

H. Garcia Morales, A. Garcia-Tabares, M. Giovannozzi, M. Hofer, F. Hulphers, J. Keintzel, N. Karastathis, E. H. Maclean, L. Malina, T. Persson, S. Redaelli, F. Soubelet, P. Skowronski, E. Todesco, L. Van Riesen-Haupt, A. Wegscheider and D. Wolf

$\mathsf{Contents}$

- ★ The HL-LHC physics fill
- ★ Optics control goals
- ★ Triplet quadrupoles specifications and sorting
- ★ First year of commissioning
- \star β^* control changes to commissioning sequence

Physics fill

Offset leveling too?

Offset leveling used to reduce number of optics or to equalize luminosities in the 2 detectors (optics errors, beam-beam, etc). Maximum offset is $\approx 1\sigma$ for stability.

Optics control goals

- ★ Global β -beating $\leq 20\%$
- \star β^* -beating $\leq 2.5\%$ for luminosity imbalance $\leq 5\%$ between ATLAS and CMS
- ★ Global coupling: $\Delta Q_{min} \leq 10^{-3}$ for Landau damping with tune split $Q_y Q_x \approx 5 \times 10^{-3}$.
- ★ Local coupling at IP negligible for lumi loss (working on a spec.)
- ★ Triplet non-linearities locally corrected for what Ewen presented yesterday

HL-LHC IR layout

Triplet quadrupoles' specs

- ★ MQXFA magnet must provide an integrated gradient between 554 T and 560 T when powered with current of 16.470 kA. The difference between the integrated gradient of any pair of series magnets with the same cross-section shall be smaller than 3 T (50 units)
- \star TF is measured with a systematic uncertainty of ± 10 units* and a precision of ± 2 units
- ★ Q2 magnets will be sorted and paired from a pool of 8 quadrupoles.
- ★ Ideal sorting yields deviation <13 units between pairs with 90% probability

Illustration of Q2 sorting

For illustration, 1 unit strength error in triplet quads generates $\Delta \beta/\beta = 7\%$ at $\beta^* = 15$ cm.

Final error w.r.t. systematic

The full process can be approximated by assigning a systematic error of ± 10 units plus a Gaussian error with σ between 2.7 and 3.8 units.

No b_6 correction, $\beta^* = 15$ cm

Without b_6 correction in the first year $\beta^* = 15$ cm seems not possible.

No b_6 correction, $\beta^* = 30$ cm OK

9.0

8.5

8.0

· 7.5 · 7.0

6.5

В [о]

5.5

5.0

4.5

4.0

3.5

3.0

Min DA HL-LHC v1.3, b₄=-4, No IT b₄ Correctors Fail, N_b = 1.6×10^{11} ppb $\beta_{p1/5}^*=30$ cm, $\phi/2=250$ µrad, $\epsilon=2.5$ µm, Q=15, I_{MO}=-300 A

Luminosity loss versus β^*

 $\beta^* = 25$ or 30 cm seem reasonable goals for the first year with a penalty of about 10% in integrated luminosity.

eta^* control with K-modulation

A good β^* control requires excellent tune measurement uncertainty of about 2.5×10^{-5} at $\beta^*=15$ cm. Tune jitter is the main limitation.

Tune jitter in LHC

Simulation includes latest power converter (PC) estimates with 2 DCCTs (frequencies below 0.1 Hz).

In general simulation underestimates measurements.

The contribution from PC noise in frequencies 0.1-10 Hz needs to be studied.

Noise in 0.1-500 Hz (preliminary)

Table: Pessimistic HL–LHC rms stability figures corresponding to the noise in the 0.1-500 Hz region (15 cm β^* nominal optics HLLHCV1.3).

Tune stability	Orbit stability	β -beating
$5 imes 10^{-4}$	$3\% \sigma_{ m beam}$	3×10^{-3}

This possible noise is of concern for k-modulation, but also for beam-dynamics in general and will be further studied.

K-modulation in HL-LHC

Considering only noise below 0.1 Hz with 2 DCCTs:

Even in this optimistic scenario target is not met at $\beta^* = 15$ cm. K-mod improvements in Hector's talk. Experience with waist scans follows.

β -waist from luminosity scan

Experiments in LHC with $\beta^* = 30$ cm:

Waist scan vs k-modulation

	Measured vertical waist [cm]		
	K-mod	lumi scan	
Beam 1	-5±3	-8.2±1.4	
Beam 2	4±2	$0.4 {\pm} 0.1$	

Luminosity waist scans are clearly more accurate than K-modulation to measure the β -waist position.

Luminosity loss versus IP coupling

Powering skew quads next to IP to generate a local coupling bump:

This will need luminosity scans for fine tuning.

When can we fit luminosity scans?

Luminosity scans after point 2 or 3?:

Essential Collimator Commissioning Steps

Coarse collimator settings: Allows few pilots in machine To allow for early commissioning activities with pilots, e.g. optics measurements; Pilot bunch Settings: IR7 TCPs@12g, IR3 TCPs@15g, TCTs/TCDQ at ±15mm; Coarse collimation settings: Allows a nominal bunch in machine To allow for commissioning activities with a nominal, e.g. establishing reference closed orbit; Quick alignment + settings: IR7 TCPs@8o, IR3 TCPs@30o, TCTs/TCDQ at ±15mm; Nominal bunch Full collimator alignment at injection & at flat top; → Allows up to 3 10¹¹ protons 3 To guarantee optimum centering during operation (essential for optimum performance): Aperture measurements: Pilot bunch To verify that estimated available aperture is actually there; Preparation of functions; 5 Dry run of functions: No beam 6 To ensure consistency of functions and continuity across different beam processes; 7. Validation of settings and functions: loss map campaigns; Nominal bunch To make sure that the expected cleaning performance is achieved; + pilots

08/10/201

A Mereghetti OMC-OP WS

Local correction in the arcs

ATS optics experiments with large β in the arcs revealed the need for local correction with orbit bumps at sextpoles during experiments in 2018.

Summary

- ★ Optics correction will likely need about 2 years
- ★ Start with β^* =25 or 30cm?
- \star β^* control will need luminosity scans early in the commissioning
- ★ Good magnetic and alignment measurements will be fundamental for an efficient commissioning
- ★ Run 3 commissioning to be used to test as many aspects of strategy as possible

Back-up slides

Power converter stability

Table: Power converter stability specifications for HL–LHC circuits with 1 DCCT (for 2, scale by $1/\sqrt{2}$). All uncertainties are 2σ in units of $10^{-6}I_{rated}$, where σ is the rms.

Circuit name	I_{rated}	PC	Stability	
	[A]	class	20 min	12 h
RB a , RQ(D/F) a	13000	1	0.4	2
RQX	18000	0	0.2	1
RTQX(1/3), $RCBX$	2000	2	1.2	15.5
RTQXA1 ^b	60	4	5	40
$RQSX^d$, RCBRD, RTB9 ^c	600	3	2	34
$RC(S/O/D/T)X$, $RCB(C/Y)^a$	120	4	5	40
RD(1/2)	14000	0	0.2	1
RQ4 ^a	4000	2	1.2	15.5
RQ(5/6) ^a	5000	2	1.2	15.5

IR skew quadrupole corrector

β -beating from beam-beam

Beam-beam changes β within $\pm 15\%$ in the beginning of the fill.

Sensitivity (@ Ultimate)

Deviations that cause **2% int. luminosity** change:

Parameter	Δ	unit
Turn-around-time	10	min
ppb (constant brightness)	0.09	10^{11}
ϵ (constant ppb)	0.2	μ m
β^*	4	cm
Efficiency	1	%

10% change in emittance causes a 2% loss on integrated luminosity.