Simplified DM models with the full SM gauge symmetry

Pyungwon Ko (KIAS)

April 26, 2017
Overview

• Key features of the model: the full SM gauge symmetry requires two scalar mediators in general

• Parameters of the model: DM mass, 3 mediator masses, and their Yukawa couplings to the DM and mediators

• List of exp. signatures: mono X (X=jet, gamma, W, Z), Direct detection, Thermal relic
Crossing & WIMP detection

Correct relic density \rightarrow Efficient annihilation then

Efficient annihilation now (Indirect detection)

Efficient scattering now (Direct detection)

Efficient production now (Particle colliders)
Three major approaches to DM phenomenology:

- **EFT**: non-renormalizable, higher dimension, DM-SM interactions divided by the mass scale of new physics \(\Lambda \)
 Parameters: \(\Lambda, m_\chi \)

- **Simplified model**: renormalizable, unbroken SM gauge invariant model with a mediator, DM, and SM interactions.
 Parameters: \(\lambda_{med}, m_{med}, m_\chi \)

- **UV-complete models**: full, high energy description of BSM physics
 Parameters: *many*
Limitation and Proposal

• EFT is good for direct detection, but not for indirect or collider searches as well as thermal relic density calculations in general.

• Issues: Violation of Unitarity and SM gauge invariance, Identifying the relevant dynamical fields at energy scale we are interested in, Symmetry stabilizing DM etc.
• Usually effective operator is replaced by a single propagator in simplified DM models

\[\frac{1}{\Lambda_i^2} \bar{q} \Gamma_i q \bar{\chi} \Gamma_i \chi \rightarrow \frac{g_q g_\chi}{m_\phi^2 - s} \bar{q} \Gamma_i q \bar{\chi} \Gamma_i \chi \]

• This is not good enough, since we have to respect the full SM gauge symmetry (Bell et al for W+missing ET)

• In general we need two propagators, not one propagator, because there are two independent chiral fermions in 4-dim spacetime
Our Model: a 'simplified model' of colored t-channel, spin-0, mediators which produce various mono-$x +$ missing energy signatures (mono-Jet, mono-W, mono-Z, etc.):

W+missing ET : special
This is good only for W+missing ET, and not for other signatures

$(g, \gamma, Z^0)+ E_T$ will involve both LH and RH chiral fermions and their scalar partners

There are no tight correlation between mono-W, mono-(jet, photon, Z0) signatures

\[
\frac{1}{\Lambda_i^2} \bar{q} \Gamma_i q \bar{\chi} \Gamma_i \chi \rightarrow \frac{g_q g_\chi}{m_\phi^2 - s} \bar{q} \Gamma_i q \bar{\chi} \Gamma_i \chi
\]
The Model

Consider SM-DM quark operator:
\[
\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q = \frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi (\bar{q}_L \gamma_\mu q_L + \bar{q}_R \gamma_\mu q_R)
\]

To generate this in a simplified model consider three new scalar types: \(\widetilde{Q}_{Li}, \widetilde{u}_{Ri}, \widetilde{d}_{Ri}\). One Dirac fermion DM particle: \(\chi\)

\[
\overline{\chi} \widetilde{Q}^i_L (\lambda_{Q_L})_i^j Q_{Lj} + \overline{\chi} \widetilde{u}^i_R (\lambda_{u_R})_i^j u_{Rj} + \overline{\chi} \widetilde{d}^i_R (\lambda_{d_R})_i^j d_{Rj} + H.C.
\]

Isospin violating term:
\[
\lambda_4 \Phi^\dagger \widetilde{Q}_L \widetilde{Q}_L^\dagger \Phi
\]

Previous studies on mono-\(W\) enhancement had arbitrary isospin violation among \(\widetilde{Q}_L\), but this is actually fixed by \(\lambda_4\).
\(\lambda_4 \leq 4\pi\) has been shown to have small effect on mono-\(W\) (Bell, et al arXiv:1503.07874).
UV-complete model

- In general, we need to consider interactions between Dark matter and Standard Model fermions to respect SM chiral structures

\[\mathcal{L}_{t-channel} = - \left[\bar{\chi} \tilde{Q}_L^i \lambda_{Q_L}^j Q_{Lj} + \bar{\chi} \tilde{u}_R^i \lambda_{u_R}^j u_{Rj} + \bar{\chi} \tilde{d}_R^i \lambda_{d_R}^j d_{Rj} + H.c. \right] \]

\[\mathcal{L}_{scalar} = D_\mu \tilde{Q}_L^i D^\mu \tilde{Q}_L^i - \tilde{Q}_L^i \left[\left(\frac{m_{\tilde{Q}_L}^2}{\lambda_{Q_L}^j} \right)_i^j + 2 \left(\lambda_{Q_L H}^j \right)_i^j H^\dagger H \right] \tilde{Q}_L^j \]

\[+ D_\mu \tilde{u}_R^i D^\mu \tilde{u}_R^i - \tilde{u}_R^i \left[\left(\frac{m_{\tilde{u}_R}^2}{\lambda_{u_R}^j} \right)_i^j + 2 \left(\lambda_{u_R H}^j \right)_i^j H^\dagger H \right] \tilde{u}_R^j \]

\[+ D_\mu \tilde{d}_R^i D^\mu \tilde{d}_R^i - \tilde{d}_R^i \left[\left(\frac{m_{\tilde{d}_R}^2}{\lambda_{d_R}^j} \right)_i^j + 2 \left(\lambda_{d_R H}^j \right)_i^j H^\dagger H \right] \tilde{d}_R^j \]

\[- \left[\tilde{Q}_L^i \left(A_u \right)_i^j \tilde{H} \tilde{u}_{Rj} + \tilde{Q}_L^i \left(A_d \right)_i^j \tilde{H} \tilde{d}_{Rj} + H.c. \right] \]

\[- \lambda_{\tilde{q}_L} \left(\tilde{Q}_L \tilde{Q}_L \right)^2 - 2\lambda_4 H^\dagger \tilde{Q}_L \tilde{Q}_L \tilde{H} \]
The Philosophy

Our model building guidelines:

- Respect the EW symmetry, not just the unbroken SM gauge $SU(3)_C \times U(1)_{EM}$ (full SM gauge symmetry)
- The dark sector can be more complicated (self-interaction, multipartite, etc.), for DM@LHC assume that χ is stable on lifetime of detector (E_T)
- work with a more 'UV-complete' model than usual Simplified models
- take into account flavor constraints, but loosen assumptions on couplings to mediators/masses relative to usual simplified models

The ultimate goal: try to find optimal balance between simplicity, and UV-complete, that allows us to elucidate DM properties at colliders for broadest possible set of models
Flavor Constraints

Cannot simultaneously diagonalize λ and m for scalars and $\tilde{q}^\dagger q H^\dagger H$ terms yield:

- Rare Higgs decays: $H \rightarrow \tilde{q}_i^* \tilde{q}_j^* \rightarrow \tilde{q}_i + q_j \bar{\chi} \chi$
- Modified Higgs branching ratios to $gg, \gamma\gamma, Z\gamma$, etc.
- FCNC

χ is Dirac (no helicity flip in loop), and only one species (reduces FCNC as compared to MSSM)

Assume: $m_{\tilde{d}} \approx m_{\tilde{s}}$, allows reduced $K^0 - \bar{K}^0$ mixing constraints

- Similar to the gluing-mediated FCNC problems in SUSY models
- However there are no SUSY partners of SM gauge bosons here
Mono - W

- In this case, there is a handle to have a iso-spin violating operator, the mass gap between

\[m_{d_L}^2 - m_{u_L}^2 = \lambda_4 v^2, \]

\[
\begin{align*}
m_{\tilde{u}_L}^2 &= m_{\tilde{Q}_L,0}^2 + \lambda_{Q_L H} v^2 \\
m_{\tilde{d}_L}^2 &= m_{\tilde{Q}_L,0}^2 + \lambda_{Q_L H} v^2 + \lambda_4 v^2 = m_{\tilde{u}_L}^2 + \lambda_4 v^2 \\
m_{\tilde{u}_R}^2 &= m_{\tilde{u}_R,0}^2 + \lambda_{u_R H} v^2 \\
m_{\tilde{d}_R}^2 &= m_{\tilde{d}_R,0}^2 + \lambda_{d_R H} v^2
\end{align*}
\]

- It can trigger high PT W-boson enhancement
 - Mono lepton from W-boson
\[Q_L = u_R = 1, \lambda_{d_R} = 0 \]

\[\Lambda_{Q_L} = 10 \text{ TeV} \]

\[
\Lambda \equiv \frac{\tilde{m}}{\lambda}
\]

\[
\sigma_{SI}^N = \frac{1}{64\pi} \frac{m_N^2 m_N^2}{(m_X + m_N)^2} \left[\frac{3|\lambda_{Q_L}|^2}{2m_{Q_L}^2} + \frac{|\lambda_{u_R}|^2}{2m_{u_R}^2} + \frac{2|\lambda_{d_R}|^2}{2m_{d_R}^2} \right] + \frac{Z}{A} \left(\frac{|\lambda_{u_R}|^2}{2m_{u_R}^2} - \frac{|\lambda_{d_R}|^2}{2m_{d_R}^2} \right)^2,
\]

\[
\Lambda_{\text{CDMSlite}} = 1 \text{ TeV}
\]

\[
\Lambda_{\text{LUX}} = 3 \text{ TeV}
\]

\[
\Lambda_{\text{LUX}} = 5 \text{ TeV}
\]

\[
\Lambda_{\text{LUX}} = 10 \text{ TeV}
\]

Coherent Neutrino Scattering

\[
m_X [\text{GeV}]
\]

\[\sigma_{SI}^N [\text{zb}] \]
Direct Detection

t-channel colored scalars are highly constrained by direct detection, and the region where $m_\chi > 1$ TeV has significantly reduced mono-X cross sections at the 13 TeV LHC, so the remaining region of interest for DM at the LHC in this model is $m_\chi < 10$ GeV:

![Graph showing direct detection constraints on DM mass m_χ versus SI cross section σ_{SI} at the LHC for different gaugino masses Λ_{QL} and Λ_{UR}, with data points from CDMSlite and LUX.](graph.png)
Relaxing the assumptions about coupling constants significantly complicates the direct detection, as there are generic material dependence effects in the SI cross section due to $\lambda_{u_R} \neq \lambda_{d_R}$, as seen in the spin-independent cross section:

$$\frac{1}{64\pi} \frac{m_N^2 m_X^2}{(m_X + m_N)^2} \left[\left(\frac{3|\lambda_{\tilde{Q}_L}|^2}{m_{\tilde{Q}_L}^2} + \frac{|\lambda_{\tilde{u}_R}|^2}{m_{\tilde{u}_R}^2} + \frac{|\lambda_{\tilde{d}_R}|^2}{m_{\tilde{d}_R}^2} \right) + \frac{1}{2} \frac{Z}{A} \left(\frac{|\lambda_{\tilde{u}_R}|^2}{m_{\tilde{u}_R}^2} - \frac{|\lambda_{\tilde{d}_R}|^2}{m_{\tilde{d}_R}^2} \right) \right]$$

Without considering running effects, the direct detection probes λ/m_{med}, but there are isospin violating effects from $\lambda_{u_R} \neq \lambda_{d_R}$.

\[\]
Direct Detection

Running effects form EFT scale to Hadronic scale generically mix operators. These effects come from EW loops, quark-threshold scales, etc.

- Usual method in Simplified models of going to EFT to determine direct detection misses these effects (can be sizable)
- Running introduces additional dependence on Λ so cannot re-scale constraints to eliminate coupling constants
- generally mixes RH and LH quark couplings, and introduces slight isospin violation in SI cross section (in addition to the source from $\lambda_{u_R} \neq \lambda_{d_R}$)

A practitioner friendly guide for these effects can be found in D’Eramo et al (arXiv:1411.3342).
Known tension between thermal relic and direct detection for t-channel, colored, scalar mediators and from existing LHC constraints ($m_{med} > 1.2$ TeV).

$m_\chi \approx 5$ GeV \rightarrow generically over-produced

- if χ couples to Leptons, this can be alleviated

$m_\chi \approx 1$ TeV \rightarrow generically under-produced

- if χ is not the only thermal relic this can be accommodated

For the LHC phenomenology we assume $m_\chi = 5$ GeV, but $m_\chi \mathcal{O}(100)$ GeV can be accommodated if there are additional thermal relics (reduced direct detection constraints via t-channel mediator).
Collider Signatures

Collider signatures: mono-Jet, mono-W, mono-Z, two jets + ET, etc.

- Mono-W signature depends on $\Lambda_{Q_L} = \frac{\lambda_{Q_L}}{m_{\tilde{Q}_L}}$
- Mono-jet/mono-Z depends on all mediators
- Complementary information from each mono-X when RH/LH quarks reduces complexity

At 13 TeV: No significant difference from σ_{EFT} for $m_{\tilde{q}_{R,L}} \mathcal{O}(10)$ TeV.
Collider Signatures

Mono-jet and mono-w^+ cross sections for $\lambda_{QL} = \lambda_{u_R} = 1$, $m_{u_R} = 10$ TeV, mono-W^- will be $1/2$ mono-W^+ due to PDFs. For mono-jet: $|\eta| < 5$, $p_T > 100$ GeV.
Collider Signatures : Mono-X

\[m_\chi = 5 \text{ GeV}, \lambda_{u_R} = \lambda_{Q_L} = 1 \text{ and } \lambda_4 = 0 \]

LHS: \(\lambda_{d_R} = 0 \rightarrow \) RHS: \(\lambda_{d_R} = 1, m_{d_R} = 3 \text{ TeV} \)
Collider Signatures: Mono-X

Diagonal line represents a previously studied simplified model:
DM mass = 300 GeV

\[m_\chi = 5 \text{ GeV}, \; \lambda_{u_R} = \lambda_{Q_L} = 1 \text{ and } \lambda_4 = 0 \]

LHS: \(\lambda_{d_R} = 0 \rightarrow \) RHS: \(\lambda_{d_R} = 1, \; m_{d_R} = 3 \text{ TeV} \)
Collider Signatures : Mono-W

Lepton mono-W signature kinematics produced in Delphes for $\lambda_4 = 0$ and $m_\chi = 5$ GeV.
Collider Signatures: jet p_T

Finite mass effects in kinematic mono-Jet p_T:

$\lambda_{d_R} = \lambda_4 = 0, \lambda_{Q_L} = \lambda_{u_R} = 1, m_{u_R} = m_{Q_L}$
Summary

• Very important to the full SM gauge symmetry when investigating simplified models for DM at colliders (gauge invariance, unitarity, renormalizability, etc.)

• Broader range of interesting collider signatures, with only modest increase in complication (however tension between thermal relic/direct detection for colored t-channel mediator models)

• In the models with colored scalar mediators, mass plotting of a few TeV are shown to affect collider signatures and in principle could yield material dependence in DD exp’s
Conclusion: loosening constraints from the usual simplified models (ie $\Lambda_{Q_L} \neq \Lambda_{u_R} \neq \Lambda_{d_R}$) allows for the clear presentation of mono-\textit{X} cross sections.

Even under simplifying assumptions, these 'less' simplified models allow a practitioner to quickly determine where previously studied simplified models overlap, where they do not, and where 'less' Simplified Models make distinct predictions that may otherwise be missed.

Thank you!

In this talk, I discussed only the t-channel mediator models. In case of the s-channel (pseudo) scalar mediator cases, including the SM Higgs boson can be very important.

See the following references for more details on this issue: arXiv:1506.06556 (PLB), 1603.04737 (JHEP), 1610.03997 (PLB), 1701.04131 (PRD), 1705.02149 (EPJC), 1712.05123 (EPJC), 1807.06697 (PRD)
Backup Slides
Collider Signature: mono-W

![Graph showing cross-section versus mass](attachment:graph.png)

Mono-W⁺ @ LHC 13 TeV

- \(m_\chi = 5 \text{ GeV} / 300 \text{ GeV}, \ \lambda_4 = 0 \)
- \(\Lambda_{Q_L} = 2 \text{ TeV} \)
- Cross-sections for different masses: 3 TeV, 5 TeV, 10 TeV
Collider Signature: mono-Z

Mono-Z @ LHC 13 TeV

- $m_\chi = 5 \text{ GeV} / 300 \text{ GeV}$, $f_{u_R} = 1$
- $f_{d_R} = 0$, $\Lambda_{u_R} = 10 \text{ TeV}$, $\lambda_4 = 0$
- $\Lambda_{Q_L} = 2 \text{ TeV}$

σ_{tot} [fb] vs m_{Q_L} [TeV]
Collider Signatures: mono-X

Diagonal line represents a previously studied simplified model: