search

- 8 TeV LHC, 19.5 fb-1 CMS, (Tech. Rep. CMS-PAS-EXO-12-048)
 - At least one central jet with pT > 110 GeV, $|\eta|$ < 2.4
 - At most two jets with pT > 30 GeV, $|\eta|$ < 4.5
 - No isolated electrons with pT > 10 GeV, $|\eta|$ < 1.44 or 1.56< $|\eta|$ < 2.5
 - No isolated muons with pT > 10 GeV, $|\eta|$ < 2.1
 - MET > 120 GeV
 - For events with a second jet, $\Delta \phi(j1, j2) < 2.5$

Mono-jet search

- 8 TeV LHC, 19.5 fb-1 CMS, (Tech. Rep. CMS-PAS-EXO-12-048)
 - At least one central jet with pT > 110 GeV, $|\eta|$ < 2.4
 - At most two jets with pT > 30 GeV, $|\eta|$ < 4.5

Allowing a second hard jet.

Including both the monojet+MET and the dijet+MET events

- No isolated electrons with pT > 10 GeV, $|\eta|$ < 1.44 or 1.56< $|\eta|$ < 2.5
- No isolated muons with pT > 10 GeV, $|\eta|$ < 2.1
- MET > 120 GeV
- For events with a second jet, $\Delta \phi(j1, j2) < 2.5$

Monojet+MET at parton level diagrams

Monojet+MET at parton level diagrams

- ϕ can be produced on shell and then decay into MET and jet.
- $2\rightarrow 3$ becomes $2\rightarrow 2$
- Dominate when ϕ can be produced on-shell

Dijet+MET at parton level

• Dijet+MET is important when a pair of ϕ can be produced on-shell

• If χ is Dirac

Dijet+MET at parton level

- Dijet+MET is important when a pair of ϕ can be produced on-shell
- If χ is Majorana

Dijet+MET at parton level

• Dijet+MET is important when a pair of ϕ can be produced on-shell

- 1. $\propto M_{\chi}$, important in the region of heavy DM

Monojet constraints

- Event generation
 - MG5+ME+Pythia6.4+FASTJET3 for signals
 - MG5+ME+Pythia6.4+PGS4 for background
 - CTEQ6L1
 - anti-KT

Constraints (Dirac case)

$$\mathcal{L}_{\chi} = \lambda \bar{\chi}_L q_R \phi^* + \text{h.c.}$$

- With fixed M_χ , constraint on coupling becomes weaker with larger M_ϕ , since the production rate of phi becomes smaller.
- With fixed M_{ϕ} , constraint on coupling becomes weaker with larger M_{χ} , since the jet becomes softer.

Constraints (Majorana case) $\mathcal{L}_{\chi} = \lambda \bar{\chi}_L q_R \phi^* + \text{h.c.}$

- With fixed M_χ , constraint on coupling becomes weaker with larger M_ϕ , since the production rate of phi becomes smaller.
- With fixed M_{ϕ} , the constraint on coupling changes very little with M_{χ} , event becomes stronger in some region.

Constraints (Majorana case)

- The dijet+MET contribution is important in the large Mchi region, it may be important to consider "more professional" dijet +MET searches. (The SUSY squark search)
- Tech. Rep. CMS-PAS-SUS-13-012
- CalcHEP is used to calculate the total cross section
- K-factor is small and neglected

Constraints (Majorana case)

Comparison with dark matter direct detection

Overview

Haipeng An, Lian-Tao Wang, Hao Zhang, 1308.0592

- The model $\mathcal{L}_{\chi} = \lambda \bar{\chi}_L q_R \phi^* + \text{h.c.}$ χ : fermionic DM, ϕ : mediator
 - DM can be Dirac or Majorana, with important difference in signal
- Parameters
 - Coupling λ , mass of messenger M_{ϕ} , and mass of DM M_{χ} . (same for Dirac and Majorana)
- Signals: monojet + MET and dijet + MET
 - In the case that χ is Dirac, monojet + MET search is more important in most of the parameter space.
 - In the case that χ is Majorana, the dijet + MET search is more important in the large M_{χ} region.