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e-cloud buildup studies:
* Heat loads on the arc beam screens
o Scaling with bunch intensity
e Hybrid schemes
e Studies for other devices

e-cloud instabilities:
e Single-bunch instabilities
o Dependence on RF settings
o Dependence on bunch intensity
o Effect of transverse feedback, chromaticity, octupoles
* Coupled-bunch instabilities
o Effect of the bunch intensity
o Effect of transverse feedback



/—’ Heat loads on the arc beam-screens

Beam induced heat loads on the arc beam screens have been a challenge for
LHC operation with 25 ns in Run 2: dominating total load on the cryo-plants

e Much larger than expected from impedance and synchrotron radiation

* Large differences observed between sectors and between consecutive cells
in the same sector

* A degradation is observed between Run 1 and Run 2

* Being followed-up by dedicated Task Force
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H'ﬁ Underlying mechanism

o HL |LHCLI-’JH[]JECT- . . .
L’ Beam observations during Run 2 indicated that:

e The additional heat load comes from electron cloud effects

* It is compatible with alterations in the beam-screen surface properties leading
to a higher Secondary Electron Yield (SEY)

Beam

Observations

Total power associated to intensity loss
is less than 10% of measured heat load
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Heat load increases only moderately
during the energy ramp
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Heat loads with 50 ns are >10 times
smaller than with 25 ns
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Measured dependence on bunch
intensity is not linear nor quadratic
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Underlying mechanism

Beam observations during Run 2 indicated that:
e The additional heat load comes from electron cloud effects

* It is compatible with alterations in the beam-screen surface properties leading
to a higher Secondary Electron Yield (SEY)

Laboratory analysis of beam screens extracted from high-load magnets identified:
* Presence of cupric oxide (CuO) instead of the native cuprous oxide (Cu,0)
* Extremely low concentration of Carbon

Work ongoing to identify exact mechanisms leading to these alterations
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For more info: M. Taborelli, presentation at the LMC meeting, 2 Oct 2019
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Heat load [W/m/aperture]

Arc heat loads - scaling with bunch intensity

With the available model, simulations foresee a relatively mild increase of the
heat load from e-cloud when increasing the bunch intensity to HL-LHC values
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G. Skripka and G. ladarola, Beam-induced heat loads on the beam screens of the HL-LHC arcs, CERN-ACC-NOTE-2019-0041
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H_iﬁ Arc heat loads - scaling with bunch intensity .
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e To make predictions for HL-LHC, the SEY for the different cells has been inferred
from the measured heat loads

o The degradation between Run 1 and Run 2 is clearly visible
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’—’ Arc heat loads - scaling with bunch intensity

* For the most critical sector a heat load of ~10 kW/arc is expected
o Thisis incompatible with the nominal cooling capacity of 8 kW/arc

* An optimized configuration of the cryogenic system (using one cold-compressor
unit for two arcs) has been devised and routinely used in Run 2

o This increases the cooling capacity to ~10 kW/arc, which is compatible
with the expected heat load (assuming that we avoid further
deterioration!)
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More info: G. Skripka, Scaling of e-cloud effects with bunch population, HL-LHC WP2 meeting 26 Feb 2019
K. Brodzinski, Maximum cooling capacity for cryogenics in Run 4, HL-LHC WP2 meeting 24 Sep 2019
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Arc heat loads - scaling with bunch intensity
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Trains of 48 bunches, 450 GeV

e Acrucial elementin the predictions N
presented so far is the expected
dependence of the e-cloud heat load g Inaccessible |
on the bunch intensity s during Run-2
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Arc heat loads - scaling with bunch intensity

The collected measurements have been compared against the simulation model

- The agreement is very good, in all tested beam configurations
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ﬁ Outline

e-cloud buildup studies:
* Heat loads on the arc beam screens
o Scaling with bunch intensity
e Hybrid schemes
e Studies for other devices

e-cloud instabilities:
* Single-bunch instabilities
o Dependence on RF settings
o Dependence on bunch intensity
o Effect of transverse feedback, chromaticity, octupoles
* Coupled-bunch instabilities
o Effect of the bunch intensity
o Effect of transverse feedback



’—’ Arc heat loads — mixed scheme

* A backup beam configuration has been prepared in case limitations from e-cloud
are stronger than expected:

— Hybrid schemes combining 25 ns bunch trains and 8b+4e trains
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G. Skripka and G. ladarola, Beam-induced heat loads on the beam screens of the HL-LHC arcs, CERN-ACC-NOTE-2019-0041
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ﬁ Outline

e-cloud buildup studies:
* Heat loads on the arc beam screens
o Scaling with bunch intensity
e Hybrid schemes
e Studies for other devices

e-cloud instabilities:
* Single-bunch instabilities
o Dependence on RF settings
o Dependence on bunch intensity
o Effect of transverse feedback, chromaticity, octupoles
* Coupled-bunch instabilities
o Effect of the bunch intensity
o Effect of transverse feedback



ﬁ Buildup studies for other devices
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* TDIS injection absorber (to be installed during LS2): simulation study performed to
evaluated different low-SEY coating options

— Coating of the RF screen provides a strong suppression of the e-cloud

e Build-up study performed for new collimators:

- e-cloud formation is not expected for operational values of the collimator gaps
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ﬁ Outline

e-cloud buildup studies:
* Heat loads on the arc beam screens
o Scaling with bunch intensity
e Hybrid schemes
e Studies for other devices

e-cloud instabilities:
* Single-bunch instabilities
o Dependence on RF settings
o Dependence on bunch intensity
o Effect of transverse feedback, chromaticity, octupoles
* Coupled-bunch instabilities
o Effect of the bunch intensity
o Effect of transverse feedback



i/—’ Instabilities driven by e-cloud
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Instabilities driven by e-cloud arise from the coupling via electromagnetic forces
between the motion of the electrons and the dynamics of the proton beam

Wake-field effects Electron cloud effects

Boundary conditions e production mechanisms

Beam charge Maxwell’s M. e equations Maxwell’s
distribution equations of motion equations

Beam equations of motion <
Forces from ’

magnets, RF, etc..

* Due to the non-linear nature of the electron dynamics it is difficult to study these instabilities
using analytical treatments

* Modeling and understanding strongly relies on numerical simulations
—> PYECLOUD-PYHEADTAIL suite, developed and maintained at CERN
* Simulations can be very heavy = relying on HPC clusters at CERN and at INFN-CNAF (Bologna)
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e-cloud buildup studies:
* Heat loads on the arc beam screens
o Scaling with bunch intensity
e Hybrid schemes
e Studies for other devices

e-cloud instabilities:
e Single-bunch instabilities
o Dependence on RF settings
o Dependence on bunch intensity
o Effect of transverse feedback, chromaticity, octupoles
* Coupled-bunch instabilities
o Effect of the bunch intensity
o Effect of transverse feedback



Intra-bunch instabilities at injection energy

The electron motion is fast enough to act as a coupling mechanism between the
head and the tail of the bunch (dominated by electrons at the beam location)

o Stronger at injection energy due to lower beam rigidity

Proton bunch
oscillations
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Electrons in the arc quadrupoles are expected to be the strongest contributor (quadrupolar
field concentrates a large electron density at the beam location)

o Instabilities driven by e-cloud in the quadrupoles will be considered in the following
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Dependence on RF settings
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e The possibility of lowering the RF voltage at injection is being considered to cope
with RF power limitations

- An extensive simulation study has been conducted to address the impact
on e-cloud driven instabilities

* In the simulations the bunch length has been adapted to the RF voltage
following the dependence measured at the LHC

o Inall simulations the longitudinal distribution is matched to the bucket
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B '@ Intra-bunch instabilities at injection energy

* Thorough parameter scans were performed to identify appropriate numerical
settings

Numerical Chosen value
parameter

Slices/bucket 500
Parameters defined as a result
! ! p* MPs 1.25 X 10°
of the convergence study
(all parameters in the table Niicks 8
have been scanned): e MPs 5e5

Transverse grids External: 0.8 mm
(dual) Internal: 0.15 mm (0.2 6peam)

1.2 x 1011 p/bunch

104_

Example of

convergence test

3]
10 N. slices

vt 200 =—e== 500
v 300 =—e== 750
= 400 =—e== 1000

3 4 5 6 7 8
Vrr [MV]

Instability detected [turns]



Effect of RF voltage

Longitudinal settings were scanned together with the SEY parameter

* For LHC bunch intensity (1.2 x 10! p/bunch):
o The instability develops faster for lower RF voltage

o Additional tests showed that this effect is driven mainly by the lower
synchrotron tune
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Effect of bunch intensity

* The same parameter range (SEY: 1.3 - 1.4, V: 3 —8 MV) has been explored for HL-
LHC intensity (2.3 x 10! p/bunch):

* No instability detected even for the most unfavorable cases!

* The reason is that for higher bunch intensity there are less electrons in the

chamber
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’ lm Effect of transverse feedback and chromaticity

* For the case of LHC intensity (which an instability could be observed) the
effectiveness of different mitigation measures has been investigated:

* The instability is strongly mitigated by increasing the chromaticity settings

* The transverse feedback (bunch-by-bunch, dumping time of 10 turns) is
mostly ineffective
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Effect of transverse feedback and chromaticity

* For the case of LHC intensity (which an instability could be observed) the

effectiveness of different mitigation measures has been investigated:

* The instability is strongly mitigated by increasing the chromaticity settings

* The transverse feedback (bunch-by-bunch, dumping time of 10 turns) is
mostly ineffective 2 cannot damp intra-bunch motion
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Octupole scan
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* For the case of LHC intensity the octupole current has also been scanned

= Much less effective compared to chromaticity
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e-cloud buildup studies:
* Heat loads on the arc beam screens
o Scaling with bunch intensity
e Hybrid schemes
e Studies for other devices

e-cloud instabilities:
* Single-bunch instabilities
o Dependence on RF settings
o Dependence on bunch intensity
o Effect of transverse feedback, chromaticity, octupoles
* Coupled-bunch instabilities
o Effect of the bunch intensity
o Effect of transverse feedback



Hil PHW}) Coupled-bunch instabilities

* The electrons in the two vertical stripes typical of the e-cloud distribution in dipole
magnets contribute very little to single-bunch instabilities but can couple the
motion of consecutive bunches

e Simulation of these phenomena is
extremely heavy

o Requires the simulation of the full e-
cloud buildup process coupled with
the beam dynamics at each turn

o The PYyECLOUD-PYHEADTAIL suite and
its PyPARIS parallelization layer have
been recently been extended to

y [mm]

exploit HPC clusters to perform these el _
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For more info: G. ladarola, New tools for the simulation of coupled bunch instabilities driven by electron cloud, e-cloud meeting 14 Feb 2018
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Bunch passage

Coupled-bunch instabilities

Example of simulation for LHC bunch intensity (1.2 x 10! p/bunch)

e A train of 144 bunches is simulated

* The simulation requires a total 144 x 10® proton MPs for the bunches and 160 x 108

electron MPs

e Itis performed on 800 CPU-cores on the CERN HPC cluster

Coupling between the motion of the bunches and the electron distribution is visible
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Simulated SEY=1.8, to observe the instability
with an affordable simulation time
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Bunch passage

Coupled-bunch instabilities

The same simulation is performed for HL-LHC bunch intensity (2.3 x 10! p/bunch)

* Asaresult of the larger bunch intensity, the electron stripes are further away from

the beam

* The instability pattern along the bunch train is different

e  Most unstable bunches are in the middle of the first train
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Horizontal position [mm]
o

Coupled-bunch instabilities

* For the two values of the bunch intensity the rise-time of the instability is similar

* The simulations have been repeated with the transverse feedback active (20 turns
dumping time)

o In both cases the feedback fully suppresses the instability (over the simulated
timespan)

1.0 x 10" p/bunch

— Feedback OFF

| — Feedback ON
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Turn

400

500

600

Horizontal position [mm]
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100 200

300 400 500 600
Turn

L. Mether
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Summary and conclusions

* The heat loads expected in the arc-beam screens have been simulated using SEY estimated

from heat load measurements (at a cell-by-cell level)

o For the most critical sectors a heat load of ~10 kW/arc is expected

o Optimized cryogenics configuration deployed in Run 2 allows for ~sufficient cooling

capacity (with no margin)

o Important to avoid further degradation of the SEY

* Dependence of heat loads on bunch intensity probed experimentally at the LHC during

2018 using short bunch trains=> found to be consistent with simulation model

* Transverse instabilities due to electron cloud are being studied using HPC computing

resources:

* Single bunch instabilities driven by e-cloud in the main quadrupoles at 450 GeV:

©)

©)

©)

©)

Found a significant dependence of the instability risetime on RF settings

High chromaticity is found to be the most effective mitigation

The beam is more stable for HL-LHC bunch intensity (e-cloud density is lower)
Effect of dipoles and drifts will be investigated in the near future

* First studies on coupled-bunch instabilities conducted on CERN HPC cluster
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Bunch-by-bunch feedback fully suppresses the instability in simulation
Next step is to move to more realistic scenarios: octupoles, Q’ etc.
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Thanks for your attention



Bunch Length and RF Voltage Amplitude

—e— varying o; - SEY=13
— 104 —— 4-0;=1.37ns
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£ * Fixed bunch length (same
';_103- electron pinch)
> * Changing Vg (matched bunch,
g changing Qs, long. emittance)
m
21 ‘ . , : .
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Vrr [MV]

1. The dominant element is the change of V;: and not the change in bunch length



