

High Order Corrector update

Marco Statera on behalf of the LASA team INFN Milano - LASA

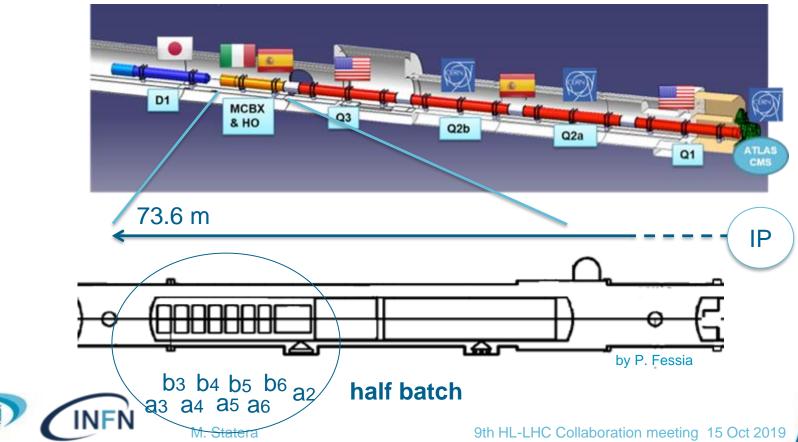
9th HL-LHC Collaboration Meeting Fermilab – Oct 15th 2019

OUTLINE

- Scope: the High Order Correctors magnets
- Overview on HO Correctors
- The prototypes
- The series production

M. Statera

- Next steps
- Conclusions


High Luminosity LHC

- LHC integrated luminosity 300 fb⁻¹ by 2023
 HL LHC
 - upgrade interacting regions 2024/26
 - 3000 fb⁻¹ integrated luminosity by 2038

THE LOW BETA SECTION and the High Order Correctors

SCOPE - High Order Correctors

- The INFN-LASA follows the design, construction and test of the 5 prototypes of the High Order (HO) corrector magnets for the HL interaction regions of HL-LHC. KE2291
- The INFN-LASA will follow the series production of the HO corrector magnets for the HL interaction regions of HL-LHC. KE3085

ADDENDUM No. 2 KE3085/TE/HL-LHC

to

30th Nov 2017

FRAMEWORK COLLABORATION AGREEMENT KN3083

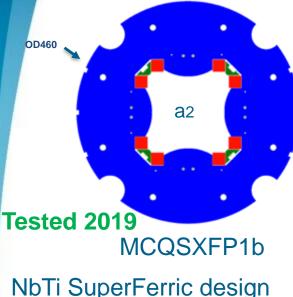
between

THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

and

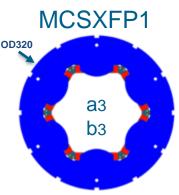
Istituto Nazionale di Fisica Nucleare (the "Institute")

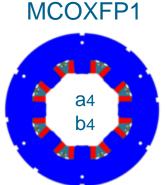
concerning


54 S.C. High Order Corrector magnets

Collaboration in design, procurement and testing of the high-order orbit corrector superconducting magnets in the framework of the High Luminosity upgrade for the LHC at CERN

M. Statera

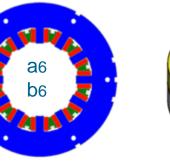



HO CORRECTOR MAGNETS ZOO

Geometrical lengths: 200 mm - 265 mm 12P, S4P: 540 mm – 580 mm

Design Construction & Test • 5 protoptypes

• 54 series magnets


Tested 2016 MCDXFP1

a5 b5 Tested 2018

M. Statera

Tested 2017 MCTXFP1

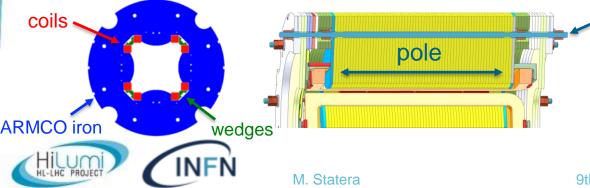
Round Coil Superconducting Magnet MgB₂demonstrator

Tested 2019

Tested 2018

9th HL-LHC Collaboration meeting 15 Oct 2019

SUPERFERRIC DESIGN


constraints

NbTi superconding coils

- Racetrack
- Insulation by S2 glass reinforced material

Superferric design

- Compact and modular
- Strong contribution of the iron poles
- Field quality influenced by the shape of the poles

	• C	ongitudinal dimension Quench protection Small dimension: 84kN series production (6 magnets)				
		magnet	lc @ 4.2 K	Margin @4.2 K	Margin @1.9K	
		4P S	315.5 A	42.3 %	57.1 %	
		6P	225.5 A	53.4 %	>60 %	
S		8P	230.2 A	54.4 %	>60 %	
0	CuBe	10P	255.7 A	58.9 %	>60 %	
rods		12P N	232.6 A	54.9 %	>60 %	

230.2 A 54.4 %

Quench protection

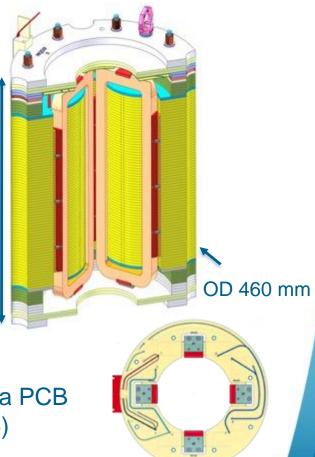
12P S

- No energy extraction (but 4P)
- 60% margin @ 1.9 K

9th HL-LHC Collaboration meeting 15 Oct 2019

>60 %

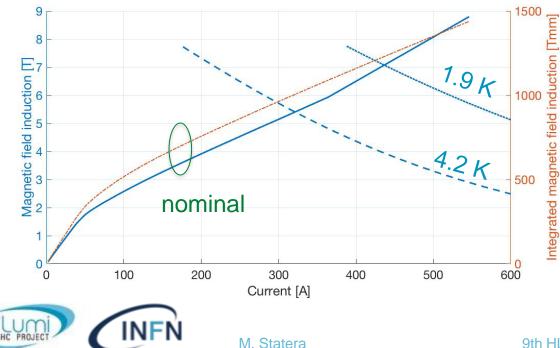
MCQSXFP1

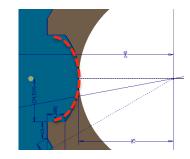

length	538 mm	
integrated field @ In @ r50 mm	0.700 Tm	
magnetic length	401.1 mm	
energy @Inom	30.8 kJ	
harmonics	B6= -30 U at low current B6= 30 U at I _{op} B10= -8 U ÷ -12 U	

- COILS
 - 754 windings
 - 815 m of Φ 0.7 mm NbTi

M. Statera

Connections on a PCB board (Arlon N85) Double V taps

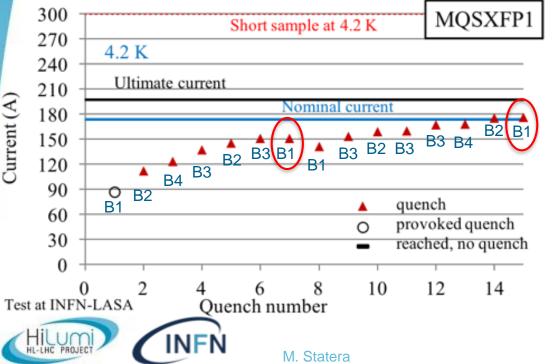

538 mm

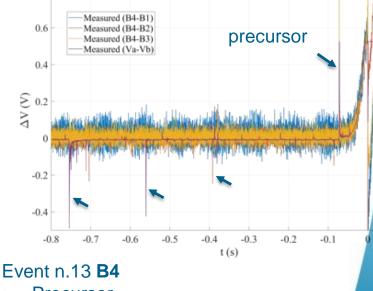


EM DESIGN

- nominal current 174 A
- field integral 0.7 Tm
- ultimate current 197 A

modifed ideal pole shape (wire EDM laminations)

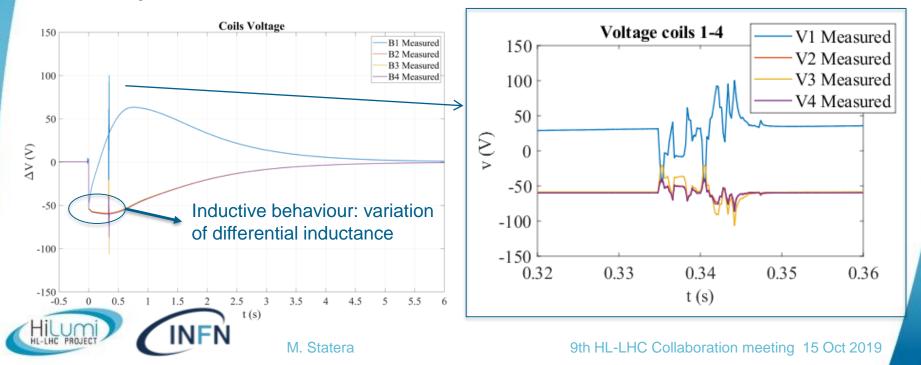

QUENCH protection OPERA + QLASA 1.5 Ω dump resistor ground in the middle Max temperature 145 K Max voltage 235 V



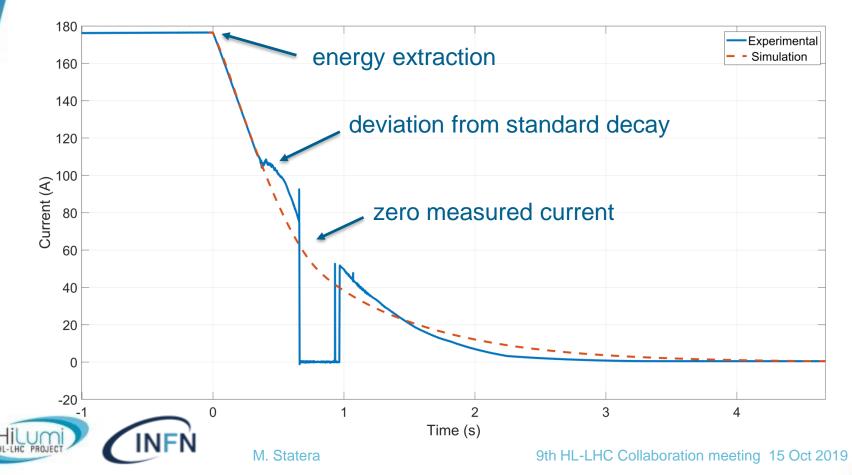
First Cooldown and Energization

- Controlled cool down: <100 K/m</p>
- Training up to nominal

Electrical problem

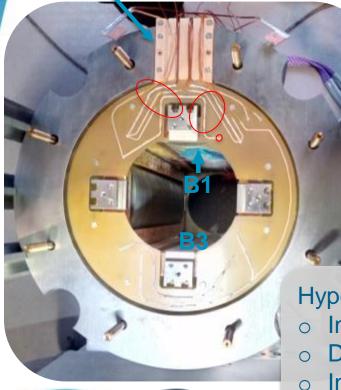


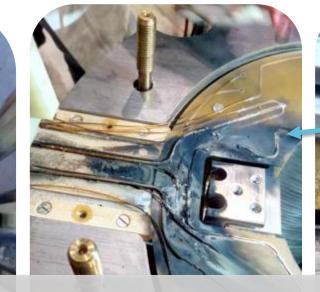
- Precursor
- Recovered transitions in different coils


9th HL-LHC Collaboration meeting 15 Oct 2019

Event n.7

Voltage instability during the dischargeTiny effect on current

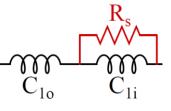


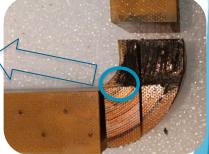

Event n.15

Damaged Coil

bridge

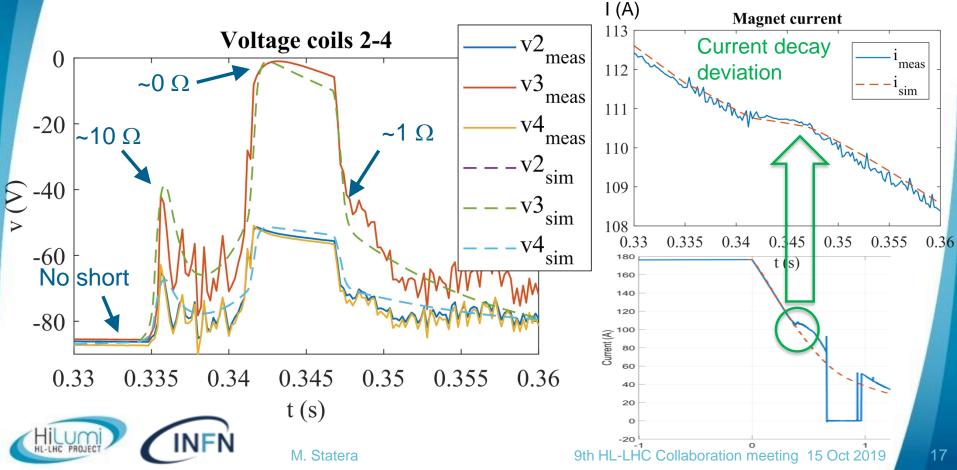
- Internal short originated in the quenched coil n.1
- Discharges between output wire and windings
- Inner layers not damaged

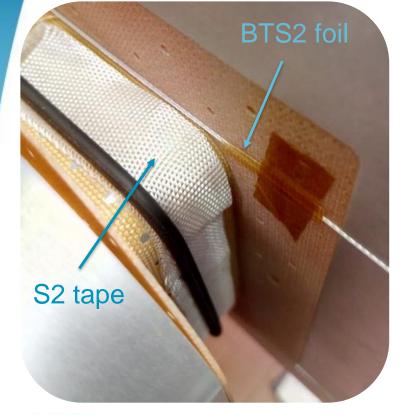

Numerical Model


- Numerical model implemented in LTSpice, Netlist forma (M. Prioli)
- Coil 1 split into two parts:
 - Coil 1A: 7 high-field layers bypassed by a short-circuit
 - Coil 1B: 19 layers normally in series with the rest of the circuit
- Mutual inductance matrix (5 x 5) computed in Opera (S. Mariotto)
- Quench originated in the high-field zone (Coil 1A)

M. Statera

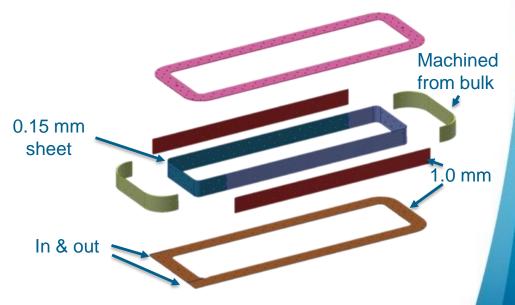
- The resistance is not evenly distributed between coil 1A and coil 1B
- Simulated distribution is 37% for coil 1A and 63% for coil 1B
- The short resistance is a variable
 - It is initially high (~10 Ω), then decreases due to a local welding (~0 Ω) then increases (~1 Ω)





Secondary Faults Magnet current R 150 2 <u>ج</u> 100 +50 0 0.5 10 1.5 2 0 Coils voltage v2 100 meas v3 meas \mathbf{E} C₂ 50 C_4 v4 000 meas 0 v (V) -50 -100 -150 0.5 1.5 2 0 t (s) M. Statera 9th HL-LHC Collaboration meeting 15 Oct 2019

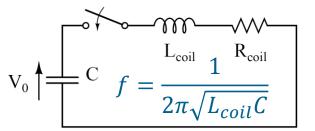
Numerical Model: Results



Two New Coils

M. Statera

- all coils compliant
- the 2 new coils installed


Quality Control Improvements

- The first test of MQSXFP1 proved that the QA procedures and the QC of the coils inter-turn and inter-layer insulation are fundamental in view of the series production
 - Insulation damages may be less severe than that in coil n. 1
- How to implement the early defect detection?
 - Ground insulation test
 - Resistance measurement
 - PJ method (capacitor discharge)
 - Ferromagnetic coupling

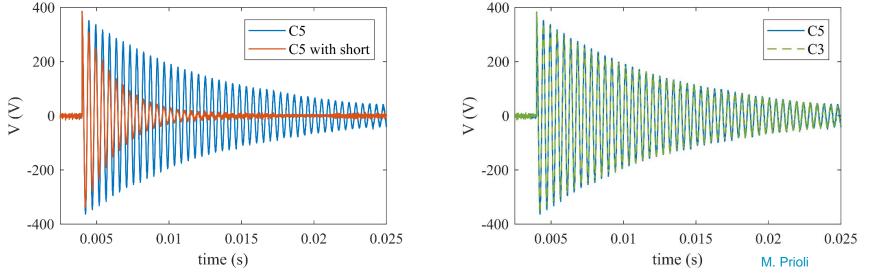
PJ Test

 Charged capacitor connected across the coil under test

- Surge tester
- C=2 nF, V=5 kV

Oscilloscope

Coil


- Capacitor bank
- (up to 400 V) and control unit
- High voltage probes

PJ test results

Following the analysis, C was set to 20 nF

M. Statera

One turn in short was reproduced

The short can be easily discerned, measurement are repeatable

Ferromagnetic coupling - setup

- Signal generator -
- 4 quadrants PC

Oscilloscope

- Low AC voltage (36 V per coil)
- Pickup coil ~

2 coils

M. Statera

Ferromagnetic core

M. Todero

Ferromagnetic Coupling - Measurements

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 $V2_{rms}$ (V)

-C1 vs C3 -C1 vs C4

C1 vs C5

1 turn shorted

★ C1 vs C6
 ★ -+1 turn
 ★ -1 turn

200

400

f (Hz)

Optimal frequency 500 Hz

 Allows also to distinguish the origin of unbalance (number of turns or short)

Optimal frequency 500 Hz

M. Statera

Allows also to distinguish the origin of unbalance (number of turns or short)

600

800

1000

23

M. Prioli

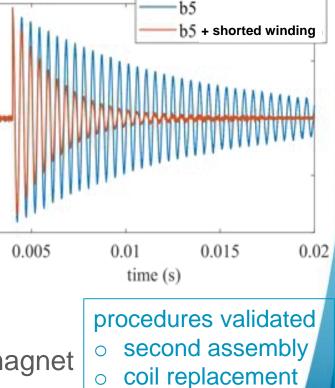
Second Assembly Assessment

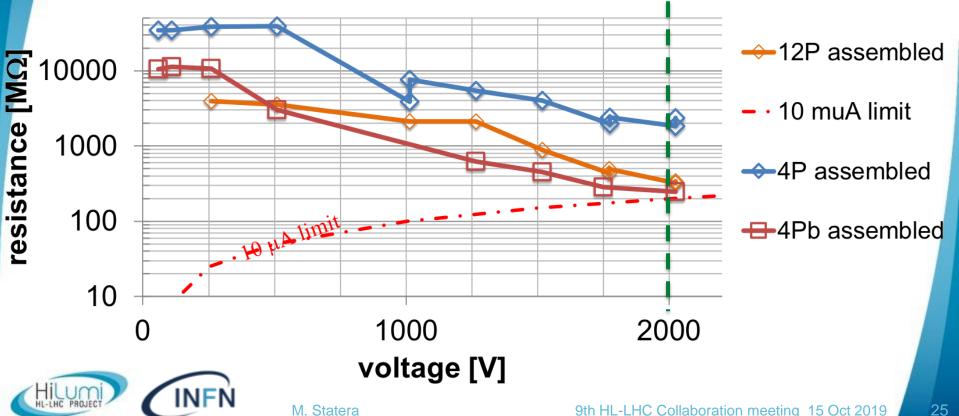
400

200

-400

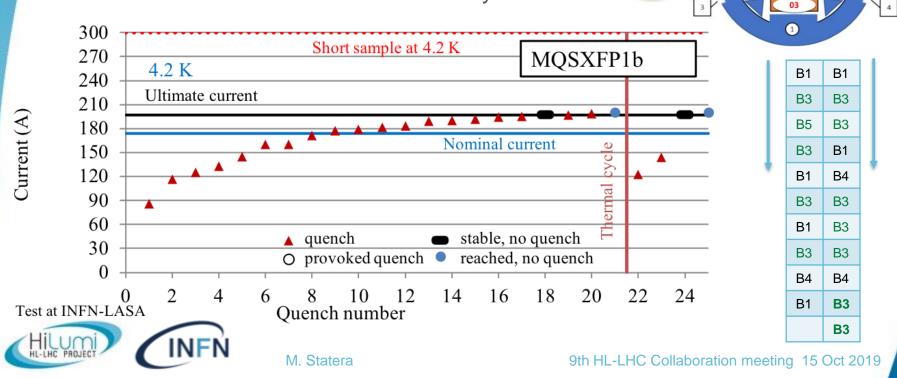
Coil


- Geometry
- HV ground insulation (2,5 kV)
- Wire-wire insulation (2kV), turns


All coils are compliant (spare coils tested up to 7 kV)⁻²⁰⁰

Magnet

- Laminations' profiles and slits
- Alignment of the assembly
- HV ground insulation of the magnet (up to 2 KV)

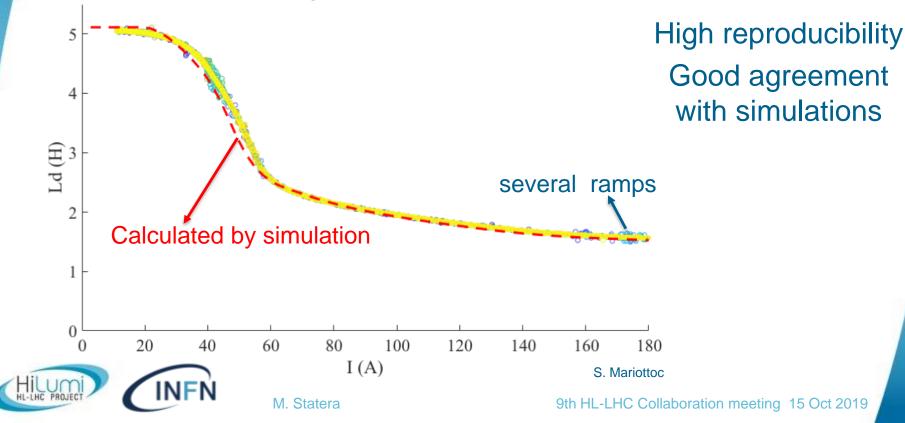

Magnet Ground Insulation

Power Test

06

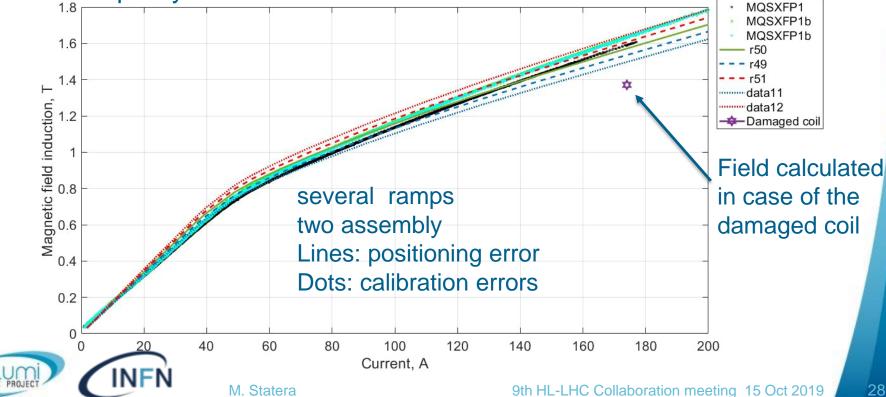
- Most quenches in new coils
- Good stability after reaching 200 A (> I_{ult} 197 A)
- Stable 1 h @ ultimate after thermal cycle

02

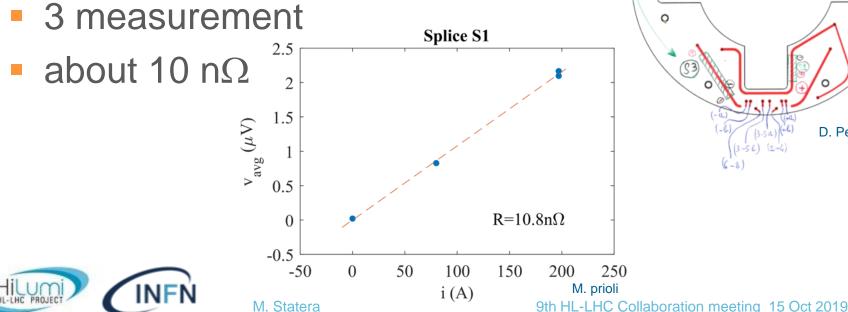

5 4

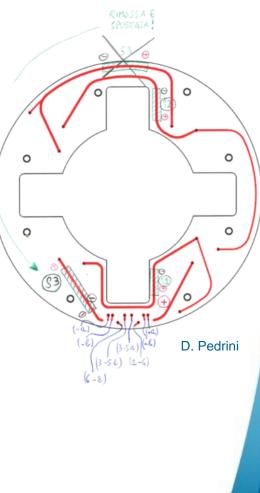
6

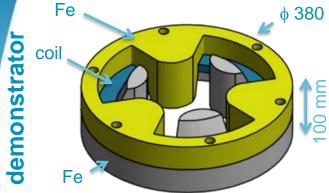
- 5


Dinamic Inductance

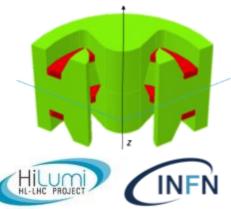
Measured during current ramps


Single Point Field Measurement


- Low accuracy positioning
- Field quality measurement at LASA in 2019


Splice Resistance

- Splice resistance measurement
- dedicated channels in DAQ



Round Coil Superconducting Magnet

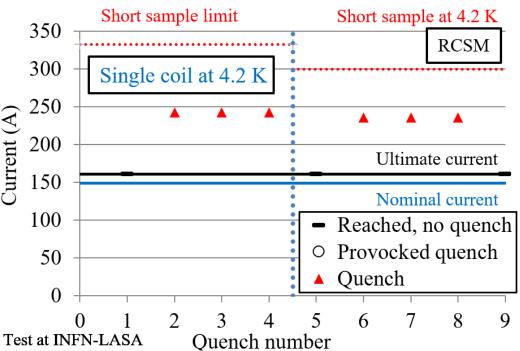
G. Volpini et al. Eletromagnetic Study of a Round Coil Superferric Magnet, IEEE Tr. App. Sup, 26, 4 (2016)

single module

BUS BAR Strain gages

- Single MgB₂ coil
 - Diameter > 200 mm
 - Wire diameter 1 mm
 - T_c 39 K

single coil

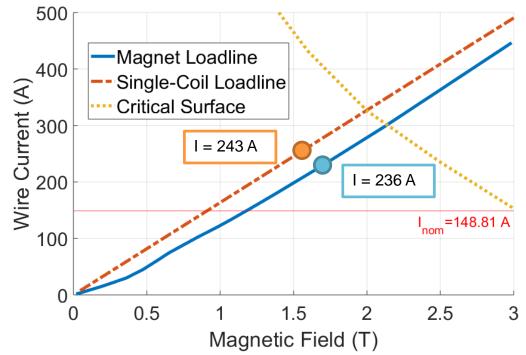

No quench training The Coil is stable at the Ultimate Current (108% I_{op}) Maximum value of the current reached: >75% of the Short Sample Limit

Single coil and RCSM test results

- Ultimate current reached without any training
- 1 h stability test succesfully passed

M. Statera

- 3 different spontaneous quenches occurred at:
 - 243 A, single coil
 - 236 A, RCSM

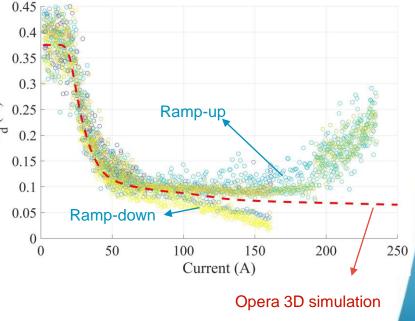


Load line comparison

Single coil: **73%** of load line RCSM: **78%** of load line

Compatible with wire degradation of 21.4% in the coil ends, during winding procedure

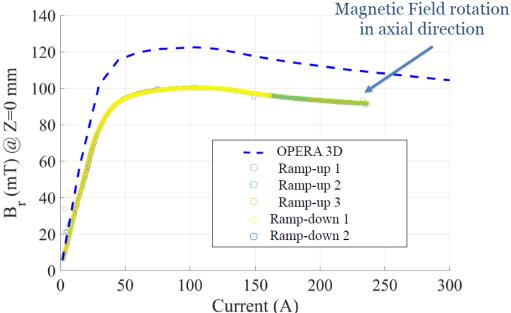
M. Statera



Differential inductance in RCSM

- Eddy currents in superconductor: excluded because the inductance increasing occurs at high current
- Eddy currents on non-laminated ARMCO iron: excluded because the same phenomenon can be seen during the single coil test and is exluded by E OPERA simulation
- Resistive region growing (current sharing regime): escluded in the coil ends by measurement, not excluded in the winding
- Heat dissipation in current leads (?)

Differential inductance



Magnetic field

Hall probe signal taken from different current ramp-up and ramp-down

- high repetibility of the magnet with no degradation at high current level
- Difference of about 20% between the magnetic field measured and simulated:
 - 1. Presence of the air gap & holes: excluded by OPERA 3D simulation
 - 2. Hall probe calibration: ongoing test
 - 3. Hall probe positioning: excluded by OPERA 3D simulation
 - 4. B-H curve: exluded

SERIES PRODUCTION

- 17/9/2018 call for tender
- 15/1/2019 evaluation of quotations
- 28/2/2019 contract awarded by Giunta Esecutiva to Saes Rial Vacuum (SRV)
- 17/6/2019 contract signed
- 24/6/2019 kick off meeting

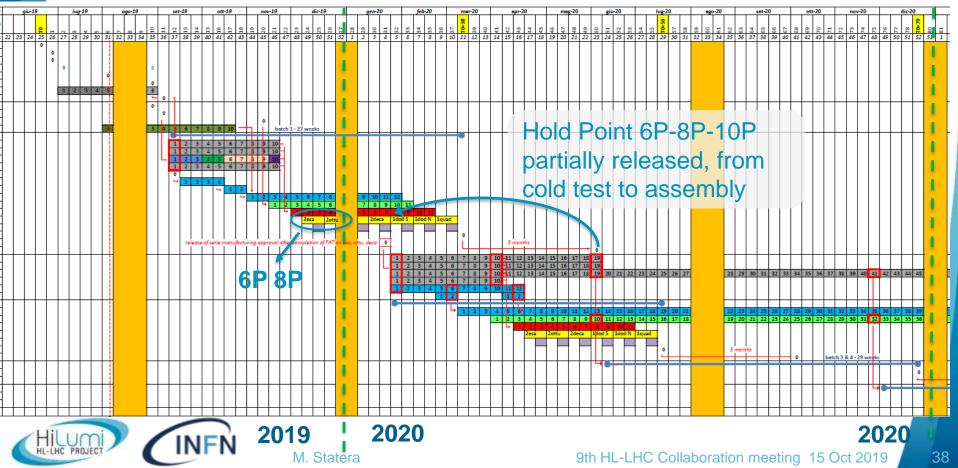
M. Statera

1/10/2019 production started (machining)

SHEDULE

In May 2018 an "Engineering Change Request" has been requested by CERN, to increase magnetic (and geometric) length of 3 magnets and decrease the 4-pole skew In Feb 2019 an electrical problem with the skew quadrupole

Milesto			
M1.1	Engineering Design of the series completed		
M1.2	First coil wound	May 2019	Nov 2020
M1.3	First batch delivered to INFN-LASA for test (2 magnets per type)	November 2019	Jul 2020 (1a Mar 2020)
M1.4	Second batch delivered to INFN-LASA for test (2 magnets per type)) July 2020	Dec 2020
M1.5	Third batch delivered to INFN-LASA for test (2 magnets per type)	March 2021	Jun 2021
Deliver	Feb 2019		
D1.1	Award for the contract of the series construction January	uary 2019	signed Jun 2019
D1.2	First tested batch delivered to CERN (2 magnets per type) Man	rch 2020	Oct 2020 (1a Jun 2020)
D1.3	Second tested batch delivered to CERN (2 magnets per type) Nov	vember 2020	Mar 2021
D1.4	Third tested batch delivered to CERN (2 magnets per type) June	le 2021	Sep 2021



Schedule 2

- Engineering done
- Procurement: S2 insulated NbTi wire not delivered (Aug 2019)
- Machining started
- Winding and assembly not affected

Schedule 3

FIELD MEASUREMENTS AT LASA

- measure field quality of MQSXFP1b at LASA Nov-Dec 2019
 - New frame supporting the magnets done
 - Install field probe (not the final one) done
 - Cabling for series tests ongoing

M. Statera

- Install skew quadrupole
- Finalize the field probe for the series ongoing (L. Fiscarelli, S. Mariotto)
- Assembly of a new power converter 600 A
 - Dump resistance
 - IGBT polarity switch

CONCLUSIONS

- High Order Correctors prototypes tested
 - 5 superferic and 1 Round Coil Superconducting Magnet
 - Tested second assembly procedure
 - Updated QC for early defect detection
- High Order Correctors series production started
 - Engineering done, procurement ongoing, machining started
- Delay of about 6 months with respect original plans -> scheduled 3 month at last delivery
 - First series magnet in 2019
- Field measurements at LASA in preparation
 - First measurement in 2019
 - Cabling for series magnets

M. Statera

Istituto Nazionale di Fisica Nucleare Laboratorio Acceleratori e Superconduttività Applicata

LASA team

F. Alessandria, G. Bellomo, F. Broggi, S. Mariotto, A. Paccalini, A. Pasini, D. Pedrini, A. Leone, M. Quadrio, M. Prioli, M. Sorbi, M. Statera, M. Todero, C. Uva **CERN** A. Musso, E. Todesco

M. Statera

