

PWG-DQ – Muon

Simulations

- Detector occupancy is not an issue
- Pure signal simulations
 - Independent simulation for each signal
 - J/psi, Upsilon, ...
 - Parametrised shapes (AliGenMuonLib)
 - Several simulations run for systematics
 - GEANT3 vs GEANT4 (resonance shape)
 - Variation of Input shapes
 - Only MCH and MID response
 - Need also ITS, FMD, V0, T0, Absorbers, Magnets geometry
- For multiplicity dependent analysis
 - Use simulations for Tracklet to Nch correspondence
- For detector performance studies
 - Parametrised muon cocktail simulations

- Detector occupancy is an issue
 - Occupancy in detector is driven by secondaries escaping the absorber
 - Hard to simulate
- MC-into-Raw embedding
 - Embed at the level of SDigits, the MC signal in a real data event and reconstruct the merged SDigits
 - work with a larger sample of signal in MC than in data spread through the full list of runs
 - E.g. in 2018, 4 times more reconstructed J/psi in MC than data (although centrality distribution is not the same ...)
 - Embed 1 MC in each CINT7-B-NOPF-MUFAST event
 - 40% of the chunks of each selected run
 - Note that CINT7-B-NOPF-MUFAST is downscaled
 - Re-use the event n-times to reach the desired stat of each MC signal
 - J/psi, HFM, LMR: 5; Upsilon(1S), W: 1.25; psi(2S), Upsilon(2S): 0.75, Upsilon(3S), Z0: 0.5
 - Only MCH and MID response
 - Need also ITS, FMD, V0, T0, Absorbers, Magnets geometry
 - Other useful information copied from the original event (in ESD)
- Pure signal simulations as for pp and p–Pb also used for systematics

Runs 3 & 4

- MC-into-Raw embedding will remain a must in Pb–Pb for MCH and MID
- For analysis using MFT + MCH + MID the simulation strategy may have to be revisited
 - Can we rely on pure MC-signal simulations for the MFT (pp and p– Pb)
 - Is MC-into-Raw embedding needed and viable for MFT?
 - QED background for instance may be a serious issue
- Explore as much as possible data-driven methods