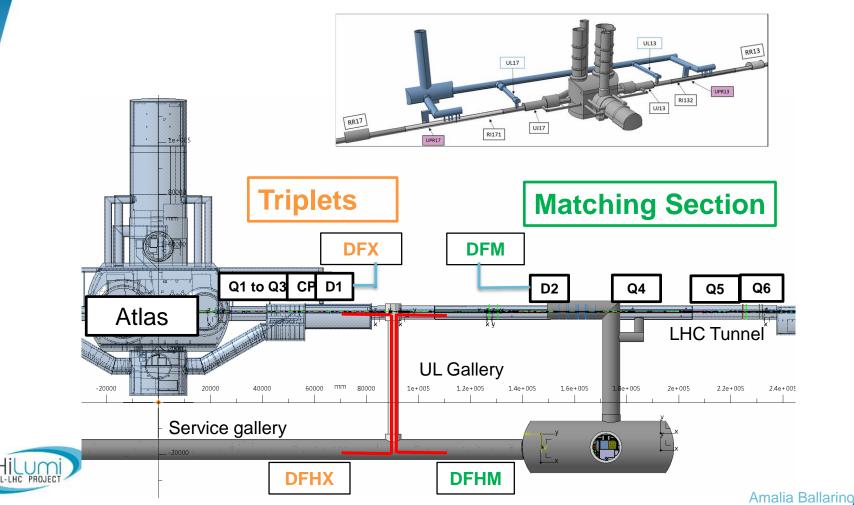
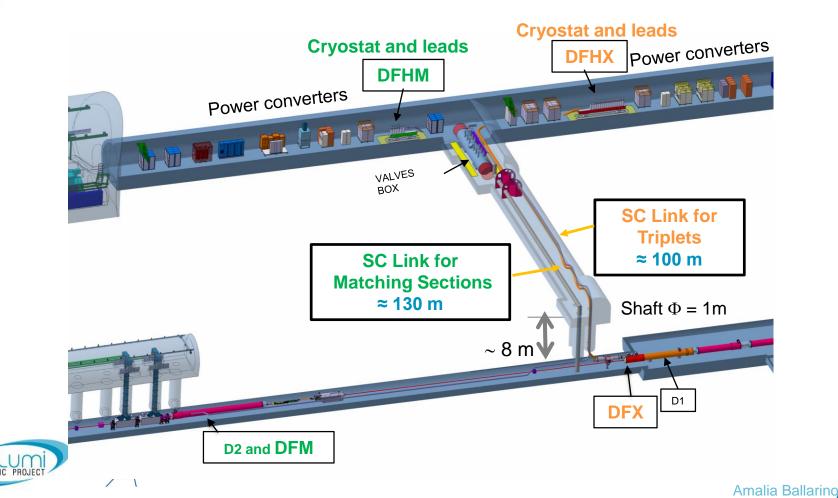


The new Cold Powering for HL-LHC Test results and final layout


Amalia Ballarino for the WP6a


9th HL-LHC Collaboration Meeting - Fermilab - 14-16 October 2019

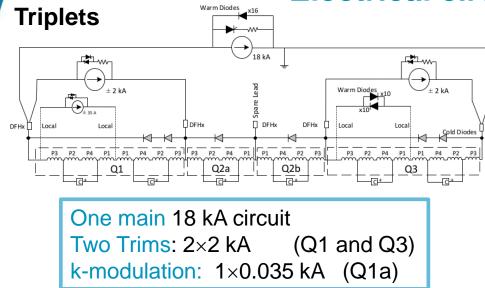
Cold Powering System in LHC underground

Cold Powering System in LHC underground

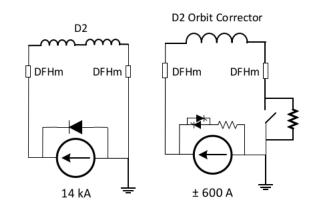
Number of components

- **Ten SC Links** of two different types (4 for ITs plus 4 for MSs plus one spare per type) for powering the HL-LHC Triplets region and the HL-LHC Matching Sections
- Ten DFH cryostats (4 for ITs plus 4 for MSs plus one spare per type)
- Ten DF cryostats (4 for ITs plus 4 for MSs plus one spare per type)
- **176 HTS Current leads** (148 for series plus few spares per lead type) for powering the HL-LHC **ITs + 50 HTS Current leads** (40 plus few spares per lead type) for powering the **MSs** (226 units in total)

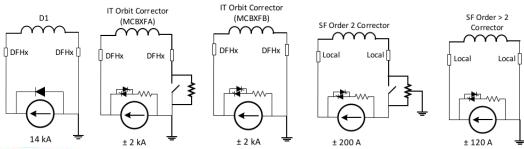
Two Cold Powering System topologies (One for ITs and one for MSs) Four Cold Powering Systems per topology



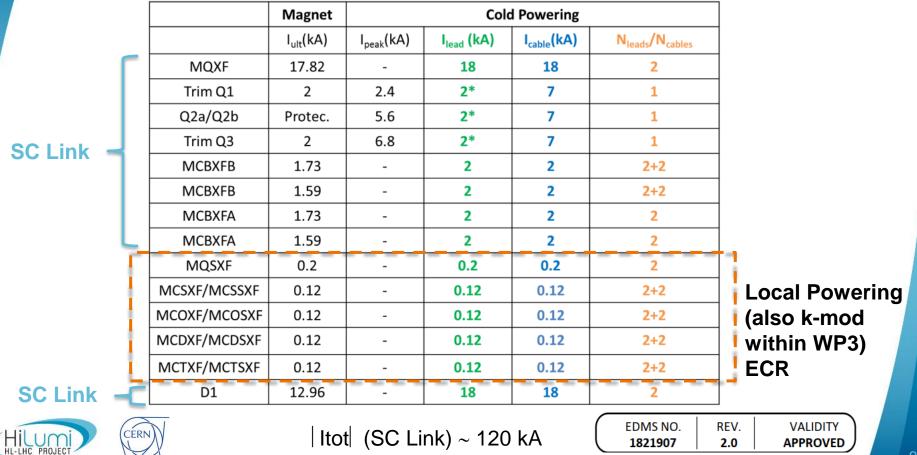
Electrical baseline



Electrical circuits


DFHx

Matching Sections



In addition: D1, Orbit Correctors and Higher Order Correctors individually powered:

D2 and its Correctors individually powered

Design Currents: Baseline for Triplets

Amalia Ballarino

Design Currents: Baseline for Matching Sections

D2 and its correctors

	lult (kA)	lleads/cables (kA)	N _{leads}	N _{cables}
D2	13367	18	2	2
MCBRD	0.422	0.6	8	8

Itot|(SC Link) ~ 31 kA

Ratings for series units (ITs and MSs): 18 kA, 2 kA, 7 kA and 0.6 kA

HV Levels - Triplets

EDMS NO. REV. VALIDITY 1821907 2.0 APPROVED

Rating (kA)	Worst case voltage to ground during operation (V)	comp	onents und (V) to ground (V)		components to ground (V) to ground (V) to ground (V) (μA)		current per component	Test duration (s)
18	900	4600	2300	460	1080	≤10	30	
7	900	4600	2300	460	1080	≤10	30	
2	540	3160	1580	316	648	≤10	30	
0.2	540	3160	1580	316	648	≤10	30	
0.12	40	1160	580	220	360	≤10	30	
0.035	900	4600	2300	460	1080	≤10	30	

RT = Room Temperature ($20 \pm 5 \circ C$)

NOC = Nominal Operating Conditions. For all WP6s components, it corresponds to GHe at RT and 1.30 ± 0.05 bar

HV Levels – Matching Sections

D2: treated as a 18 kA circuit – conservative

1	8	kΑ	

Rating (kA)	Worst case voltage to ground during operation (V)	Acceptance tests of components to ground (V)		voltag	ation test e of system round (V)	Leakage current per component (µA)	Test duration (s)
		RT	NOC	RT	NOC		
18	900	4600	2300	460	1080	≤10	30

D2

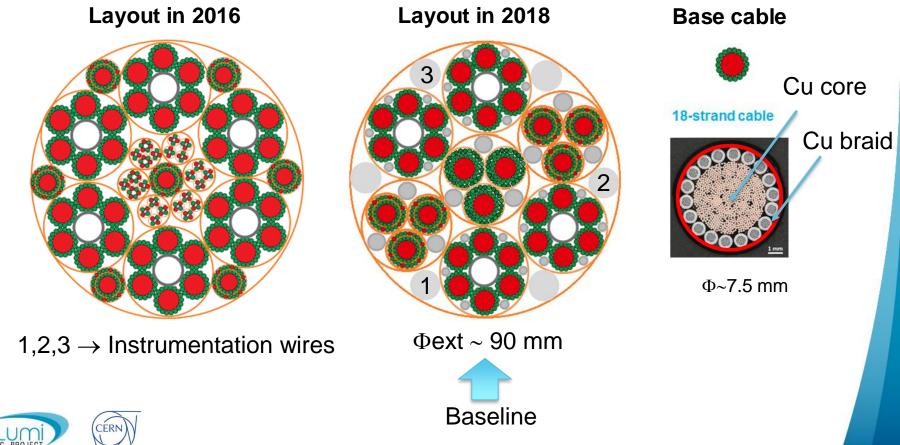
Rating	Worst case voltage to ground	Acceptance of components		Insulation voltage of system		Leakage current	Test duration
kA	during operation (V)	to ground (V)		to ground (V)		per component (µA)	(s)
		RT	NOC	RT	NOC		
D2	525	3100	1550	310	630	≤10	30

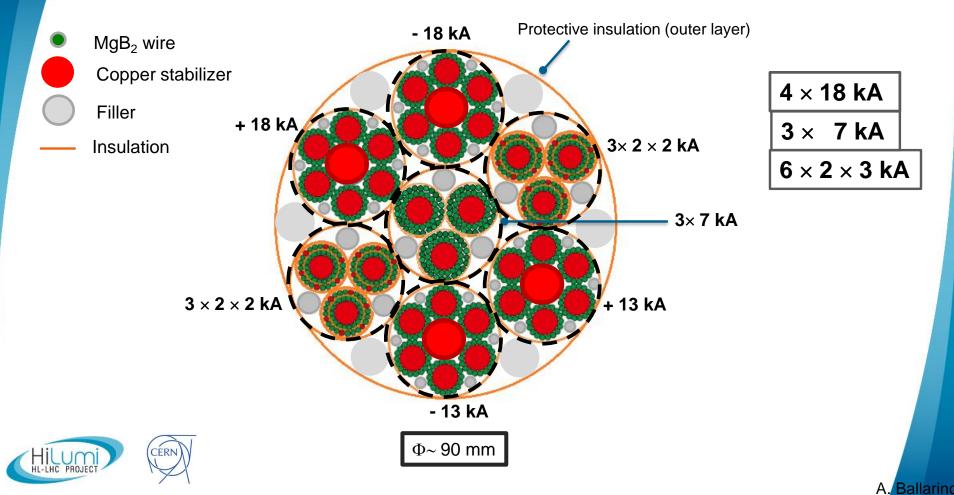
D2 correctors: 0.6 kA rating, Worst case to ground = 590 V, Components test: 5.7 kV (RT) - Components test 2.860 kV (NOC)

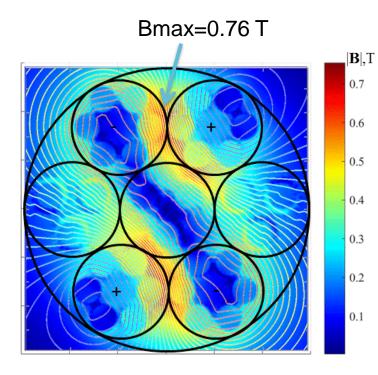
Protection Strategy

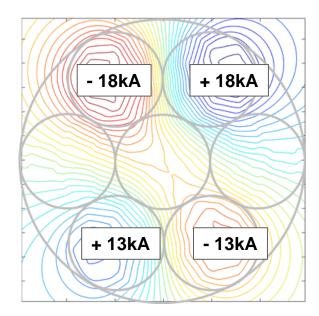
EDMS NO.	REV.	
1821907	3.0	APPROVED

For the 18 kA and 7 kA cables (HTS/MgB₂) and leads, which are part of the inner triplet main circuit, the baseline protection strategy is that if any of them quenches (for the cables) or suffer a thermal run-away (for the leads), the entire quench protection system (quench heaters and CLIQ) of all MQXF magnets is fired. For the 18 kA cables and leads for D1, if any of the cables (HTS/MgB₂)/leads guench/suffer thermal run away, the quench protection system of D1 (quench heaters) is fired. For the other corrector circuits (2 kA, 0.2 kA and 0.12 kA), the corresponding corrector circuit's quench protection system (quench heaters or energy extraction and power converter crowbar) are fired.


Rating (kA)	MIITs (MA ² ·s)	dI/dt (kA/s)	τ _n (no quench of magnets) (s)	τ _Q (quench of magnets) (s)	Equivalent time (s)
18 (*)	32	250	130	0.2	0.1
7	5	250	130	0.2	0.12
2 (**)	1	20	20	0.5	-
0.2 (***)	0.02	0.25	21	0.8	-
0.12	0.02	0.22	5	0.8	-

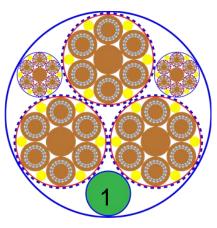

System components


SC MgB₂ Cable Design - Triplets



MgB₂ cable design – Triplets

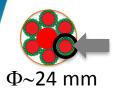
MgB₂ cable - Triplets

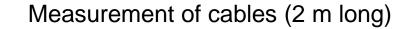


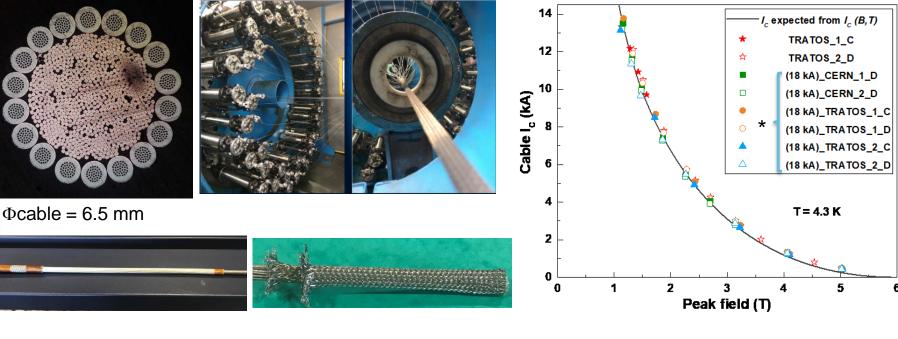
SC MgB₂ Cable Design – Matching Sections

 $\Phi\text{ext}\sim 60~\text{mm}$

$1 \rightarrow$ Instrumentation wires


Status of cabling activity

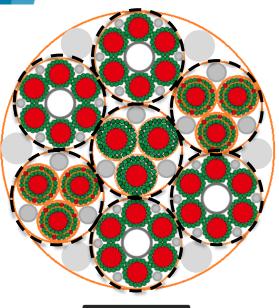

- Each cable type assembled and electro-mechanically characterized at CERN
- **Cables** (18-strand sub-cable, 18 kA cable, 2 kA coaxial-cable) produced in **industry** (ICAS, cabling at Tratos cavi) via R&D contracts and electro-mechanically characterized at CERN (including HV testing in Ghe)
- Contracts for full scale prototypes (80 m long, one copper and one MgB₂,
 for ITs and MSs) and for series production placed in industry price enquiry in 2018 followed by adjudication (ICAS) at FC Dec 2018. Completed first 80 m long copper prototype cable for IT. Assembly of 80 m long MgB₂ cable for Its is on-going in industry (delivery to CERN planned by end of October 2019)


Validation of cabling parameters and materials completed for ITs

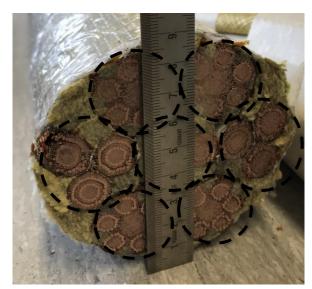
Example of qualification at CERN

* Extracted from 18 kA cable

TRATOS installations used for MgB₂ cables


IRATOS

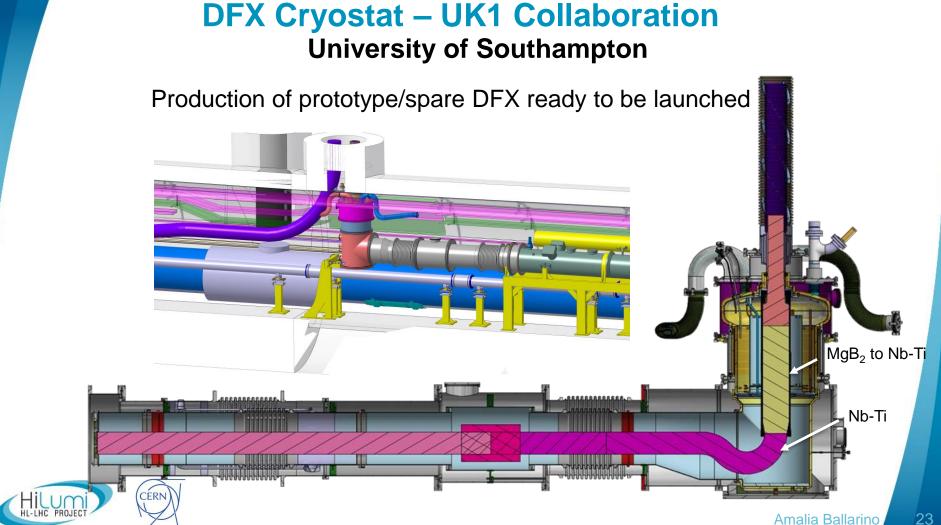
1+30+36 planetary machine (well suitable for the 2 kA and 7 kA cables)


1+12 planetary machine (for the higher (and final!) stage cable assembly)

All equipped with tension (and many others parameters) fine control systems; wrapping machines;

Production in industry of 80 m long dummy-Cu cable for Triplets

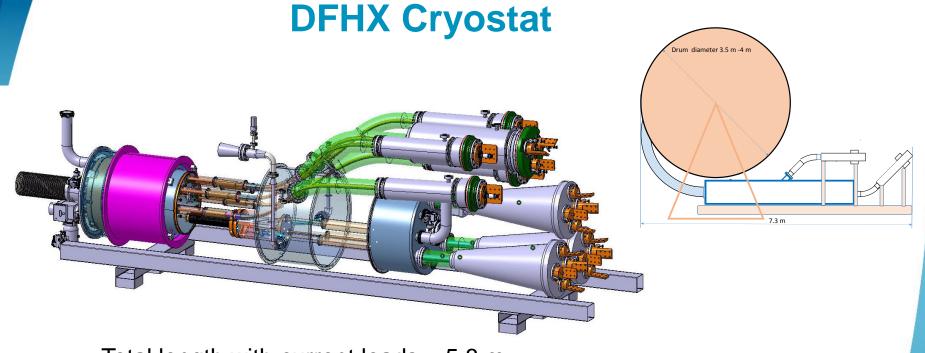
Ф~ 90 mm


Insulation tests at the cables' manufacturing site

On-line HV tests: DC spark testing at 12 kV

Applied successfully during first 80 m long dummy (copper) cable for Triplets. No faults detected

Off-line HV tests: **10 kV** (50 V/s, 120 s). **Ileakage** \leq **10 µA** on final assembly. Each cable to ground and between cables. **Applied** successfully during production of first dummy cable for Triplets

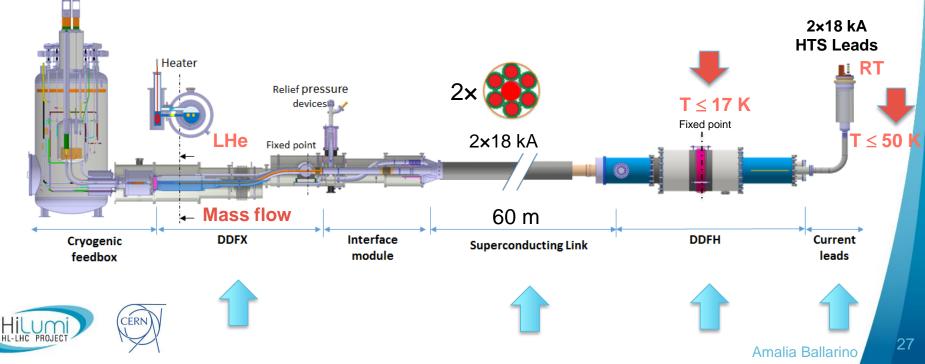

DFX Cryostat – Round LTS bus-bar

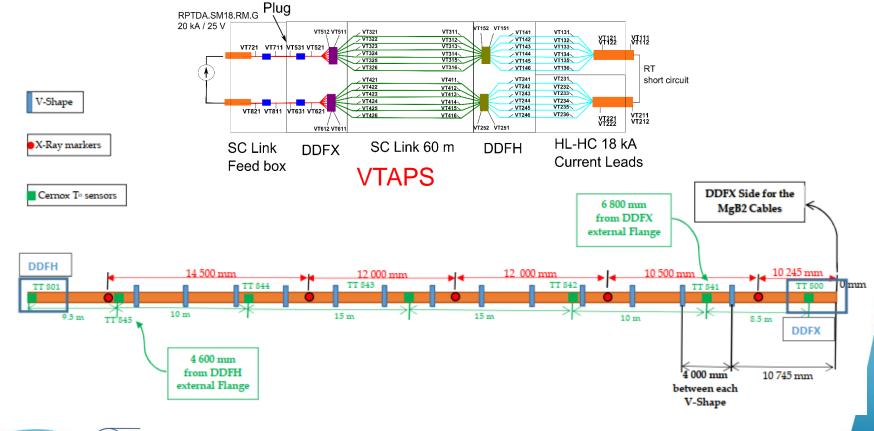
	Type of circuit	Current (kA)	Detection time (s)	Equivalent time constant (s)	Quench load from detection (MIITs)	Quench Ioad total (MIITs)	SC cross- section (mm ²)	Cu cross- section (mm ²)	Hot spot temperature (K)
	MQXF	18	0.4	0.17	28	157	19	78	44
	D1	13	0.4	0.35	30	97	19	78	37
	MCBXFA	1.7	0.4	0.17	0.25	1.4	7.4	19.2	23
	MCBXFB	1.7	0.4	4	6	7.2	7.4	19.2	38
C	Round Nb-Ti cables developed at CERN								

Round Nb-Ti cables developed at CERN

Total length with current leads ~ 5.8 m

Possibility of assembling and testing the current leads at the surface

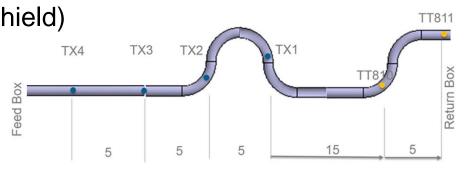

Demo 1 - System Demonstration


Demo 1

Constructed by WP6a and tested in the SM-18 at different stages.

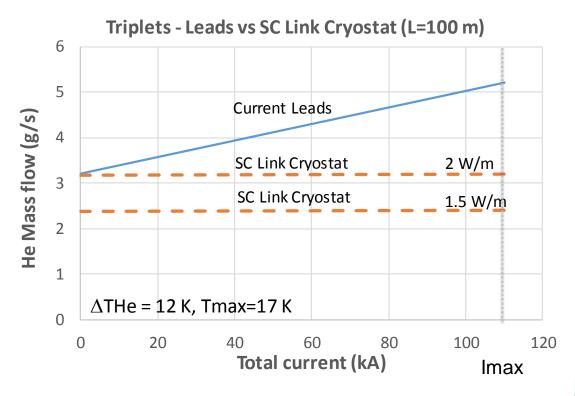
With the last measurement – March 2019 – validation of: **DDFX** Demo, **DDFH** Demo, **SC** Link with 2×60 m MgB₂ cables made in industry, 2×18 kA HTS Prototype Current Leads made at CERN, thermal contraction, cryogenic control, protection of superconducting circuits, splices (MgB₂-HTS, MgB₂-NbTi) in nominal operating conditions (LHe/GHe). Power Converter

Instrumentation


Demo 1 – DDFX, DDFH and SC Link

SC Link Cryostat

Two-wall configuration (no active shield) $Q \le 1.5 \text{ W/m}$ Development done with industry In-depth qualification at CERN

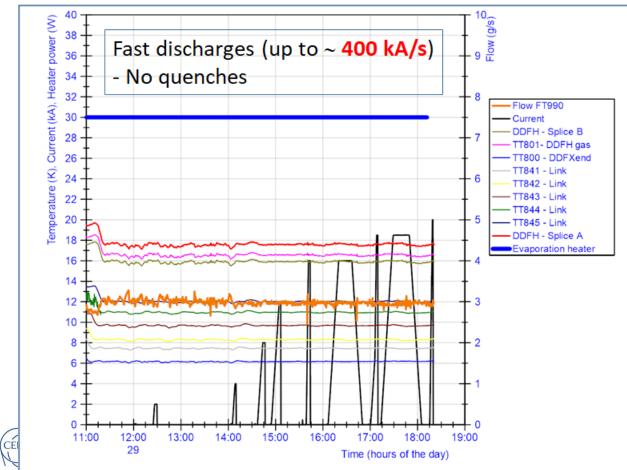


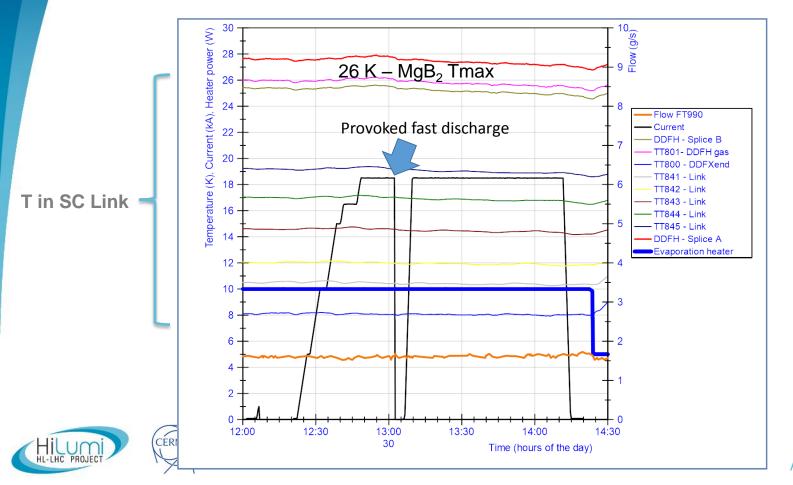
SC Link Cryostat for Triplets

Demo 1 – 18 kA REBCO Current Leads

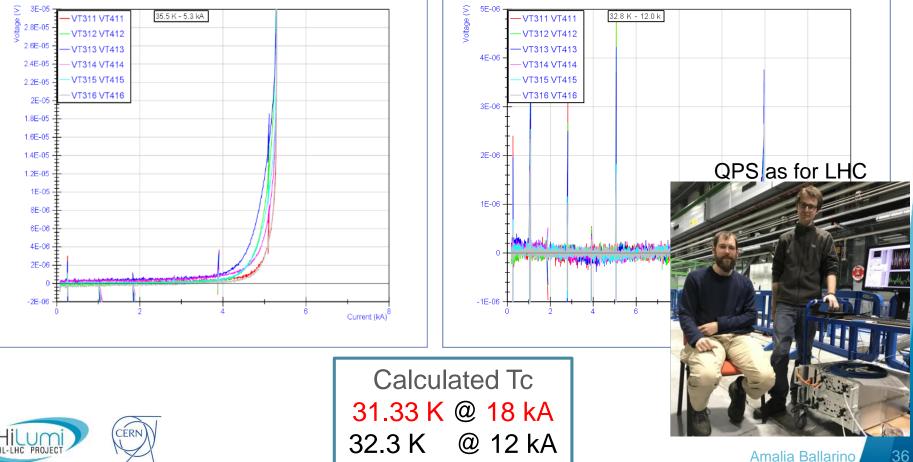
Demo 1 - DDFH and Splices

IL-LHC PROJE

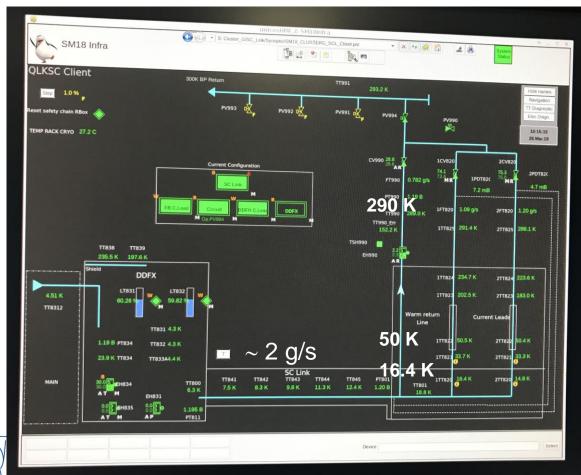

CERN



20 kA @ 18 K – No quench

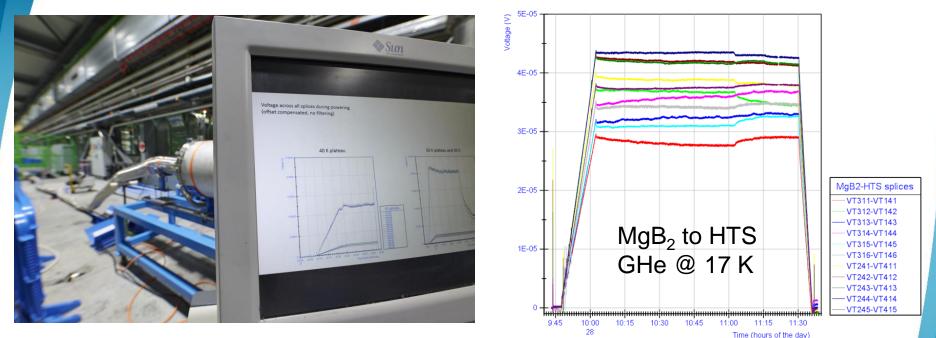

HILUMI HL-LHC PROJECT

18.5 kA – 1 hour (Tmax ~ 26 K)



Amalia Ballarino

Several quenches – No degradation


Demo 1 – Cryogenic/electrical operation

CERN

Demo 1 – Splices

Resistance of splices in line with expectations: $MgB_2/NbTi$ splices:1 n Ω (0.9 n Ω calculated) MgB_2/HTS splices:1.9 n Ω (1.7 n Ω calculated) NbTi/NbTi splices: 0.4-0.7 n Ω (0.6 n Ω calculated)

- With the WP6a we are developing a completing **new powering** technology
- In the last year, major progress has been made on several fronts: Demo 1, prototype 18 kA REBCO leads, DFX design, DFH design. Two series contracts were adjudicated to industry:
 - 850 km of MgB₂ wire Columbus. About 100 km of wire delivered;
 - Cabling of MgB₂ wire ICAS. One prototype Cu cable completed.
- From the electrical point of view, the cold powering systems are designed to meet the circuits' requirements. All electrical functionalities have been defined.
- Next validation test: Demo 2. Electrical qualification of full-scale MgB₂ cable for Triplets, with simultaneous powering of more than one circuit. The cable is being assembled in industry, and Demo 1 is being upgraded for installation in November 2019

Aknowledgments

The WP6a CERN contributors: P. Cruikshank (deputy), R. Betemps, S. Claudet, I. Falorio, J. Fleiter, A. Gharib, J. Hurte, Y. Leclercq, V. Parma, A. Perin, G. Willering

Y. Yang, W. Bailey – Southampton UniversityR. Ruber, K. Pepitone, T. Ekelof – Uppsala University

EN MME – P. Moyret, D. Perini, A. Dallocchio, et al.

The MSC group: L. Bottura, A. Devred The HL-LHC Project office: L. Rossi, O. Bruning, B. Delille, I. Bejar, et al. The TE Department: M. J. Ijmenez, L. Van Den Boogaard, G. Riddone, et al.

Thank you for your attention !

MgB₂ wire - Specification

Cabling of wire
often reaction
after reaction

Wire diameter	mm	1	± 0.2
Wire ovality	mm	≤ 0.015	
Cu fraction	%	≥ 12	
Cu coating	μ m	≥ 30	
Filaments eq. diameter	μ m	≤ 60	
Filaments Twist Pitch	mm	≤ 1 00	± 5
Tensile strain at RT *	%	≥ 0.26	
Bending radius after HT*	mm	≤ 1 00	
Unit Length	m	≥ 500	
RRR (Cu)	-	> 100	
Ic(25 K, 0.9 T)	А	≥ 186	
Ic(25 K, 0.5 T)	А	≥ 320	
lc(20 K, 0.5 T)	А	≥ 480	
n-value@ 25 K and 0.9 T	-	> 20	

* Zero Ic degradation

