

Update on energy deposition studies for the beam dump

V. Rizzoglio, A. Lechner M. I. Frankl, C. Wiesner, T. Polzin A. Perillo Marcone and M. Calviani

9th HL-LHC Collaboration Meeting

October 15, 2019

1 Introduction: TDE layout and input parameters

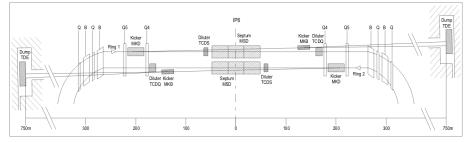
2 Upstream window

Ownstream window

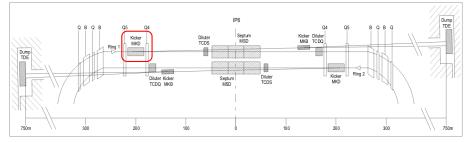
5 Conclusions and outlook

Outline

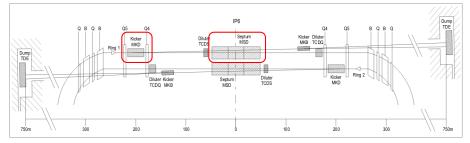
1 Introduction: TDE layout and input parameters

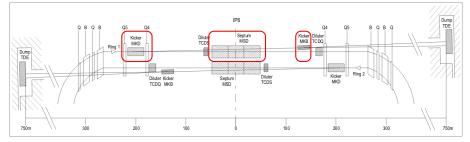

2 Upstream window

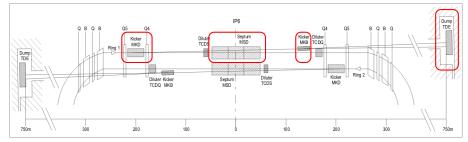
3 Downstream window


4 TDE Core

5 Conclusions and outlook







Dump cavern

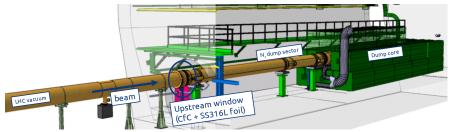
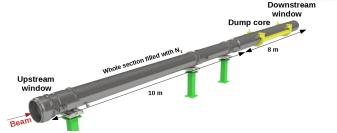
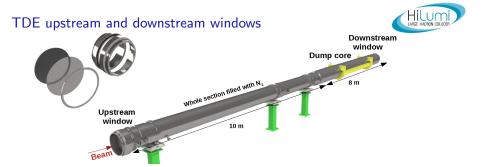



Figure from A. Perillo Marcone, "LHC Dump Assembly - Operational Feedback and Future Prospective", 9th LHC Operations Evian Workshop, 2019

TDE upstream and downstream windows



Figures from T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

9th HL-LHC Collaboration Meeting

October 15, 2019 Page 5 / 30

Upstream window

Thick.	Thick. Material De	
15 mm	CfC SIGRABOND 1501G	1.5 g/cm ³
0.2 mm	Stainless steel SS316L	8 g/cm ³

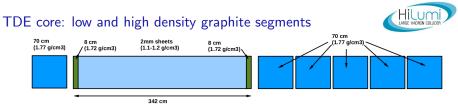
isolate the vacuum of LHC extraction line from nitrogen gas $% \label{eq:linear} \left(f_{\mathrm{ext}}^{\mathrm{ext}} \right) = \left(f_{\mathrm{ext}}^{\mathrm{ext}} \right) \left(f_{\mathrm{ext}$

Figures from T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

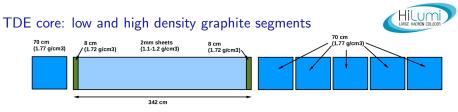
Upstream window

Thick.	Material	Density
15 mm	CfC SIGRABOND 1501G	1.5 g/cm ³
0.2 mm	Stainless steel SS316L	8 g/cm ³

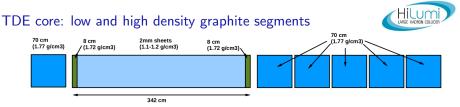
isolate the vacuum of LHC extraction line from nitrogen gas $% \label{eq:linear} \left(f_{\rm ext} \right) = \int_{-\infty}^{\infty} f_{\rm ext} \left(f_{\rm ext} \right) \left(f_$


Downstream window

Thick.	Material	Density	exposed to the shower
10 mm	Titanium Grade 2	4.5 g/cm ³	from the dump

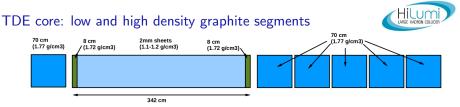

Figures from T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

9th HL-LHC Collaboration Meeting

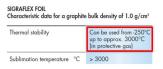

October 15, 2019 Page 5 / 30

- $\textbf{Diameter} \rightarrow 70~\text{cm}$
- Total absorber length $\rightarrow \approx 7.6~m$

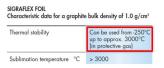
- $\textbf{Diameter} \rightarrow$ 70 cm
- Total absorber length $\rightarrow \approx$ 7.6 m
- High-density blocks \rightarrow polycrystalline graphite



- Diameter \rightarrow 70 cm
- Total absorber length $\rightarrow \approx$ 7.6 m
- **High-density blocks** \rightarrow polycrystalline graphite
- Low density absorber \rightarrow 2 mm thick, flexible graphite sheets


SIGRAFLEX FOIL Characteristic data for a graphite bulk density of 1.0 g/cm°

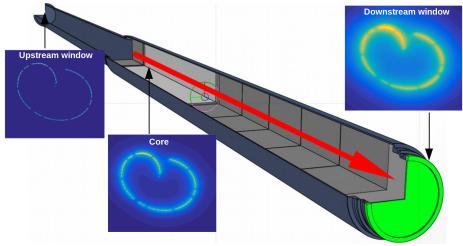
- Diameter \rightarrow 70 cm
- Total absorber length $\rightarrow \approx$ 7.6 m
- **High-density blocks** \rightarrow polycrystalline graphite
- Low density absorber $\rightarrow 2 \text{ mm}$ thick, flexible graphite sheets



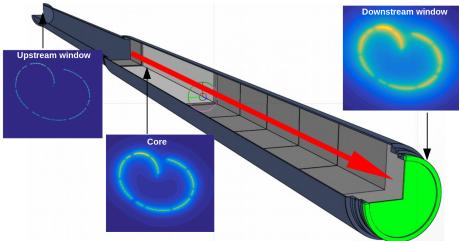
- $\textbf{Graphite plates} \rightarrow$ enclose the sheets

TDE core: low and high density graphite segments

- Diameter \rightarrow 70 cm
- Total absorber length ightarrow 7.6 m
- **High-density blocks** \rightarrow polycrystalline graphite
- Low density absorber \rightarrow 2 mm thick, flexible graphite sheets

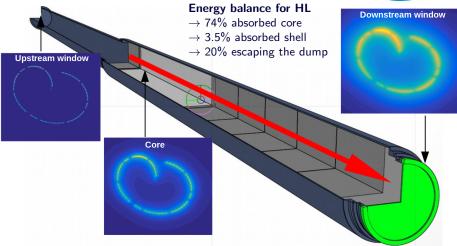


- $\textbf{Graphite plates} \rightarrow$ enclose the sheets
- $\textbf{Shell} \rightarrow 12 \text{ mm}$ thick stainless steel jacket


Effect of particle showers

Effect of particle showers

Peak energy density


Upstream window \rightarrow transverse spot size and bunch intensity **Downstream window** \rightarrow **only** bunch intensity

9th HL-LHC Collaboration Meeting

October 15, 2019 Page 7 / 30

Effect of particle showers

Peak energy density

Upstream window \rightarrow transverse spot size and bunch intensity **Downstream window** \rightarrow **only** bunch intensity

Beam parameters from Run2 to HL-LHC

Beam	$\epsilon_{x,y}^n$ at Inj	<i>I_b</i> at Inj	$\epsilon_{x,y}^n$ at FT	I_b at FT	
	LHC design				
Nominal [1]	3.40 μm∙rad	$1.2 \cdot 10^{11}$	3.75 μ m·rad	$1.15 \cdot 10^{11}$	
Ultimate [1]	3.40 μ m·rad	1.8.10 ¹¹	3.75 μ m·rad	$1.7 \cdot 10^{11}$	
	R	Run 2			
2018 [2]	\mid 1.3-1.4 μ m·rad	$ \approx 1.2 \cdot 10^{11}$	1.7-2.1 μ m \cdot rad	$1.2 \cdot 10^{11}$	
-	Run 3				
BCMS 2020 [3]	$1.3 \ \mu m \cdot rad$	$1.4 \cdot 10^{11}$	1.8 μ m·rad	$1.4 \cdot 10^{11}$	
BCMS 2021/22 [3]	1.3 μ m·rad	1.8.10 ¹¹	1.8 μ m \cdot rad	$1.8 \cdot 10^{11}$	
HL-LHC					
STD [4]	2.08 µm∙rad	$2.3 \cdot 10^{11}$	2.5 μ m·rad	$2.2 \cdot 10^{11}$	
BCMS [4]	1.7 μ m·rad	$2.3 \cdot 10^{11}$	2.5 μ m·rad	$2.2 \cdot 10^{11}$	

 $\textbf{Conservative approach} \rightarrow \text{no emittance growth and no intensity loss in ramp}$

[1] LHC design report, [2] Y. Papaphilippou, LHC Emittance Preservation WG, [3] S. Fartoukh, Run III Configuration WG

[4] HL-LHC parameter table V 7.0

Beam parameters from Run2 to HL-LHC

Beam	$\epsilon_{x,y}^n$ at Inj	I_b at Inj	$\epsilon_{x,y}^n$ at FT	I_b at FT	
	LHC design				
Nominal [1]	3.40 μ m·rad	$1.2 \cdot 10^{11}$	\parallel 3.75 μ m·rad	$1.15 \cdot 10^{11}$	
Ultimate [1]	3.40 μ m·rad	$1.8 \cdot 10^{11}$	$ $ 3.75 μ m·rad	$1.7 \cdot 10^{11}$	
	Run 2				
2018 [2]	1.3-1.4 μ m·rad	$pprox 1.2{\cdot}10^{11}$	\parallel 1.7-2.1 μ m \cdot rad	$1.2 \cdot 10^{11}$	
	Run 3				
BCMS 2020 [3]	1.3 μ m \cdot rad	$1.4 \cdot 10^{11}$	\parallel 1.8 μ m·rad	$1.4 \cdot 10^{11}$	
BCMS 2021/22 [3]	1.3 μ m \cdot rad	$1.8 \cdot 10^{11}$	\parallel 1.8 μ m·rad	$1.8 \cdot 10^{11}$	
HL-LHC					
STD [4]	2.08 μ m·rad	$2.3 \cdot 10^{11}$	2.5 μ m·rad	$2.2 \cdot 10^{11}$	
BCMS [4]	1.7 μ m \cdot rad	$2.3 \cdot 10^{11}$	\parallel 2.5 μ m·rad	$2.2 \cdot 10^{11}$	

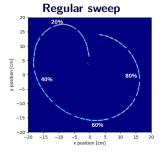
 $\textbf{Conservative approach} \rightarrow \text{no emittance growth and no intensity loss in ramp}$

[1] LHC design report, [2] Y. Papaphilippou, LHC Emittance Preservation WG, [3] S. Fartoukh, Run III Configuration WG

[4] HL-LHC parameter table V 7.0

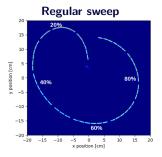
Beam parameters from Run2 to HL-LHC

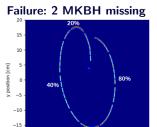
Beam	$\epsilon_{x,y}^n$ at Inj	<i>I_b</i> at Inj	$\epsilon_{x,y}^n$ at FT	<i>I_b</i> at FT	
	LHC design				
Nominal [1]	3.40 μ m·rad	1.2.10 ¹¹	3.75 μ m·rad	$1.15 \cdot 10^{11}$	
Ultimate [1]	3.40 μ m·rad	1.8·10 ¹¹	3.75 μ m·rad	$1.7 \cdot 10^{11}$	
	R	Run 2			
2018 [2]	1.3-1.4 μ m·rad	$\approx 1.2 \cdot 10^{11}$	1.7-2.1 μ m \cdot rad	$1.2 \cdot 10^{11}$	
	Run 3				
BCMS 2020 [3]	1.3 μ m \cdot rad	$1.4 \cdot 10^{11}$	1.8 μ m \cdot rad	$1.4 \cdot 10^{11}$	
BCMS 2021/22 [3]	1.3 μ m \cdot rad	1.8.10 ¹¹	1.8 μ m \cdot rad	1.8·10 ¹¹	
HL-LHC					
STD [4]	2.08 μ m·rad	2.3·10 ¹¹	2.5 μ m·rad	2.2·10 ¹¹	
BCMS [4]	1.7 μ m \cdot rad	2.3·10 ¹¹	2.5 μ m·rad	$2.2 \cdot 10^{11}$	


 $\textbf{Conservative approach} \rightarrow \text{no emittance growth and no intensity loss in ramp}$

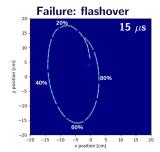
[1] LHC design report, [2] Y. Papaphilippou, LHC Emittance Preservation WG, [3] S. Fartoukh, Run III Configuration WG

[4] HL-LHC parameter table V 7.0

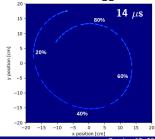

Sweep patterns and failure scenarios



Sweep patterns and failure scenarios



-5


60%

x position [cm]

10 15

Failure: retrigger

9th HL-LHC Collaboration Meeting

-20

-20 -15 -10

Outline

Introduction: TDE layout and input parameters

2 Upstream window

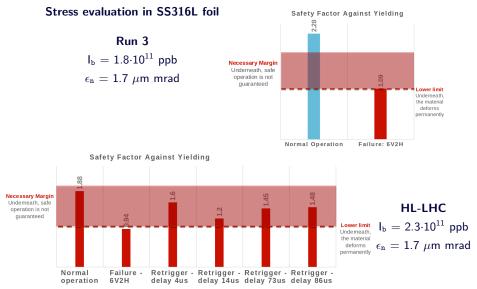
3 Downstream window

4 TDE Core

5 Conclusions and outlook

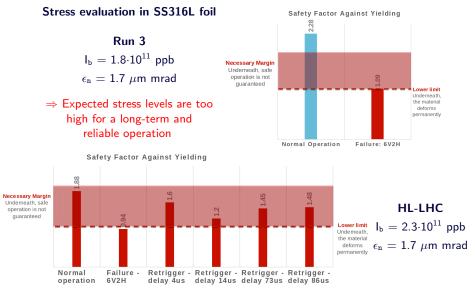
Upstream window in Run 3 and HL-LHC

Stress evaluation in SS316L foil


 $\begin{array}{l} \mbox{Run 3} \\ \mbox{I}_{b} = 1.8{\cdot}10^{11} \mbox{ ppb} \\ \mbox{ϵ_{n}} = 1.7 \ \mu\mbox{m mrad} \end{array}$

From T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

Upstream window in Run 3 and HL-LHC


From T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

9th HL-LHC Collaboration Meeting

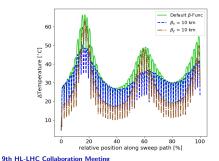
October 15, 2019 Page 11 / 30

Upstream window in Run 3 and HL-LHC

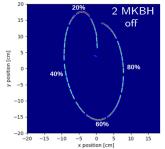
From T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

Beta function variation

Present design of upstream window


- increase β -functions up to 10-20 km

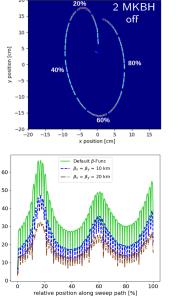
(default $\beta_x = 5.052$ km, $\beta_y = 3.714$ km)


Beta function variation

Present design of upstream window

- increase β -functions up to 10-20 km (default $\beta_x = 5.052$ km, $\beta_y = 3.714$ km)
- HL-LHC: 1.7 μ m mrad, 2.3 \cdot 10¹¹ ppb


October 15, 2019 Page 12 / 30


Beta function variation

Present design of upstream window

- increase β -functions up to 10-20 km (default $\beta_x = 5.052$ km, $\beta_y = 3.714$ km)
- HL-LHC: 1.7 μm mrad, 2.3 $\cdot 10^{11}$ ppb
- ⇒ reduction in temperature increase ⇒ Regular sweep - def. β : **37.9** °C (safety factor 1.88)

2 MKBH off - $\beta_{x,y}$ =20 km: **32.6** °C

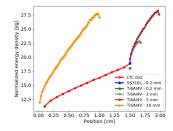
ATemperature [*C]

Upgrade material

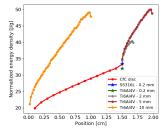
Titanium Grade 5 (Ti6Al4V) instead of SS316L foil

⇒ limited reduction in temperature increase BUT higher strength

Upgrade material


Titanium Grade 5 (Ti6Al4V) instead of SS316L foil

⇒ limited reduction in temperature increase BUT higher strength


Upstream window configurations to overcome fabrication limitations

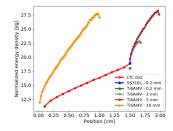
- 15 mm CfC + 0.2 mm Ti6Al4V (default)
- 15 mm CfC + 2 mm Ti6Al4V
- 15 mm CfC + 5 mm Ti6Al4V
- 10 mm Ti6Al4V only (no CfC disc)

Maximum energy density Regular sweep

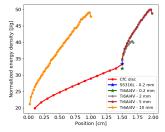
Failure: 2 MKBH off

Upgrade material

Titanium Grade 5 (Ti6Al4V) instead of SS316L foil


⇒ limited reduction in temperature increase BUT higher strength

Upstream window configurations to overcome fabrication limitations


- 15 mm CfC + 0.2 mm Ti6Al4V (default)
- 15 mm CfC + 2 mm Ti6Al4V
- 15 mm CfC + 5 mm Ti6Al4V
- 10 mm Ti6Al4V only (no CfC disc)

 \Rightarrow Thermo-mechanical studies ongoing

Maximum energy density Regular sweep

Failure: 2 MKBH off

Outline

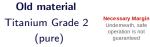
Introduction: TDE layout and input parameters

2 Upstream window

Ownstream window

4 TDE Core

5 Conclusions and outlook


Upgrade material during LS2

Underneath, safe operation is not

guaranteed

Safety Factor Against Yielding

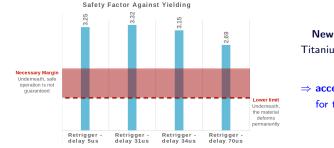
 \Rightarrow too high stress levels

 \Rightarrow problems for long-term and reliable operation

From T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

Upgrade material during LS2

Safety Factor Against Yielding


 \Rightarrow too high stress levels

Old material

Titanium Grade 2

(pure)

 \Rightarrow problems for long-term and reliable operation

New material Titanium Grade 5 (Ti6Al4V)

 \Rightarrow acceptable stress levels for the considered load cases

From T. Polzin, "Updates on the thermo-mechanical studies of the TDE dump block assembly", HL-LHC 8th Collaboration meeting, 2018

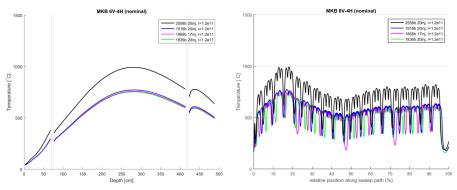
9th HL-LHC Collaboration Meeting

Outline

Introduction: TDE layout and input parameters

2 Upstream window

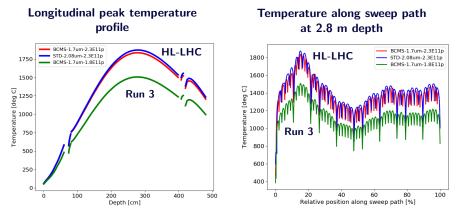
3 Downstream window



5 Conclusions and outlook

Longitudinal peak temperature profile

Temperature along sweep path at 2.8 m depth



 $\label{eq:Regular sweep} \mbox{Preached up to $1000^{\circ}C$ in cases when beams were dumped} $$ early in 6.5 TeV fills in $2017/18$ $$$

Figures courtesy of M. Frankl

9th HL-LHC Collaboration Meeting

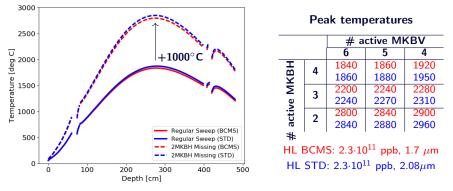
Regular sweep \rightarrow Run 3 expected \approx **1500**°**C** for 1.8·10¹¹ ppb

 \rightarrow HL-LHC expected \approx **1800-1900°C** for 2.3·10¹¹ ppb

Regular sweep \rightarrow Run 3 expected $\approx 1500^{\circ}C$ for $1.8 \cdot 10^{11}$ ppb

 \rightarrow HL-LHC expected \approx **1800-1900°C** for 2.3·10¹¹ ppb

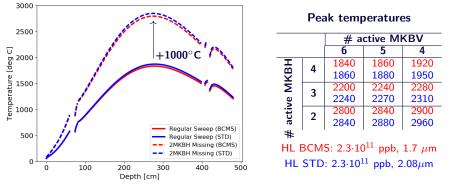
Acceptable ?


material characterization \rightarrow collaboration with NTNU/SINTEF (Norway) institute

Failure case: reduced dilution

Dilution kickers \rightarrow 4 horizontal (MKBH) and 6 vertical (MKBV)

- \rightarrow higher voltage for the horizontal kickers
- \rightarrow MKBH failures more critical for TDE

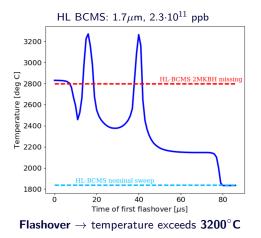

2 MKBH failure \rightarrow peak temperature reaches 3000°C for HL-LHC

Failure case: reduced dilution

Dilution kickers \rightarrow 4 horizontal (MKBH) and 6 vertical (MKBV)

- \rightarrow higher voltage for the horizontal kickers
- \rightarrow MKBH failures more critical for TDE

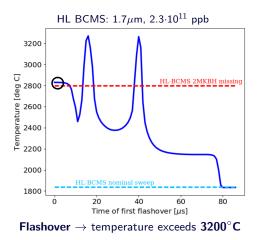
2 MKBH failure \rightarrow peak temperature reaches 3000°C for HL-LHC

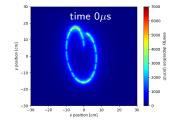

Acceptable? \rightarrow material characterization

Failure case: flashover

 $\textbf{Flashover} \rightarrow \text{magnets}$ in the same vacuum tank

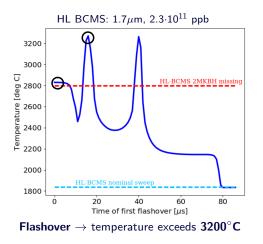
- \rightarrow loss of 50% in horizontal plane
- \rightarrow crossing sweep if current persists in the magnet

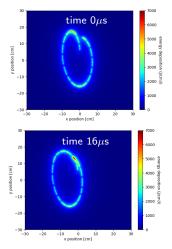



Failure case: flashover

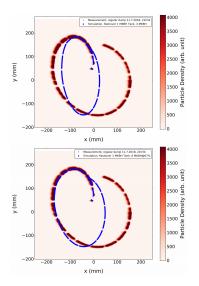
$\textbf{Flashover} \rightarrow \text{magnets}$ in the same vacuum tank

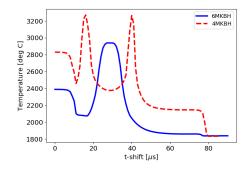
- \rightarrow loss of 50% in horizontal plane
- \rightarrow crossing sweep if current persists in the magnet




Failure case: flashover

$\textbf{Flashover} \rightarrow \text{magnets}$ in the same vacuum tank


- \rightarrow loss of 50% in horizontal plane
- \rightarrow crossing sweep if current persists in the magnet



4 MKBH vs 6 MKBH in case of flashover

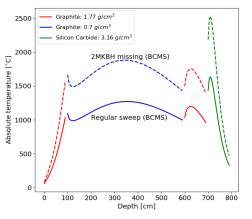
Two additional MKBHs

- reduce the effect of a flashover
- temperatures still very high
- enlargement of dilution pattern

```
\Rightarrow effect on the shell
```

New possible TDE core configuration (hypothetical)

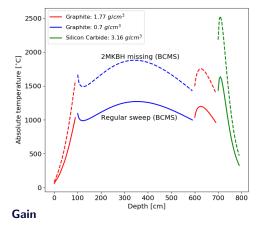
Constraints


- total core length = 8 m
- length of low density part to 5 m made by graphite of density 0.7 g/cm³
- total number of inelastic length = 15.6 (present dump)
- combination of graphite of various density and Silicon Carbide

New possible TDE core configuration (hypothetical)

Constraints

- total core length = 8 m
- length of low density part to 5 m made by graphite of density 0.7 g/cm³
- total number of inelastic length = 15.6 (present dump)
- combination of graphite of various density and Silicon Carbide



New possible TDE core configuration (hypothetical)

Constraints

- total core length = 8 m
- length of low density part to 5 m made by graphite of density 0.7 g/cm³
- total number of inelastic length = 15.6 (present dump)
- combination of graphite of various density and Silicon Carbide

max temp. 2MKBH missing (new) \approx max temp. regular sweep (now)

Challenges

find appropriate downstream material to sustain high temperature and attenuation (if 8 meters length)

9th HL-LHC Collaboration Meeting

October 15, 2019 Page 22 / 30

Outline

Introduction: TDE layout and input parameters

2 Upstream window

3 Downstream window

4 TDE Core

Conclusions and Outlook

• Upstream window

- $\bullet~\textsc{Titanium~disc} \rightarrow$ overcomes manufacture limitation of thin foil
 - \rightarrow marginal temperature increase w.r.t. the foil configuration
 - \rightarrow thermo-mechanical studies ongoing
- Beta function variation $\rightarrow \approx 50\%$ reduction in the temperature increase \rightarrow unfeasible solution from optics point-of-view

Downstream window

• Upgrade with Titanium Ti6Al4V during LS2

• Graphite core

- Regular dump $\to \approx \! 1500^\circ C$ for Run 3 and $\approx \! 1800\text{--}1900^\circ C$ for HL beams
- Flashover $\rightarrow \approx$ 2500°C for Run 3 and \approx 3200°C for HL beams
- \bullet Material characterization \rightarrow understand graphite behavior at high temperature
- Preliminary (hypothetical) studies on a new dump configuration

Conclusions and Outlook

• Upstream window

- $\bullet~\textsc{Titanium~disc} \rightarrow$ overcomes manufacture limitation of thin foil
 - \rightarrow marginal temperature increase w.r.t. the foil configuration
 - \rightarrow thermo-mechanical studies ongoing
- Beta function variation $\rightarrow \approx 50\%$ reduction in the temperature increase \rightarrow unfeasible solution from optics point-of-view

Downstream window

• Upgrade with Titanium Ti6Al4V during LS2

• Graphite core

- Regular dump $\to \approx \! 1500^\circ C$ for Run 3 and $\approx \! 1800\text{-}1900^\circ C$ for HL beams
- Flashover $\rightarrow pprox$ 2500°C for Run 3 and pprox 3200°C for HL beams
- \bullet Material characterization \rightarrow understand graphite behavior at high temperature
- Preliminary (hypothetical) studies on a new dump configuration

Thank you for your attention