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Measurement and correction of IR optics in the HL-LHC

I IR optics measurement and correction is one biggest challenges of the HL-LHC
(see orevious talk).

I More precise measurements and new correction techniques are required to ful�ll
HL-LHC Luminosity requirements (∆β∗/β∗ ∼ 2.5%).

I De�nition of the optics measurement and correction strategy for HL-LHC
(Rogelio's and Ewen's talks).

I We will focus on linear optics measurement and correction.
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β∗ measurement using K-modulation
Modulation of the strength of the last quadrupoles (usually Q1) around the IP results in
a change in tune that allows to determine the β-function at the quadrupole1.

The β at the quadrupole is given by:

βav ≈ ±4π
∆Q

∆kL
(1)

The value for β∗ is calculated from the
value of β at the quadrupole:

βquadAV → (βw ,w)→ β∗

β∗ = βw +
w2

βw
(2)

1F. Carlier, R. Tomas, Accuracy and feasibility of the β∗ measurement for LHC and High

Luminosity LHC using k-modulation, PRAB 20, 011005.
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K-modulation solutions

When solving the above system, two possible solutions based on the value of βav:

β∗ =
βav ±

√
βav − 4L∗

2
(3)

Where − is the solution we are interested in. But the simplex algorithm does not
distinguish between them and may converge to the wanted solution.

How can we force the algorithm to the "−" solution?
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Special case: vdM optics2

I Luminosity calibration uses special (large β)
optics for van der Meer scans.

I The uncertainty on β∗ is closely related to
uncertainty in β at the nearest quadrupole.

σβ∗

β∗
=

β∗ + L∗2

β∗

|β∗ − L∗2

β∗ |
σβ
β

= Λ
σβ
β

(4)

I Due to optics properties, when β∗ ≈ L∗ (case
of vdM optics), a small error in β may drive a
huge error in β∗.

I One should avoid β∗ ≈ L∗.

2L. van Riesen-Haupt, K-modulation developments via simultaneous beam based alignment in t he

LHC, Proceeding IPAC17
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β∗ measurement limitations

Uncertainties in observables have a
signi�cant impact on the reconstructed
value of β∗.

Uncertainties

I Tune jitter (most critical
δQ ∼ 2.5 · 10−5).

I β-beating

I Orbit shift/jitter

I Misalignment

I Quadrupole strength

I Coupling

I ...

Table: Tune uncertainties during the MD
devoted to vdM optics measurements

B1 B2

δQx [10−5] 3.2 2.3

δQy [10−5] 3.2 3.4
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Phase advance at IR 3

β-function accross the optics drift around the IP:

β(s) = βw +
(s − w)2

βw
(5)

The phase-advance between the start and the end of the optics drift is:

φIP = arctan

(
L∗ − w

βw

)
+ arctan

(
L∗ + w

βw

)
(6)

3J.Coello de Portugal, New local optics measurements abd correction techniques for the LHC and

its luminosity upgrade
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Implementing phase advance in the penalty function (Preliminary)

The penalty function to �nd the optimal solution is based on the measured values of
βav. We can include an extra term that takes into account the deviation in phase φIP.

Before:
χ2 = (∆βavfoc)

2 + (∆βavdef)
2 (7)

Now:
χ2 = w1[(∆βavfoc)

2 + (∆βavdef)
2] + Ωw2(∆φIP)2 (8)

I Weigths: w1,w2 ∈ [0, 1], w1 + w2 = 1.

I Normalization/Scale factor: Ω.
Depends on the optics choice. (βquad ∈ [200, 2000] m)

I For vdM optics: Ω = 103.
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Results using van der Meer optics simulated data

Simulation set up

I vdM optics (β∗(IP1/5) = 19 m). Ω = 103.

I 500 machines simulated with random magnetic errors.

I Results, reconstructed β∗ as a function of waist w :

weight = 0 weight = 0.5 weight = 0.9

When increasing the weight in the phase constraint, the outliers dissapear.
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Measurement analysis and Further improvements

MD data from 2016 on van der Meer optics is available to be reanalized using the new
implementation of K-mod.

To be done:

I Test the changes for di�erent optics (low-β∗) far from singularities.

I Use normalization based on errorbars and compare to weight method.

I Statistical evaluation of the algorithm.

I Remove uncertainties to check that the implementation is numerically correct.
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Action-Phase Jump vs.

Segment by Segment
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Motivation

I Need to �nd the best possible strategy for local and global correction for Run III
and for HL-LHC.

I In particular for local correction in the IRs for HL.

Goal of this study

Compare Action Phase Jump (APJ) technique with classical Segment by Segment
(SbS) approach on the performance of local correction in IRs.

Could APJ be useful for future optics correction?
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Local correction techniques

Action-Phase Jump (APJ)

Take jumps in action J and phase φ
produced in the IR to deduce correction
strengths.

Segment-by-Segment (SbS)

I Correction of errors locally at the
selected segment.

I Compares model and measurement of
observables of choice.

I Finds mismatches and applies
correction.
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Analysis scenario I

Optics and errors

I 2016 40 cm optics.

I Tabulated magnetic errors in:
I Inner triplet.
I Matching quadrupoles (Q4, Q5, Q6).

I Magnets used for correction:
I SbS: Q1, Q2, Q3
I APJ: Q2, Q3, Q4, Q6.

Magnet Error 10−5m−2

Q1L/R -0.6/0.70

Q2L/R -1.17/0.74

Q3L/R -1.31/2.60

Q4L/R.B1 0.34/-0.55

Q4L/R.B2 0.23/0.19

Q5L/R.B1 0.25/-0.08

Q5L/R.B2 0.03/0.22

Q6L/R.B1 0.05/-0.009

Q6L/R.B2 -0.12/0.03
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Results scenario I

I Similar performance of both methods in this case.

∆β/β[%] H V

Uncorrected RMS 6.10 12.5
APJ RMS 0.22 0.17
SbS RMS 0.07 0.87

Uncorrected Max 102 73.5
APJ Max 0.33 0.26
SbS Max 0.41 1.24

β∗ [cm] H V

Uncorrected 80.9 69.4
APJ 40.0 39.9
SbS 40.2 39.8
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Analysis scenario II - large errors in matching section

Optics and errors

I 2016 40 cm optics.

I Magnetic errors in:
I Inner triplet.
I Matching quadrupoles (Q4, Q5, Q6).

I Magnets used for correction:
I SbS: Q1, Q2, Q3
I APJ: Q2, Q3, Q4, Q6.

Matching section quadrupole errors

Ther errors introduced in the matching section
quadrupoles are not real errors. They are deduced
from corrections required in the past and might
contain residual contributions from many sources.

Magnet Error 10−5m−2

Q1L/R -0.6/0.70

Q2L/R -1.17/0.74

Q3L/R -1.31/2.60

Q4L/R.B1 -7.00/5.70

Q4L/R.B2 7.00/-5.70

Q5L/R.B1 -6.86/2.98

Q5L/R.B2 7.01/-3.45

Q6L/R.B1 41.34/-23.71

Q6L/R.B2 -31.51/20.44
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Results scenario II (B1)
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Results scenario II (B1)
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Results scenario II (B1)

19 / 33



Results scenario II (B1)

I Action-Phase jump technique seems to work better in this scenario for both
residual ring β-beating and β∗.

I This is expected since errors in the matching section are quite large and APJ
includes Q5 and Q6 in the correction while SbS only uses the triplet.

Ring β-beating
∆β/β H [%] V [%]

Uncorrected RMS 8.14 12.8
APJ RMS 0.63 0.55
SbS RMS 2.56 0.85

Uncorrected Max 117 98.6
APJ Max 0.92 1.08
SbS Max 14.5 6.31

IP optics
β∗ H V

Uncorrected 87.0 79.4
APJ 40.3 40.4
SbS 45.8 42.5

What if matching quadrupoles are used in
SbS?
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Outlook and prospects

β∗ measurements

I K-modulation techniques present some
limitations.

I The analysis technique has been
improved and the IR phase advance
has been included as a constraint to
force optimal solution. Promissing but
still some work to do.

I Additional tests and comparisons to be
done including measured data.

I To be tested in low-β∗ optics (LHC
and HL-LHC).

IR linear corrections

I For small matching section errors, the
two methods converge to similar
results.

I Assuming large errors in the matching
section, APJ seems to give better
results for local correction in IRs when
errors in matching section are
considered.

I Where are mathcing section errors
coming from?

I Can we improve SbS?

I APJ as a tool to be used from 2021.

I Use other LHC and HL-LHC optics.
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Extra slides
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Segment by segment and k-mod

Correction is based on SbS techniques and the matching is made taking including
k-mod data.

I Load model.

I Load tracking data.

I Perform analysis and get optics.

I Load k-mod data (previously simulated).

I Run IR1 segment.

I Launch matching tool.
I Phase B1/B2
I Amplitude from k-mod B1/B2.
I Select common quadrupoles.
I Run match.

I Test correction.

23 / 33



Implementation

1. Measurement data.
I AC dipole excitation...

2. Model data.
I From twiss with errors included.

3. Phase from k-mod.
I Formula above using guessed β∗ and w .
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Result: Correction strengths

APJ
corrq2l1 = 1.08469551968e-05
corrq2r1 = -7.73363949149e-06
corrq3l1 = 1.55571068315e-05
corrq3r1 = -2.79531489154e-05
corrq4l1.B1 = 0.0001092
corrq4l1.B2 = -0.0001094
corrq4r1.B1 = -7.3e-05
corrq4r1.B2 = 7.31e-05
corrq6l1.B1 = -0.0003845
corrq6l1.B2 = 0.0003202
corrq6r1.B1 = 0.0002205
corrq6r1.B2 = -0.0001932

Magnet Error 10−5m−2

Q1L/R -0.6/0.70

Q2L/R -1.17/0.74

Q3L/R -1.31/2.60

Q4L/R.B1 -7.00/5.70

Q4L/R.B2 7.00/-5.70

Q5L/R.B1 -6.86/2.98

Q5L/R.B2 7.01/-3.45

Q6L/R.B1 41.34/-23.71

Q6L/R.B2 -31.51/20.44
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Result: Correction strengths

SbS
dkqx.l1 = + 7.617246286e-06
dktqx2.l1 = - 1.015731896e-05
dktqx1.l1 = + 3.317201257e-05
dkqx.r1 = + 1.048958008e-05
dktqx1.r1 = - 0.0001551090389
dktqx2.r1 = - 2.039382267e-05

Magnet Error 10−5m−2

Q1L/R -0.6/0.70

Q2L/R -1.17/0.74

Q3L/R -1.31/2.60

Q4L/R.B1 -7.00/5.70

Q4L/R.B2 7.00/-5.70

Q5L/R.B1 -6.86/2.98

Q5L/R.B2 7.01/-3.45

Q6L/R.B1 41.34/-23.71

Q6L/R.B2 -31.51/20.44
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Results (B1)
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Results (B2)
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Results (B2)
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Results (B2)
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Results (B2)
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Results: small errors (B2)

∆β/β[%] H V

Uncorrected RMS 13.9 6.22
APJ RMS 0.17 0.20
SbS RMS 1.48 0.40

Uncorrected Max 79.3 105
APJ Max 0.25 0.29
SbS Max 2.18 0.59

β∗ [cm] H V

Uncorrected 71.7 82.1
APJ 39.9 40.0
SbS 40.2 40.2

32 / 33



Results (B2)

β-beating
∆β/β[%] H V

Uncorrected RMS 11.8 6.16
APJ RMS 0.73 1.57
SbS RMS 1.19 3.57

Uncorrected Max 53.6 79.19
APJ Max 1.06 2.21
SbS Max 4.62 7.08

IP optics
β∗ [m] H V

Uncorrected 61 72
APJ 39.96 40.5
SbS 38.98 38.7
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