9th HL-LHC Collaboration Meeting, Fermilab, USA
14-16 October 2019

WP4
HOM Couplers, Field Antenna and Feedthroughs Status (& FPC and Outer Tube)

eric.montesinos@cern.ch
on behalf of all persons involved
Preamble

We have a (almost) weekly vidyo meeting with US-AUP colleagues

This presentation summarizes (almost all) what is discussed there

This is the view from the CERN side of it
HOM couplers, Field Antennas, RF power lines
Schedule as per end 2018

To be provided by CERN

- Lines + Feedthroughs + Antennas + HOM couplers
- Lines
- Lines

<table>
<thead>
<tr>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟨 SPS CERN DQW proto</td>
<td>🟨 SPS CERN/UK RFD proto</td>
<td>🟨 RI/CERN DQW</td>
<td>🟨 RI/China/UK DQW</td>
<td>🟨 AUP/TRIUMF RFD proto</td>
</tr>
</tbody>
</table>

eric.montesinos@cern.ch, 9th HL-LHC Collaboration Meeting, Fermilab, USA - 14-16 October 2019
Schedule as per September 2019

To be provided by CERN

- Lines + Feedthroughs + Antennas + HOM couplers
- Lines + all Feedthroughs
- Lines (+ all Feedthroughs? to be decided)

<table>
<thead>
<tr>
<th>Year</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS CERN DQW proto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS CERN/UK RFD proto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI/CERN DQW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI/Russia/UK DQW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUP/TRIUMF RFD proto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schedule as per end 2018

- **2019**
 - 3 RFD V: 2 (+1) x
 - 3 RFD H: 2 (+1) x
 - 34 DQW: 6 (+2) x
 - 26 Antennas: 6 (+2) x

- **2020**
 - All RFD HOM Couplers Series manufactured by the US-AUP team
 - 8 x

- **2021**
 - 8 x
 - 6 + (4) x
 - 10 x

- **2022**
 - 6 + (4) x
 - 6 + (2) x

eric.montesinos@cern.ch, 9th HL-LHC Collaboration Meeting, Fermilab, USA - 14-16 October 2019
Schedule as per September 2019

<table>
<thead>
<tr>
<th>Antennas</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Antennas</td>
<td>2 ((+1)) x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 RFD V</td>
<td>2 ((+1)) x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 RFD H</td>
<td>2 ((+1)) x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 DQW</td>
<td>6 ((+2)) x</td>
<td></td>
<td>8 x</td>
<td>6 ((+4)) x</td>
</tr>
<tr>
<td>13 Antennas</td>
<td>2 ((+1)) x</td>
<td>4 x</td>
<td>4 ((+2)) x</td>
<td></td>
</tr>
<tr>
<td>13 HF-HOM</td>
<td>2 ((+1)) x</td>
<td>4 x</td>
<td>4 ((+2)) x</td>
<td></td>
</tr>
</tbody>
</table>

All RFD HOM Couplers Series manufactured by the US-AUP team.
As Rama explained yesterday, we are ‘concern #6’
To solve it we had to move from ‘all in one Field Antenna & HF HOM’ to one Field Antenna & one HF HOM coupler
In addition to the coupling mitigation, we are also ‘concern #7’
I endorse it, as this is because of my fear of transportation
Transportation: 50 Ohm to 25 Ohm

With all the transportations we will have, we can reasonably expect some shocks.
Transportation: 50 Ohm to 25 Ohm

Ideal design D39.7/d3.1; Z = 50 Ω

\[Z_{\text{ceramic}} = \frac{60}{\sqrt{\varepsilon_r}} \ln \left(\frac{D}{d} \right) ; \quad Z_{\text{ceramic}} \sim 20 \ln \left(\frac{D}{d} \right) \]

Crab SPS design D39.7/d6; Z = 38 Ω

In order to make it much more robust, Rama had the clever idea to propose 25 Ω

Crab design D40/d12; Z = 24 Ω
Transportation: 50 Ohm to 25 Ohm

Moving from 50 Ω to 25 Ω is not an easy decision as it impacts a lot of modifications on all devices:

- Ceramic sizes
- Titanium flanges size
- Cavity flanges size

This was finally agreed by all actors, including US-AUP.

Eduardo did simulations showing that the stress in the ceramic is largely decreased with 25 Ω feedthroughs.
Zenghai and Jamie verified that this new impedance is still compatible with requirements, and RF optimization of the feedthrough was done taking it into account.

Design of Feedthrough for Dampers

- Feedthrough RF design range 25.0GHz ± 3.5GHz
- The design has been performed on the basis of operation data
- RF impedance objectives
- Beam and RF have converged to a design
- HOMs damping times less than specified

12: Impedance

- Integrated max HOM power measured < 3 W. More than 75% from ~960 MHz as expected
- Overall HOM power & scaling to the HL-LHC looks reasonable, some deviations related to lack of accurate beam profile

** Devil is in the details, so everything is carefully adjusted in order to provide a wideband and robust 25 Ω feedthrough**

- D has been increased to 40.0 mm
- d has been slightly increased to 14.0 mm
- Hair has been calculated taking into account fabrication constraints (EBW#1 and EBW#2) and RF optimization
- Hvac has been calculated taking into account solidity with respect to transport and RF optimization
Feedthroughs optimization

Thickness of the inner tube is a key parameters

- **1.5 mm is ok**
- 1.75 mm is being tested
- 2.0 mm is being prepared
- 2.5 mm failed, brazing was not ok

Thermal tests are performed before drop tests
1. Leak test
2. Keep the feedthrough under vacuum
3. Submerge the feedthrough slowly in liquid nitrogen
4. For **120 seconds** leave the piece
5. Slowly lift up the piece emptying any excess liquid
6. Submerge the feedthrough slowly in warm water
7. For **120 seconds** leave the piece
8. Slowly lift up the piece emptying any excess liquid
9. Repeat **5 times** steps 3 to 8
10. Leak test

Frida and Sonia did drop tests that showed that moving to 25 Ω is not the only parameter, the thickness of the tube is also important and must not be to large

eric.montesinos@cern.ch, 9th HL-LHC Collaboration Meeting, Fermilab, USA - 14-16 October 2019
Design being finalized with a common feedthrough
Raw material ordered

- Titanium flange
- Ceramic window
- Niobium
- Copper
- Stainless Steel

Material ordered and delivered
Material ordered not yet delivered

Material ordered for all pre-series
Schedule as per September 2019

2019

3 antennas
3 RFD V
3 RFD H US\text{version}

2020

2 (+1) x
2 (+1) x
2 (+1) x

2 (+1) x
2 (+1) x
2 (+1) x

34 DQW
13 Antennas
13 HF-HOM

2021

All RFD HOM Couplers Series
manufactured by the US-AUP team

2022

Collaboration with Russia
being prepared

eric.montesinos@cern.ch, 9th HL-LHC Collaboration Meeting, Fermilab, USA - 14-16 October 2019
50 Ohm version
Impedance at thermal anchor level had not been optimized
Had been tested up to 16 kW full reflection

25 Ohm version
Being redesigned for 25 Ohm, this induces modifications
Impedances at thermal anchor and of the elbow are optimized
High power testing being prepared

50 Ohm version, tested up to 16 kW CW under vacuum
25 Ohm version, must also sustain 4 kW full reflection, i.e. 16 kWp to do so, elbows are being redesigned
RF Power transmission lines

Power lines have to be powerful as if for any reason the load is removed or broken, they will locally be exposed to an equivalent of 4 times the power. This happened in 1996 with a SPS test of a LHC cavity. We had to open the cryomodule and to exchange the cables connecting the HOM couplers to external world. In addition, RF power lines are additional impedances mismatch added to the HOM impedance network, so they must be as well designed as possible.

Usually we explain full reflection with an amplifier as a source and a load, here the source is the HOM coupler and the beam.
RF Power transmission lines

No one will agree that we ask to open the cryomodule to exchange a cable, reason why we are designing these ‘too big’ RF power lines.
FPC

SPS Tests has demonstrated the good design of the FPC ‘ancillary’ (not a concern #14)

We are on track for the next two cryomodules to be equipped

2 RFD + 2 DQW FPC being prepared for RF processing on their test boxes

Do you remember that in December 2012 you asked to provide 100 kW CW through a 40/17 mm line?

Fortunately we had a dinner at ‘Two Brothers’ and we agreed there a 62/27 mm line

We have been quite quick to design and construct the FPC

Please keep in mind that we are designing and producing quite a large number of these FPC, and this Crab one in an evolution of the SPL FPC
FPC Outer Tube

Perhaps linked to ‘concern #13’

Being redesigned with two anchors positioned such that there is a monotonous thermal path

Feasibility of a gold-gold being studied (if not possible, will be gold-copper, as we did for the SPS test)
Assembly in clean room

Once the FPC have been RF processed, we assembled them in clean room

We will take advantage of the experience gain with the first DQW cryomodule

We upgraded our flip-book, and we are also upgrading our tooling

We also started to work on the test boxes we want to qualify the HOM couplers
All difficulties we have to avoid/cure (impedances, transport,...) not easily identifiable at a first glance

WP4 RF team (CERN + US-AUP)

Nice (innocent) HOM couplers
Still to be done

Complete the 3D and 2D drawings for DQW
Study how to qualify a 25 Ω system and build qualification tools
Order specific 25 Ω cables and loads
Prepare Clean Room assembling tooling (taking advantage of experience gained with DQW SPS test)
Ensure a correct Quality Management
Conclusion

We induced some delay due to the 25 Ohm design
We now have a solid feedthrough design that successfully passed thermal and drop tests (transport)
This design is common to all our couplers and antennas
We launched the production of the RFD couplers
DQW modifications to 25 Ohm are almost done and construction will be launched very soon
We stick to a delivery of RFD by end May 2020, and DQW by end July 2020
RF power lines modifications are being done
FPC are on track
Thanks once again to the management for the support

Thanks to all people involved doing a fantastic job!

We are eager to continue working on this exciting project