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Longitudinal single-bunch stability

LHC Fill 6116, 23.08.2017
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*T = Tpwum+/ 2/ In 2 is scaled from full-width half-maximum (FWHM) bunch length



Longitudinal single-bunch stabillity
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Loss of Landau damping in LHC: measurements
MDs in 2015, V.= 12 MV, beam energy 6.5 TeV
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Measurements performed at different conditions and stability parameter was
calculated for all bunches & = V¢t°/N, (PhD thesis J. E. Muller, 2016)
— The threshold &4, = 0.5 X (max &ypse + minég) = (5.0 £ 0.5) X 107> (ns)°V



Comparison of measurements and simulations
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Simulation with full LHC longitudinal impedance model (B. Salvant et al., HB2012)
& binomial bunch distribution A(t) = 1,[1 — 4t? /7?]#+0->

— Very good agreement between measurements and BLonD particle tracking
simulations (PhD thesis J. E. Muller, 2016).



Comparison of measurements and analytic calculations
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Analytic approaches

Vlasov equation for a small perturbation of stationary distribution can be solved
by using:

1. Orthogonal mode expansion (K. Oide & K. Yokoya, 1990).
Loss of LD is interpreted as emerged van Kampen coherent modes
(semi-analytic code by A. Burov, 2010, recently translated in Python by
T. Argyropoulos, 2019).

2. Another form of solution (A. N. Lebedev, 1967).
Matrix equation defines presence of undamped modes

Both approaches were incorporated in a new semi-analytic framework MELODY
(Matrix Equations for LOngituDinal stabilitY evaluation, 2019)



Comparison of analytic approaches

LHC at 6.5 TeV, ImZ/n = 0.09 () = const
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Impedance (Q)

LHC/HL-LHC impedance model
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| Blue - N. Mounet, PhD thesis, 201
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— The resonant frequency of the broadband model was changed from 5 GHz to
50 GHz (D. Amorim, 2018).
— This change has a significant impact on longitudinal single-bunch stability



Stablility threshold for broad-band impedance

MELODY results

%1011 Vie = 12.00 MV, ImZ/n = 0.076 Q2
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— Changing resonant frequency from
5 GHz to 50 GHz results in reduction
of the threshold by factor of 3.

— The LHC/HL-LHC broad-band
Impedance model needs to be
revised.
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Single-bunch stability at 450 GeV

LHC, E = 450 GeV,u = 2

Results using MELODY for smoothed

Vie = 6 MV

Impedance (resistive wall + broad-band model
at 5 GHz)

For LIU bunch from SPS (1.65 ns,
10MV@200MHz + 1.6 MV@800 MHz), bunch
\Iength In LHC (in absence of injection errors).
1.4 ns for 6 MV (LHC nominal 2017)
1.3 ns for 8 MV (HL-LHC design report)

Two voltages V¢ provide similar single-bunch

stability
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There are constrains due to injection losses and
rf power consumption (see talk of H. Timko)



Persistent oscillations after injection

LHC MD 2017
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During 20 min oscillations lead to ~10 %
bunch lengthening and ~5% particle loss

(H. Timko et al., HB2018)
Similar oscillations were observed in
Tevatron (R. Moore, PAC2003)

1.7 1 —— 1088

0 1.6

£
[@)] 15'
c

Q

= 1.4

W]

[

o 1.3
1.2

D A0 AL AL A6 AR A0 AL Ak 16 1D 2O AL
'\9"0 f\’q:\:\,q"\3&9':\:\9':\"\9'"\3\’9"’)5\9"’)7\9'j"\_qj&qj&g&\qﬁ
Time [H:M1

—e— 1088

Particle losses [%]
N w I

=

o

o 5 o 5 o
*\9':\' '\9‘:\' *\93’ '\9"?’ -\,9':5
Time [H:M]

12



Persistent oscillations after injection
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Intensity (ppb)
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Single-bunch stabllity at 7 TeV

LHC, V. = 16 MV,E = 7 TeV, . = 2
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Results using MELODY for smoothed
Impedance (resistive wall + broad-band
model at 5 GHz)

- Sufficient stability for T = 1.2 ns with
margin for £10% bunch length spread

Next steps:

— To repeat calculations with revised
broad-band impedance model

— To study effect of high-order-modes
(HOM) on single-bunch stability



Stability of multi-bunch beam

Multi-bunch instabilities were not observed so far in LHC
HL-LHC: higher intensity & HOMSs of crab cavities (CC)

For = 3000 bunches macro-particle simulations are computationally expensive
— Analytical approaches are used to define requirements for HOM damping

Analytical stability evaluation can be based on:
Sacherer stability diagram (F. Sacherer, 1971)
Lebedev equation (stability diagram by V. Balbekov, S. lvanov, 1987)

There was a significant discrepancy between the results of two approaches
(E. Shaposhnikova, LHC-CC’70 and A. Burov, LHC-CC’17)



Lebedev vs Sacherer approach
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Lebedev vs Sacherer approach

Ve=16MV,T=1.2ns,E = 7 TeV
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— Factor of 4 difference is due to different
distribution function.

— Stability diagram approach based on
Lebedev equation was extended to binomial
distribution.

— For u = 2, the minimum thresholds are
similar, but Sacherer approach underestimates
threshold at higher frequencies

— Sacherer approach can be obtained as a
low frequency expansion of Lebedev equation
(E. Shaposhnikova et al., MCBI19)



Results for HL-LHC flat top

Vie=16MV,7 = 1.2 ns,E = 7 TeV

5 | |
n
o || : - U= 10
% 4 n = 1.5
1M
,Qm ! ll 2 5 /,
1 _ = 2. -,
S L K ,,/
o 3_ ! ‘:\ -7 f’:’
) | ” -7
= L PSS 1l
1 W - Zr”
S LW et e
- ”’
g 2 ‘\ \\\\ ,/’ X o
\ P
= \\ \\\.-‘___/
45 \ ,/’
= 1 NP
-
m ‘
O I A T T | b
0.0 0.5 1.0 1.5 2.0

Resonant frequency f, (GHz)

Crab cavity HOMs:

HL-LHC Double Quarter Wave (DQW) x 4
HL-LHC RF-Dipole (RFD) x 4

— Thresholds for distributions with

different u and the same FWHM bunch

length are similar (except u = 1)

— Only one HOM is close to the
stability limit for the worst-case

scenario without frequency spread
between CC.
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Results for HL-LHC flat bottom
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Crab cavity HOMs:

HL-LHC Double Quarter Wave (DQW) x 4
HL-LHC RF-Dipole (RFD) x 4

— Thresholds are similar for 6 MV
and 8 MV of rf voltage for the same

bunch parameters at the SPS
extraction.

— Recommendation: further damping

of the first high Q mode of DQW CC
could be addressed for margin in
machine operation.
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Summary

Single-bunch stability:

« Bunch parameters are affected by the loss of Landau damping

« Sacherer stability diagram in longitudinal plane should be used with caution.
More complete formalisms (van-Kampen modes and Lebedev equation) are
available for accurate semi-analytical threshold estimations.

 LHC/HL-LHC impedance model needs to be revised for longitudinal stability
evaluation.

Multi-bunch stability:

« Thresholds of coupled-bunch instability depend on distribution function but are
similar for the same FWHM bunch length (binominal distribution).

* To Increase stability margin, a spread of HOM frequencies between crab
cavities needs to be introduced and further damping of the first high Q@ mode
of DQW CC is recommended.



Thank you for your attention!



Spare slides
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Landau damping for multi-bunch beam

For narrow band impedance with w,, only one resonant

harmonic k, = w,/wy=IM + n can be kept (M - number
of equidistant bunches) in Lebedev’ equation:

k ilohM
— = — G (€
Z V cos o ke (€2)
From stability diagram k In hM

- = ImG}*
(V. Balbekov, S. Ivanov, 1987): Z, ~ Vcosad,

- T S FUENIAL(E,
with IHIG,{;;;(Q) — % Z ( r #)(énk)( )
SN m=1 “s\em

— Beam is stable if vertical line 1/R, is inside stability
region
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Multi-bunch threshold

In single RF system the threshold (no acceleration)

for binomial distribution

F(&) = Fy(1—E&/Emaz)"

I’f (ﬂ_frfTb)3 t
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I
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— The FWHM bunch length is important
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Threshold Ry, for coupled-bunch instabilities
in FCC-hh at 50 TeV for nominal intensity

N, =101, V¢ = 38 MV, y, =99.3 (I. K,
E.Shaposhnikova, IPAC’19)
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Sacherer’s formalism

Stability diagram for parabolic line density

Coherent mode Landau damping is lost if coherent mode
shift AQ normalized by incoherent spread
0.6- Unstable Aw, lies outside of stability diagram (F.
0.5 - Sacherer, 1971)
0.4 Simplified threshold N, = Vt° /&
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Q |
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— For the case of the LHC impedance model &€ ~ 1.4 x 107> (ns)°V, ((Z/n) ¢ =~ 0.09 Q)



Bunch intensity

Measurements of the loss of Landau damping threshold in LHC

MD 2011,
Ve=5 MV, E = 450 GeV
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Measurement were performed at different conditions, but with all efforts only a limited parameter space
was available during each of MDs (PhD thesis J. E. Muller, 2016). Threshold curves correspond to a fit

N, =Vt /¢ .
— As the result, § = (5.0 £ 0.5) x 107> (ns)°V was obtained.
— The thresholds predicted from Sacherer’ stability diagrams are 3 — 4 times higher than measured

thresholds.



Bunch intensity

Measurements of the loss of Landau damping threshold in LHC

MD 2011, MD 2011,
Vie=5MV, E =450 GeV V=12 MV, E = 4 TeV
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Measurement were performed at different conditions, but with all efforts only a limited parameter space
was available during each of MDs (PhD thesis J. E. Muller, 2016). Threshold curves correspond to a fit

N, =Vt /¢ .
— As the result, § = (5.0 £ 0.5) x 107> (ns)°V was obtained.
— The thresholds predicted from Sacherer’ stability diagrams are 3 — 4 times higher than measured

thresholds.



Bunch intensity

Measurements of the loss of Landau damping threshold in LHC

MD 2011, MD 2011, MD 2015,
Vi=5MV,E=450GeV V., =12MV,E=4TeV Vys=12MV, E =6.5TeV
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Measurement were performed at different conditions, but with all efforts only a limited parameter space
was available during each of MDs (PhD thesis J. E. Muller, 2016). Threshold curves correspond to a fit
N, =Vt /¢ .

— As the result, § = (5.0 £ 0.5) x 107> (ns)°V was obtained.

— The thresholds predicted from Sacherer’ stability diagrams are 3 — 4 times higher than measured
thresholds.



Bunch intensity

Measurements of the loss of Landau damping threshold in LHC

MD 2011,

x101!

Bunch intensity

MD 2011, MD 2015, MD 2015,
Vie=5 MV, E=450GeV V,=12MV,E=4TeV Vy=12MV,E=65TeV V,=12MV, E =6.5TeV
16 x101? | 1 g x10t | 1 4 x10M | |
® Stable ® Stable o®
@® Unstable ® Unstable
Lan — Threshold 1.4y 1.2 }{=— Threshold
1.2t > L2t >
2 2 10
(= I3
1.0 E 1.0 ¢ E
= ¢ § 0.8}
0.8} D 0.8} 2
(|
L]
0.6 / e (| 0.6 -. . L - .
o
| o — @
0.4 ' 1 : 0.4 ‘ ' - ' = 0.4 ' ‘ L ' ' '
0.77 0.78 0.79 0.80 0.5 0.6 0.7 0.8 0.9 1. 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90

1.08 1.10
Bunch length

1.06

Bunch length [

Bunch length [ns

Bunch length [ns]

Measurement were performed at different conditions, but with all efforts only a limited parameter space
was available during each of MDs (PhD thesis J. E. Muller, 2016). Threshold curves correspond to a fit

N, =Vt /¢ .

— As the result, § = (5.0 £ 0.5) x 107> (ns)°V was obtained.
— The thresholds predicted from Sacherer’ stability diagrams are 3 — 4 times higher than measured

thresholds.



Comparisons with S|mulat|ons

Simulation setup (PhD thesis J. E. Muller, 2016): o Smalations )

 Number of macro-particles 5 x 10° = e o

» 50 slices per bucket (f. = 10 GHz) for induced voltage calculation /
using full impedance model

 Initially matched bunched is kicked by 1 degree
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Lebedev’ approach

Matrix equation (A. N. Lebedev, 1967) in (£,v) variables with &€ = ¢%/(2w%) + U(#)/(V cos ¢s)

. . iloh > Zk(Q) . 'mp{g) I:rzﬂ (5)
3p(Q) = s o RZ G i (92 . Je(2)|  where Gp(R2) = m_zxf F'(€) Q/m —on() d&
1 T ko(E) [h—im . : ; ~ ¥ E}
where  Imk(€) = 2—/ ekAEV/=imY gy, and normalization Ay = f ( d&
T 0 ws(€)

It allows to evaluate both single- and multi-bunch stability
Was extensively used to evaluate coupled-bunch instability thresholds due to narrow-band
Impedance (V. Balbekov, S. Ivanov, 1987) and for combination of narrow-band resonator and

ImZ/n = const (M. Blaskiewicz, 2009)

— For single-bunch case it was considered to be not numerically tractable
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Landau damping: Van-Kampen modes

Method (A. Burov, 2010): find Van-Kampen modes solving
Vlasov equation for perturbation f(J,,t) of stationary
distribution function F(J) expanded (Oide & Yokoya, 1990) as

F(J 0, t) = e 3" [fn(J) cos map + gum(J) sinm)]

Without mode coupling the matrix equation (in action J) is
(Q% — mlo?) frn(J) = mPws(J)F'(J ]V;ﬂ(i, J) fr(J')dT
where Vi (J.J') = QImZ Lge(J) Lo (')
1

o

Continuous spectrum - singular modes from incoherent
band. Discrete modes - coherent solutions described
by regular eigenfunctions - their existence outside
incoherent band serve as criterion for loss of LD

and m}.,(J) /“ e ko(Jab) /h—imap A
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Mode below threshold

N, = 6.954e+10
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Loss of LD
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Incoherent frequencies
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— Very good agreement between two approaches

Van-Kampen vs Lebedev approaches

(101 fr=5GHz, Q =1, ImZ/n = 0.076 0, Vit = 12 MV

® A. N. Lebedev
4+ N. G. van Kampen
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A new numerical code was developed to
solve Lebedev eigenvalue problem

The thresholds are calculated using
Lebedev and Van-Kampen and
approaches for broadband impedance and
following parameters:

R = (Imz/n)fr/fO'f;‘ =5 GHZ,Q = 1r

f. =20 GHz, ImZ/n = 0.076,u = 2,

Ve = 12 MV

Distribution function F(&) = Fo(1 — £/Emaz)”



Preliminary comparisons with measurements

Measurements at 6.5 TeV, V. = 12 MV (PhD thesis J. E. Muller, 2016)

1.6 x10% j r 1 ]
e A. N. Lebedev
+ N. G. van Kampen
1.4} -
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— Reasonable agreement between measurements and semi-analytic calculations.
— Scaling law is different in comparison to simplified Sacherer’s approach



Intensity (ppb)

Calculation results
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Case of inductive impedance ImZ /n = const.

Threshold significantly depends on the cut-
off frequency f.

For the case of symmetric potential well

k
Lk (J) = ™ <E\/ﬁ>

So diagonal elements of the matrix diverge

k
Vn(d,J) = ZImZ/nZ]Tzn (5\/§> = o0
k

k
Vin(J,J) = ZImZ/nZ]%l (E\/ﬁ> 5 0
K

— Realistic impedance model needs to be used



