A Large Ion Collider Experiment

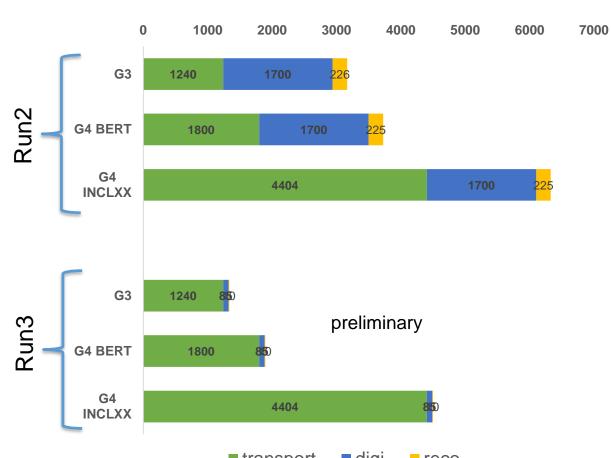
Opportunities for simulation optimizations (in Run3)

Sandro Wenzel (CERN)

ALICE Software and Computing Week | Apr 3th, 2019 | Sandro Wenzel

Introduction

"Simulate what we need for our physics goals, not more (and not less)" "Achieve this need within the resource budget (no-gap scenario)"


This session is meant to

- Get an updated picture of MC requirements needed for Run3 (feedback from PWGs)
- Give latest numbers on G3/G4 (pp) performance as baseline
- Give some pointers about simulation hotspots and areas where
 - Optimization / parameter tuning will be most effective
 - Fast-simulation modules could make impact
- Trigger general discussions about approaches for simulation/workflow optimizations

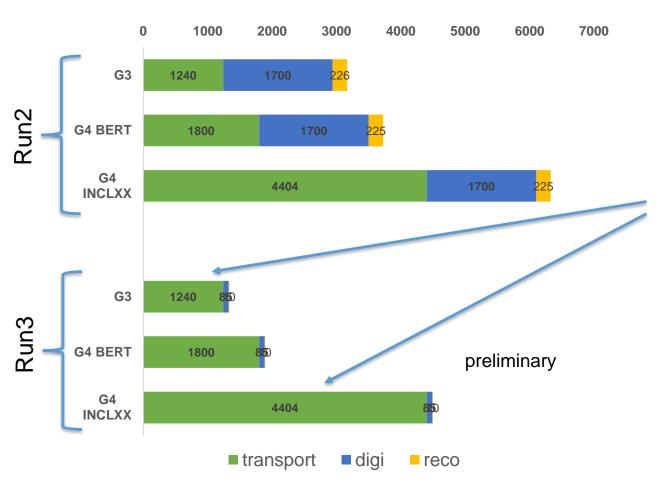
This talk ... with overlap + extra info in yesterday's session

Starting point: MC resources for pp (Run2 vs Run3)

■ transport ■ digi ■ reco Time in [s] for 100 pp events using production scripts on a benchmark machine; see <u>ALIROOT-7121</u>

ALICE Software and Computing Week | Apr 3th, 2019 | Sandro Wenzel

Run2:


- Transport and digitization major time consumers
- Overall G4/G3 ratio: 2.0x (INCLXX); 1.2x (BERT);

Run3: (current status)

- Transport time same as Run2 for the moment
- Much improved time for digitization and reco
- Leads to increased effect of G4 globally
 - Potentially ~3.4x (INCLXX), ~1.4x (BERT)
 - Target to use INCLXX only in ITS
- Makes transport the real hotspot
 - Calls for optimization effort focusing on transport (cuts, parameters)
 - Better applicability of traditional fast-sim methods (shower libraries)

Starting point: MC resources for pp (Run2 vs Run3)

• Understand where we spend time in transport

- Per detector categories (modules)
- Per particle categories (etc)

Work out few suggestion to follow-up

- Use <u>MCStepLogger</u> to collect step info
 - Works for both AliRoot and O2
 - Produces ROOT files which can be analyzed using any sort of query and cuts

See also previous <u>CWG8 report</u> (2013) with similar focus and conclusions

General overview

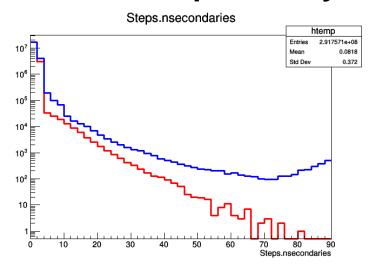
	transp. time	steps (1E6)	Tracks (1E6)	steps/track	functional hotspots (Intel VTUNE)	dominating PDG	remarks
G3	1240s	291	25	11.64	geometry calculations (TGeo safety)	gamma: 36% e-: 42% e+: 7.2% neutron: 5.6% proton: 1.8%	VecGeom would be beneficial
G4-BERT	1800s	256	42	6.09	geometry calculations (TGeo + TGeo/G4 conversions lookups)	gamma: 34.6% e-: 51% e+: 4.4% neutron: 1.8% proton: 1.6%	VecGeom would be beneficial
G4- INCLXX	4404s	256	42	6.09	G4 physics processes	gamma: 33.6% e-: 50.4% e+: 4.2% neutron: 3.2% proton: 2.8%	

Red G3

MC transport analysis dashboard

htemp

2.917571e+08


291.9

1097

Entries

Mean

Std Dev

Steps.z

Z-Position profile

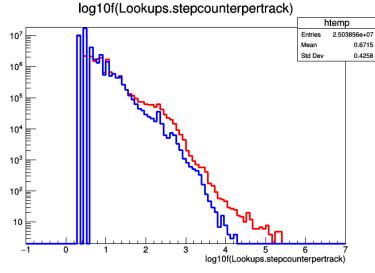
107

10⁶

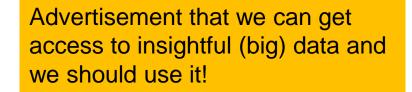
10⁵

10⁴

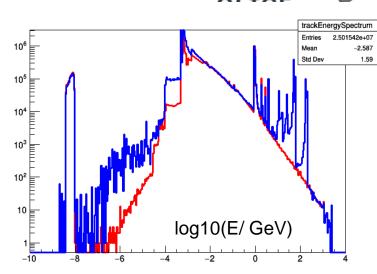
10³

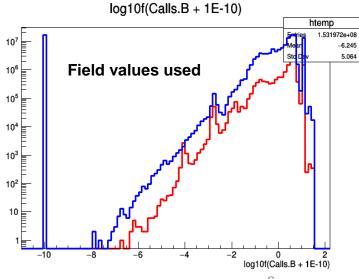

10²

-3000


-2000

A Large Ion Collider Experiment

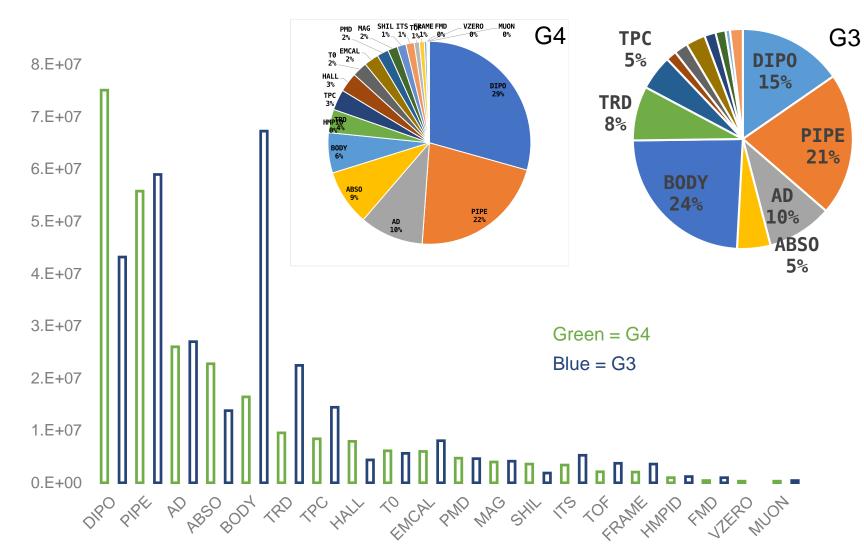

#Secondaries per step


Steps per track

Selections/cuts/joins can be applied to study very specific questions

Energy spectrum of transported tracks

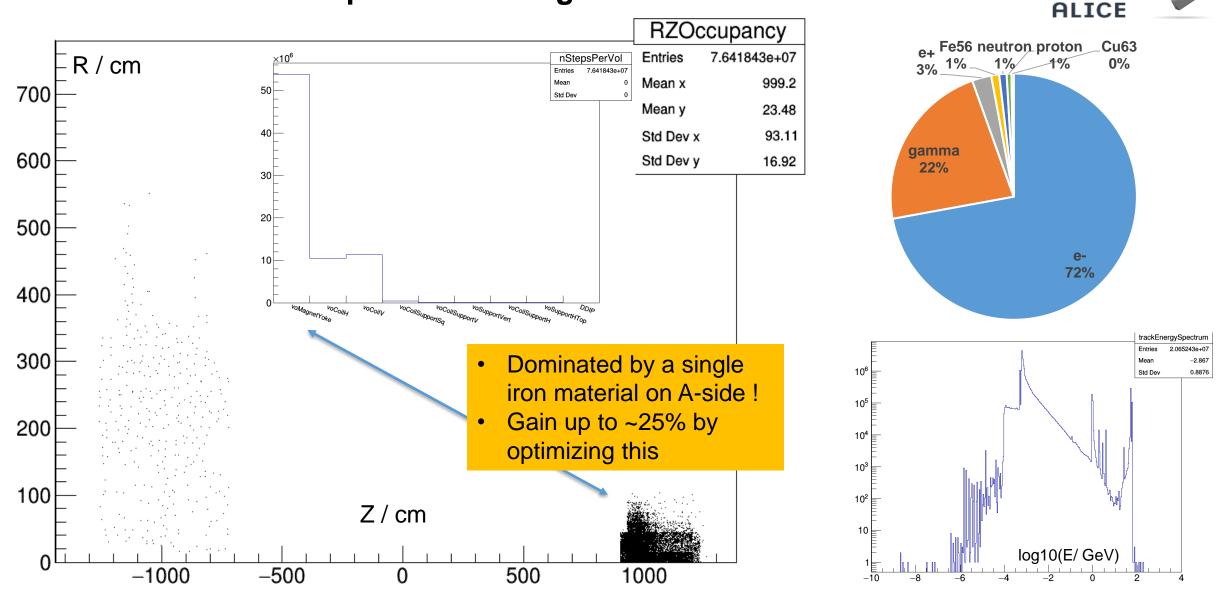
ALICE Software and Computing Week | Apr 3th, 2019 | Sandro Wenzel


2000

3000

Steps.z

Where are MC steps done (Run2 pp setup)?



- (Suprisingly) most MC steps are done in nonsensitive detector areas
 - DIPO, PIPE, BODY/ALIC standing out
- AD most important sensitive part (ZDC not included)
- G3/G4 differ somewhat (DIPO, BODY)
- Details for DIPO on next slide

ALICE Software and Computing Week | Apr 3th, 2019 | Sandro Wenzel

DIPO: Most evident optimization target for G4

Summary : Finding about sim performance

- Few very dominating materials (voMagnetYoke, PIPE)
 - Should be priority target of optimization
 - Cut optimizations
 - Parametrized/fast simulation
- Too large geometry cuts in general; Too many steps (G3) far away from any detector in mother volume
 - Example: taking out ACORDE reduces mother volume and instantly gives 10% gain for G3
 - In general should try to apply geometry tracking cuts as tight as possible
 - Set Rmax, ZmaxA, ZmaxC, implement "black body" absorber with custom voxels
 - Might need systematic studies
 - Crude / fast transport in ALIC
- AD (apart from ZDC) most resource taking sensitive module
- Tailored productions (taking out certain modules or secondaries) if possible will save resources

How to continue

- Believe we have some evident items to work on!
 - Geometry cuts !
 - Physics parameter tuning
 - Parametrized fast sim for few candidates
- How to organize the work ?
 - Some dedicated task force / discussion forum would be appropriate / essential
 - Where to attach such task force ?
 - Participation and input from PWG and detector experts
- Continuous performance monitoring
 - Wishful to have MC reports (such as included here) generated automatically and visible to collaboration