A Large Ion Collider Experiment

WP15 status update

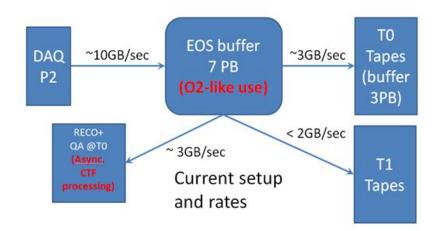
L. Betev

General

WP15 = O_2 data buffer

Objective – design and deliver O2-attached storage; assure its compatibility with distributed Grid storage (disk and tapes) and existing local and distributed data management tools

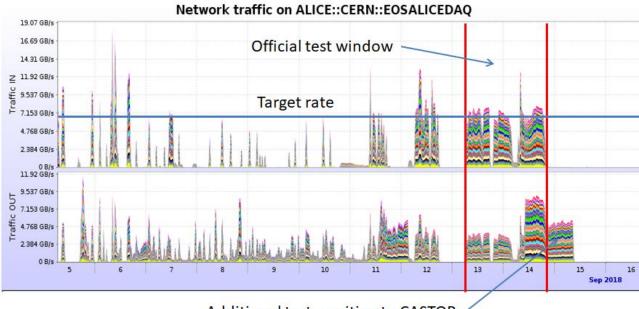
WP15 operation and structure


- Minimize duplication of effort and save manpower
- Heavily leveraged with CERN IT know-how and purchase procedures
 - Selection of hardware
 - Tender and procurement
 - Testing and validation
 - EOS installation and configuration
 - Tape interface (CTA)
 - TBD: Operation, maintenance
- WP15 membership
 - LBNL (J. Porter), ORNL (P. Eby, M. Galloway), CERN (L. Betev)
 - CERN IT participation B. Panzer, E. Bonfillou, A. Peters + EOS developers

Major milestones completion

- # 153: Design of abridged evaluation process
- testing in production
 - Executed together with the Pb-Pb data buffer test
 - "10% validation" test for the O2 storage
 - Includes all data flows foreseen in the TDR
 - Scaled data rates

```
Total I/O rate O2 = 150GB/sec
```

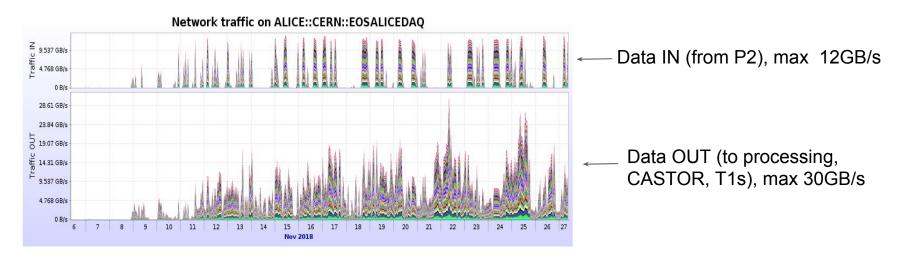



Key results from the test

40 hours Pb-Pb data taking simulation

Additional test – writing to CASTOR

- Even load distribution
- Capacity of pool 6PB (10% O2 buffer)


- 50 concurrent writes (10% of expected EPNs in synchronous mode)

- 600 concurrent reads (10% of expected cores in asynchronous mode)

Key results from the test (cont.)

24 days of Pb-Pb data taking and processing - all parameters well above the initial targets

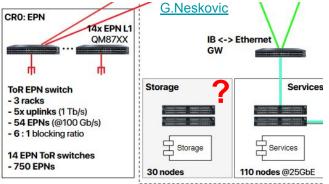
_

Completed and ongoing milestones

154: Decision on disk buffer location from CERN IT (following official request)

- # 155: Hardware architecture of the O2 buffer document, with CERN IT
- # 156: Disk pool management with EOS decision on responsibilities sharing
 - To be discussed with IT
- # 162: CTA test and evaluation, plan for O2 buffer integration with CTA
 - EOSCTAALICEPPS prototype deployed tests will start soon

O2 buffer hardware architecture

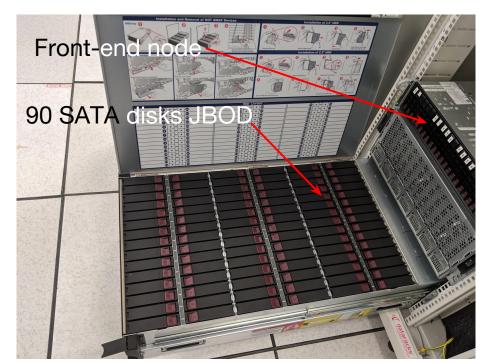

- Size: 60PB, I/O rate: 150GB/sec
- Modular storage building blocks (SSU) high density JBODs, managed by a head node with 2x100Gb/s ethernet

2U 2x 100Gb/s NIC HBA 1 HBA 2	Front-end server: 2 HBAs (8x12Gb/s) 1 NIC (2x100Gb/s)	Element	Capacity and size	I/O Rate	Remark
	JBOD1 84x12TB SATA	JBOD	Up to 84 3.5" SATA drives, 5U rack space	4x 12Gb/sec channels	Disk I/O rate is not limiting factor
5U		HBA	PCIe 2 channel adapter, hosted in server	4x 12 GB/sec	Max 48Gb/sec/JBOD
	JBOD2 84x12TB SATA	Network adapter	PCle 2 chanel 40Gb/sec NIC, hosted in server	2x 100Gb/sec	Max 200Gb/sec/server
5U		Server	2U rack space server unit	Max 96Gb/sec with 1 NIC channel	

~30 SSUs, total theoretical throughput ~750GB/s

Critical decision on network interface

- The current storage architecture assumes ethernet
 - This is what CERN uses for LAN/WAN
- O2 network architecture (ethernet/infiniband) ongoing discussion
- Consequences for WP15 if IB for storage
 - \circ $\,$ No common purchase with CERN IT, need to do our own tender $\,$
 - No support for testing/configuration/installation and operation large amount of detailed studies and actions here
 - \circ \quad No sufficient manpower to execute all of the above on our own
- Unknown connectivity aspects with the external world (aka T0/T1s)
 - Likely not a big problem, but requires another dedicated study
- To continue the work on WP15, we need decision on network ~now


Major milestones

- For vertical slice assembly and simulation challenges
- **# 157:** Prototype disk buffer for O2 quotes and purchase
 - If we want additional capacity, beyond the IT offering
 - May 2019
- For O2 buffer delivery
- # 159: Decision to go with IT on buffer purchase
 - November 2019

More on the vertical slice

- Offer to use a high density JBOD currently being tested by IT
- If we want to test also redundancy strategy (EOS 2D RAIN)
 - We should plan to buy at least one more node
 - High level of interest/involvement from CERN IT and KISTI
 - ORNL knowledge and experience with ZFS is critical for this step

WP15 - summary

- Milestones defined for the entire project duration
- All milestones completion on track
- Critical decision needs to be taken on network interface
- Next major milestones
 - Purchase ~few PB buffer for O2 prototype (May 2019)
 - Join IT tender for the bulk purchase (November 2019)
 - Actual purchase of 60PB ~mid 2020

