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Differences with standard strategy:
• Currently Global event objects created on the fly by 

each task and displaced track vertices written on disk
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A working prototype of 
fast HF analysis on TTrees 

with 2018 data
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Parallelized analysis

Samples downloaded on a 
local servers on SSD disks

selection  
model/criteria

          LHC18r 0-10%
• AOD ~ 0.9 PBytes
• Trees (Λc + Evt) ~ 1 TB with 
very loose cuts and no PID

• input ~ 1 TB 
• time ~ 10min/pt bin 
• multiprocessing on 
unmerged files

• size input ~ 10 GB 
• time ~ few s/pt bin
• multiprocessing on unmerged files or 
single core on merged file

• output saved as root files as for old 
analysis tasks 

Final analysis optimal selection  
(efficiency/invariant mass)

 

Model 
validation

• time training ~ 10 minutes/pT bin with GPUs for XGboost or TensorFlow

Software and hardware:
• analysis package: https://github.com/ginnocen/MachineLearningHEP written in 

python + Pandas + XGBoost/Keras with Numba functions for fast processing
• Server : 32 cores, 16 TB SDD (+16 coming soon), 350 GB Ram, 1 GPU TESLA V100

https://github.com/ginnocen/MachineLearningHEP


Discussion
AOD Run3 content: 
• https://docs.google.com/spreadsheets/d/120fJK5vfhyvIKZ94-xEOaDwIN2H1Mu4iVPUOwEgCTyo/

edit#gid=0
• PWGs agree with the current content? Feedback needed.

Traditional loop strategy:                                                                   Declarative strategy: 

for track in tracks:
if trackpt>1:

 histo->Fill(trackpt)
.Filter(“trackpt>1).Histo1D(“trackpt)

Timing and performances: 
• Critical to benchmark the timing performance of the analysis structure with DPL in a real case analysis

• compression? 
• parallelization and concurrency strategy? 

• More flexible 
• Very similar to current strategy 

• Compact 
• Optimised for parallization and 

multi-threading

https://docs.google.com/spreadsheets/d/120fJK5vfhyvIKZ94-xEOaDwIN2H1Mu4iVPUOwEgCTyo/edit#gid=0
https://docs.google.com/spreadsheets/d/120fJK5vfhyvIKZ94-xEOaDwIN2H1Mu4iVPUOwEgCTyo/edit#gid=0


Perform a complete analysis starting with the Run3 framework:
    → test the AOD format 
   → test the arrow/message passing strategy
   → first look at timing/performance, compression and concurrency organization

• Run2 → Run3 AOD conversion (DONE)

• Secondary vertex reconstruction with the Table double/triple looping strategy

• Global observable object creation (e.g. simplified centrality)

• Create a first template of Lc/D0  and 2-particle correlation task using declarative analysis 
• including both candidate TTree creation and histograms

Ongoing activities

Timeline:

    → A first working “complete” flow will be ready by November 2019
    → In November, a working system will be shared with PWGs for more estensive validation with more
         use cases


