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Mixing full and fast simulation in VMC 
● ALICE uses detector simulation engines via 

Virtual Monte Carlo (VMC) interface
● on this level only exactly one engine could be 

used per event due to singleton structure
● wanted to have the ability of mixing engines 

depending on user conditions
→ ability of mixing e.g. GEANT3 with GEANT4
→ able to develop fast simulation on VMC level

● extended VMC merged in ROOT
[https://github.com/root-project/root/pull/3513]
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Simplified picture of the extensions
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Choosing among multiple engines

VMCFastSim (virtual)
#include <TVirtualMC.h>

template <class T>
class VMCFastSim 
: public TVirtualMC
{
    //...
    virtual void process() = 0;
    //...
};

Geant3_VMC
#include <TVirtualMC.h>

class TGeant3
: public TVirtualMC
{
  // implementations
};

MyFastSim
#include <VCMFastSim/FastSim.h>

class MyFastSim 
: public FastSim<MyFastSim>
{
  public:
    //...
    void process() override
    {
      // put implementation here
    }
};

Geant4_VMC
#include <TVirtualMC.h>

class TGeant4
: public TVirtualMC
{
  // implementations
};
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FastSim2
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user framework

// Get the TMCManager                    |  // specify condistions how to change
auto manager = TMCManager::Instance();   |  // and transfer tracks among engines
                                         |
// create user stack and notify manager  |  // init...
auto stack = new MyStack();              |  manager->Init();
manager->SetUserStack(stack);            |  // ...and run 42 events
                                         |  manager→Run(42);
// create engines                        |
//-------------------------------------  |
auto geant3 = new TGeant3();             |
auto geant4 = new TGeant4();             |
auto fastSim = new MyFastSim();          |
//-------------------------------------  |
                                         |
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Fast simulation in GEANT4
● GEANT4 offers inherently a solution of plugging in fast simulation into full simulation

→ can be used via GEANT4(_VMC)
[see also talk by Dmytro Kesan on Friday on FairRoot implementation]
[code at https://github.com/FairRootGroup/FairRoot/tree/master/base/sim/fastsim]

● fast simulation connected to GEANT4 regions and particle definition (and additional 
user conditions)
→ automatic dispatch

● offers various functionality
– user is free regarding the fast sim implementation
– consistency of transport ensured by GEANT4
– “path finder” available to automatically transport (incident) particles/tracks to region’s 

boundary (also considering external fields)
– not directly related but could be useful: cross section biasing depending on regions, correct 

re-weighting of tracks
[there was a request/idea by Friederike Bock]

● Use native GEANT4 fast simulation implementations (via GEANT4_VMC)?!
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Conclusion and outlook
● extensions of VMC code were merged

[see https://github.com/root-project/root/pull/3513]

● GEANT3_VMC and GEANT4_VMC extensions to be merged in coming days
● preserved backward-compatibility, no performance overhead in single run
● can freely combine full and fast simulation

– e.g. if useful, GEANT3 and GEANT4 (and Fluka) can be mixed
– can use GEANT3 (and Fluka) with fast simulation

● open questions and comments
– Any requirements of PWGs on VMC? Which functionality are they interested in?
– In case there will be the decision on moving to GEANT4 as the default engine, could we 

directly move forward and implement fast simulation using what is offered?
– Using 2 physics lists when using GEANT4 was considered

→ that is not (yet) supported by GEANT4 itself
→ this cannot be solved immediately using VMC
   (GEANT4 uses a G4RunManager singleton accepting one physics list)
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Thank you for your attention
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Testing the code
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able to mix full sim
engines to simulate
different parts of the
geometry

● GEANT3: ABSO
● GEANT4: GAPX

engine ABSO
[rel. #steps]

GAPX
[rel. #steps]

GEANT3 ~90 % ~10 %

GEANT4 ~25 % ~75 %

try to avoid steps of 0 length at volume boundaries
before a track is transferred from one engine to

another to save computation time



 

Backward compatibility

steps in x are perfectly overlaying
[same for other coordinates and observables]
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Backward compatibility

steps made per PDG are perfectly overlaying
b3



 

Prototype of a fast calorimeter simulation (WIP)
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quite some work ahead
● derive realistic parametrization
● parametrization for different energies and particles
● provide energy per sensitive layer
● set incident particle to the boundary of the

calorimeter to be transported further 
(including potential magnetic field interactions)

● ...
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quite some work ahead
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calorimeter to be transported further 
(including potential magnetic field interactions)

● ...

… however
● has been shown that new fast simulation classes

can be derived and used
● have functioning workflow

→ can transfer tracks among full and fast simulation
● dummy fast simulation is ~35 times faster
● has been shown that we can directly produce hits

instead of steps
→ flexibility of generic fast simulation class
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Setting the scene, MC simulation in ALICE

directions:
● general workflow/framework optimization
● full simulation optimization
● reduce/review need for (full) simulation
● embedding techniques

[approaches presented and discussed by Sandro]
● fast simulation approaches

analysis
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● 2/3 of computing resources are dedicated to MC simulation,
all full simulation

● expected up to 100 more data in Runs 3 and 4

→ similar factor required in simulation

cannot cover this with current usage of full simulation
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