

Introduction: Fast Simulation
- Current VMC developments -

Benedikt Volkel

CERN; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg

ALICE Software and Computing Week, 03/04/2019

Mixing full and fast simulation in VMC
● ALICE uses detector simulation engines via

Virtual Monte Carlo (VMC) interface
● on this level only exactly one engine could be

used per event due to singleton structure
● wanted to have the ability of mixing engines

depending on user conditions
→ ability of mixing e.g. GEANT3 with GEANT4
→ able to develop fast simulation on VMC level

● extended VMC merged in ROOT
[https://github.com/root-project/root/pull/3513]

1

engine
layer

interface
layer

VMC
layer

user
framework

abstract
engine

interface

implemented
engine

interface

concrete
engine

abstract
stack

abstract
user

hooks

stack
implemen-

tation

hooks
implement-

tation

https://github.com/root-project/root/pull/3513

Simplified picture of the extensions

2

goal: share simulation
assigning specific volumes, particle types, phase space to different engines

engine1 engine2track arrives at
volume boundary

engine1 engine2certain particle
produced

engine1 engine2track enters
phase space

engine1 engine2more complex
condition

dispatch/track transfer between engines
based on user conditions

Simplified picture of the extensions

2

goal: share simulation
assigning specific volumes, particle types, phase space to different engines

engine manager

user hooks

stack
(exchange)

engine 1

engine 2

user
framework

1a

4a

3

2

4b

1b

engine1 engine2track arrives at
volume boundary

engine1 engine2certain particle
produced

engine1 engine2track enters
phase space

engine1 engine2more complex
condition

dispatch/track transfer between engines
based on user conditions

Choosing among multiple engines

VMCFastSim (virtual)
#include <TVirtualMC.h>

template <class T>
class VMCFastSim
: public TVirtualMC
{
 //...
 virtual void process() = 0;
 //...
};

Geant3_VMC
#include <TVirtualMC.h>

class TGeant3
: public TVirtualMC
{
 // implementations
};

MyFastSim
#include <VCMFastSim/FastSim.h>

class MyFastSim
: public FastSim<MyFastSim>
{
 public:
 //...
 void process() override
 {
 // put implementation here
 }
};

Geant4_VMC
#include <TVirtualMC.h>

class TGeant4
: public TVirtualMC
{
 // implementations
};

FastSim1

FastSim2

FastSim3

53

Choosing among multiple engines

VMCFastSim (virtual)
#include <TVirtualMC.h>

template <class T>
class VMCFastSim
: public TVirtualMC
{
 //...
 virtual void process() = 0;
 //...
};

Geant3_VMC
#include <TVirtualMC.h>

class TGeant3
: public TVirtualMC
{
 // implementations
};

MyFastSim
#include <VCMFastSim/FastSim.h>

class MyFastSim
: public FastSim<MyFastSim>
{
 public:
 //...
 void process() override
 {
 // put implementation here
 }
};

Geant4_VMC
#include <TVirtualMC.h>

class TGeant4
: public TVirtualMC
{
 // implementations
};

FastSim1

FastSim2

FastSim3

5

user framework

// Get the TMCManager | // specify condistions how to change
auto manager = TMCManager::Instance(); | // and transfer tracks among engines
 |
// create user stack and notify manager | // init...
auto stack = new MyStack(); | manager->Init();
manager->SetUserStack(stack); | // ...and run 42 events
 | manager→Run(42);
// create engines |
//------------------------------------- |
auto geant3 = new TGeant3(); |
auto geant4 = new TGeant4(); |
auto fastSim = new MyFastSim(); |
//------------------------------------- |
 |

3

Fast simulation in GEANT4
● GEANT4 offers inherently a solution of plugging in fast simulation into full simulation

→ can be used via GEANT4(_VMC)
[see also talk by Dmytro Kesan on Friday on FairRoot implementation]
[code at https://github.com/FairRootGroup/FairRoot/tree/master/base/sim/fastsim]

● fast simulation connected to GEANT4 regions and particle definition (and additional
user conditions)
→ automatic dispatch

● offers various functionality
– user is free regarding the fast sim implementation
– consistency of transport ensured by GEANT4
– “path finder” available to automatically transport (incident) particles/tracks to region’s

boundary (also considering external fields)
– not directly related but could be useful: cross section biasing depending on regions, correct

re-weighting of tracks
[there was a request/idea by Friederike Bock]

● Use native GEANT4 fast simulation implementations (via GEANT4_VMC)?!

4

https://github.com/FairRootGroup/FairRoot/tree/master/base/sim/fastsim

Conclusion and outlook
● extensions of VMC code were merged

[see https://github.com/root-project/root/pull/3513]

● GEANT3_VMC and GEANT4_VMC extensions to be merged in coming days
● preserved backward-compatibility, no performance overhead in single run
● can freely combine full and fast simulation

– e.g. if useful, GEANT3 and GEANT4 (and Fluka) can be mixed
– can use GEANT3 (and Fluka) with fast simulation

● open questions and comments
– Any requirements of PWGs on VMC? Which functionality are they interested in?
– In case there will be the decision on moving to GEANT4 as the default engine, could we

directly move forward and implement fast simulation using what is offered?
– Using 2 physics lists when using GEANT4 was considered

→ that is not (yet) supported by GEANT4 itself
→ this cannot be solved immediately using VMC
 (GEANT4 uses a G4RunManager singleton accepting one physics list)

5

https://github.com/root-project/root/pull/3513

Thank you for your attention

Backup

Testing the code

toy sampling calorimeter for tests

x
y

z

O
shoot particles
● protons
● 1 GeV
● 1 / event GAPX

● active material
● liquid argon

ABSO
● passive material
● lead

backward-compatible
in terms of physics
[has also been checked for
version compatibility]

b1

current

with extensions

Testing the code

toy sampling calorimeter for tests

x
y

z

O
shoot particles
● protons
● 1 GeV
● 1 / event GAPX

● active material
● liquid argon

ABSO
● passive material
● lead

backward-compatible
in terms of physics
[has also been checked for
version compatibility]

b1

current

with extensions

able to mix full sim
engines to simulate
different parts of the
geometry

● GEANT3: ABSO
● GEANT4: GAPX

engine ABSO
[rel. #steps]

GAPX
[rel. #steps]

GEANT3 ~90 % ~10 %

GEANT4 ~25 % ~75 %

try to avoid steps of 0 length at volume boundaries
before a track is transferred from one engine to

another to save computation time

Backward compatibility

steps in x are perfectly overlaying
[same for other coordinates and observables]

b2

Backward compatibility

steps made per PDG are perfectly overlaying
b3

Prototype of a fast calorimeter simulation (WIP)

toy sampling calorimeter for tests

x
y

z

O
shoot particles
● protons
● 1 GeV
● 1 / event GAPX

● active material
● liquid argon

ABSO
● passive material
● lead

1. derive distribution
of total energy deposit
from GEANT4

2. fit normal distribution
[proof of principle!]

3. pass fitted distribution
to FastSim

4. FastSim samples total
energy deposits from
fitted distribution

dispatch when
reaching
calorimeter

sample and
provide energy
deposit (hits)

b4

GEANT4_VMC VMCFastSim sum of hits

now:
only interested in

total energy deposit in
sensitive layers

Prototype of a fast calorimeter simulation (WIP)

1. derive distribution
of total energy deposit
from GEANT4

2. fit normal distribution
[proof of principle!]

3. pass fitted distribution
to FastSim

4. FastSim samples total
energy deposits from
fitted distribution

dispatch when
reaching
calorimeter

sample and
provide energy
deposit (hits)

quite some work ahead
● derive realistic parametrization
● parametrization for different energies and particles
● provide energy per sensitive layer
● set incident particle to the boundary of the

calorimeter to be transported further
(including potential magnetic field interactions)

● ...

b4

GEANT4_VMC VMCFastSim sum of hits

Prototype of a fast calorimeter simulation (WIP)

1. derive distribution
of total energy deposit
from GEANT4

2. fit normal distribution
[proof of principle!]

3. pass fitted distribution
to FastSim

4. FastSim samples total
energy deposits from
fitted distribution

dispatch when
reaching
calorimeter

sample and
provide energy
deposit (hits)

quite some work ahead
● derive realistic parametrization
● parametrization for different energies and particles
● provide energy per sensitive layer
● set incident particle to the boundary of the

calorimeter to be transported further
(including potential magnetic field interactions)

● ...

… however
● has been shown that new fast simulation classes

can be derived and used
● have functioning workflow

→ can transfer tracks among full and fast simulation
● dummy fast simulation is ~35 times faster
● has been shown that we can directly produce hits

instead of steps
→ flexibility of generic fast simulation class

b4

GEANT4_VMC VMCFastSim sum of hits

Setting the scene, MC simulation in ALICE

directions:
● general workflow/framework optimization
● full simulation optimization
● reduce/review need for (full) simulation
● embedding techniques

[approaches presented and discussed by Sandro]
● fast simulation approaches

analysis

b5

● 2/3 of computing resources are dedicated to MC simulation,
all full simulation

● expected up to 100 more data in Runs 3 and 4

→ similar factor required in simulation

cannot cover this with current usage of full simulation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

