Dark Matter Search with Belle II

Enrico Graziani

INFN – Roma 3

on behalf of the Belle II Collaboration

OUTLINE OF THE TALK

- Belle II and SuperKEKB
- Highlights of Belle II dark searches No t channel, sorry ...
- Perspectives & Summary

E. Graziani – Dark Matter Search with Belle II

From KEKB to SuperKEKB

... For a 40x increase in intensity you have to make the beam as thin as a few x100 atomic layers

Belle II detector

to cope with higher background

Belle II data taking plan: the past (2018)

Phase 2

Phase 2 finished July 2018

- Nano-beam scheme works!
- L=5.5x10³³ cm⁻²s⁻¹ achieved
- L_{int}≈0.5 fb⁻¹ collected
- 1/8 of vertex detector
- Low backgrounds
- Pass-through HLT (software) trigger
- Tracking and clustering L1 trigger
 Bhabha veto L1 trigger
- □ Some single photon L1 trigger

Good conditions for dark searches

Belle II & SuperKEKB Phase 2

Start of collisions: April 25th 2018

Belle II & SuperKEKB Phase 2

Start of collisions: April 25th 2018

Effective bunch length: from KEKB to SuperKEKB Phase 2

Ordinary collision (KEKB) Belle case 1999 data

σ = 4.5 mm

σ = 550 μm

Nano-beam scheme works!

E. Graziani – Dark Matter Search with Belle II

What can we do at B-factories that we can't at the LHC in terms of DM searches?

- Clean, «energy conserving» environment
- 3d momentum conservation
- Easiness of tag & probe techniques
- Full Event Interpretation
- Less model dependency

- Low multiplicity signatures
- Missing energy channels
- Invisible particles
- Some fully neutral final states accessibility
- Cleanliness and luminosity sometimes compensate for cross section → competition

Dark Sector Candidates, Anomalies, and Search Techniques

Dark Sector Candidates, Anomalies, and Search Techniques

Invisible dark photon: sensitivity

Visible dark photon: sensitivity

Axion Like Particles (ALPs): sensitivity

Axion Like Particles (ALPs): sensitivity

- couples only to the 2° and 3° lepton family ٠
- calls for LFU violation ۲
- May explain (g-2)_u •
- Invisible BR possibly enhanced by LDMA (sterile • neutrinos, light Dirac fermions)
- Might solve $B \rightarrow K(^*)\mu\mu$, R_{κ} , $R_{\kappa*}$ anomalies ٠

Very preliminary systematics, very conservative limits

- couples only to the 2° and 3° lepton family ٠
- calls for LFU violation •
- May explain (g-2)_u •
- Invisible BR possibly enhanced by LDMA (sterile • neutrinos, light Dirac fermions)
- Might solve $B \rightarrow K(^*)\mu\mu$, R_{κ} , $R_{\kappa*}$ anomalies ٠

Very preliminary systematics, very conservative limits

$$Z' LFV$$

 $Z' \rightarrow e\mu \leftarrow t$ -channel
 $Z' \rightarrow \mu \tau$
Visible + invisible

G. Meuelia

 $e^{+}e^{-} \rightarrow Y(3S)$ $\downarrow^{(4.4\%)}$ $Y(3S) \rightarrow \pi^{+}\pi^{-}Y(1S)$ $\downarrow^{}$ $Y(1S) \rightarrow invisible$ $e^{+}e^{-} \rightarrow Y(2S)$ $\downarrow^{(18.1\%)}$ $Y(2S) \rightarrow \pi^{+}\pi^{-}Y(1S)$ $\downarrow^{}$ $Y(1S) \rightarrow invisible$

Belle2 Simulation Y(3S) → π⁺π⁻Y(1S), Y(1S) → vv

Charge=1, PDG=211 (pi+) pT=0.420365, pZ=0.000692372 V=(-0.00, -0.00, -0.03) Mother: MCParticles[0] (Upsilon(3S))

Charge=-1, PDG=-211 (pi-) pT=0.344016, pZ=0.118851 Y=(-0.00, -0.00, -0.03) Mother: MCParticles[0] (Upsilon(3S))

18

Requires running at Y(3S) \approx 200 fb⁻¹ with special low p_T trigger

Translating $Y(1S) \rightarrow$ invisible search to dark matter limits

Summary

- Belle II Phase2 finished in July 2018
- Early data taking mostly devoted to commissioning
- $L_{int} \approx 0.5 \text{ fb}^{-1}$, with $L_{MAX} = 5.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Resonances, b-physics and charm physics «rediscovered»
- Belle II Phase III (complete detector) just started
- $L_{int} \approx 100 \text{ pb}^{-1}$ before the fire incident
- Hopefully $\approx 10 \div 20 \text{ fb}^{-1}$ by summer conferences

Invisible dark photon search

- ALP search
- Z' to invisible search
- Z' LFV search
- > Y(1S) to invisible

Still to be started: dark searches in flavour physics $B \rightarrow K^+ A, A \rightarrow \gamma \gamma$ $Y(1S) \rightarrow \gamma A, A \rightarrow gg$ $B \rightarrow X_c \mu \vee Z'$

Not even mentioned

- Magnetic monopoles
- muonic dark force
- dark Higgs
- dark Higgstrahlung
- dark scalars
- inelastic dark matter
- dark search in τ decays
- Iong-lived particles
- •

SPARE SLIDES

Invisible dark photon: sensitivity

Dark photon: introduction

Some astrophysical observations suggest the possibility of the existence of a new light (GeV scale) hidden dark sector with a mediator A' (dark photon), weakly coupled to the Standard Model via kinetic mixing, and light dark matter.

Invisible dark photon: backgrounds

Axion Like Particles (ALPs): signal

ALPs can also decay to DM \rightarrow single photon topology

Axion Like Particles (ALPs): sensitivity

Possible (big) factors of improvement beyond luminosity:

- PID (up to 7 on τ bkg)
- Resolution (VXD)
- Vertex fit $\rightarrow \tau$ rejection
- MVA vs linear cut analysis
- See also previous slide for assumptions on • systematics

12 fb⁻¹ 59 fb⁻¹ background reduced by 135 fb⁻¹ 135 fb⁻¹, B/5

same background or

factors 3 and 5

$L_{\mu} - L_{\tau} Z'$ invisible decay sensitivity

Look for bumps in recoil mass against a $\mu^+\mu^-$ pair

Main backgrounds:

LFV Z' (eµ coupling)

 $e^+e^- \rightarrow e^+\mu^- Z'$; $Z' \rightarrow invisible$

 $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ $e^+e^- \rightarrow \tau^+\tau^- (\gamma), \tau^\pm \rightarrow \mu^\pm \nu \nu$ $e^+e^- \rightarrow e^+e^- \mu^+\mu^-$

Belle II expected sensitivity for $Z' \rightarrow$ invisible

Z' LFV: invisible + visible

What if symmetries of SM are not kept in the Dark Sector?

What if DM violates Lepton Flavour?

One can imagine, for example, $e\mu$ coupling

e⁺ e⁻ \rightarrow e⁺ μ^{-} Z'; Z' \rightarrow invisible Dominant background: e⁺e⁻ $\rightarrow \tau^{+}\tau^{-}(\gamma), \tau^{\pm} \rightarrow \mu^{\pm}, e^{\pm} \nu\nu$

$$e^+e^- \rightarrow e^+\mu^{--}Z'$$
; $Z' \rightarrow e^+\mu^- + c.c.$
no SM background

Magnetic monopoles

- Particle carrying magnetic charge
- > Recent searches for magnetic charges g > 68.5e
- > Small charges g < 10e are not excluded
- Weaker ionisation due to absence of 1/β² factor for magnetic charges
- Tracks are straight in XY and curved in RZ
- > They need a dedicated tracking (parabolas rather than helices)

