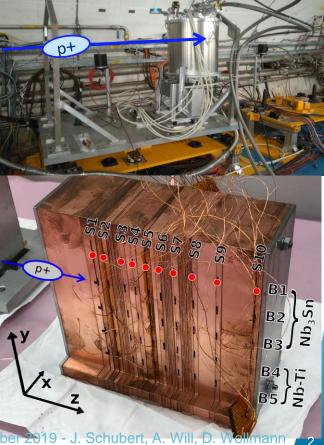

Damage of superconducting strands due to beam impact

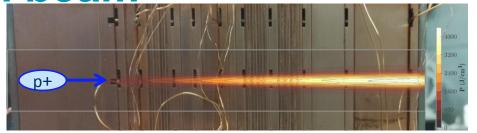
A. Bernhard, M. Bonura, B. Bordini, M. Mentink, A.S. Mueller, A. Oslandsbotn, R. Schmidt, **J. Schubert**, C. Senatore, A. Siemko, A. Verweij, **A. Will, D. Wollmann**

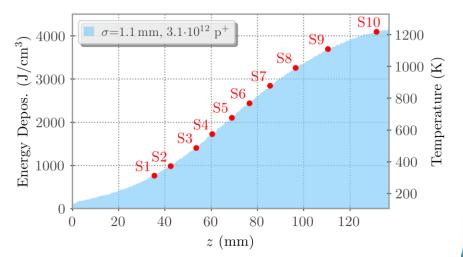


Experimental set-up

Cryocooler based cryostat to cool samples to ~4K installed in CERN's HiRadMat facility

- Sc. strands placed within stacked copper holders
- 2 x 10 samples Nb-Ti
- 3 x 10 samples Nb3Sn
 - 5 x 10YBCO tapes
- 10 shots of 3e12 p @ 440 GeV

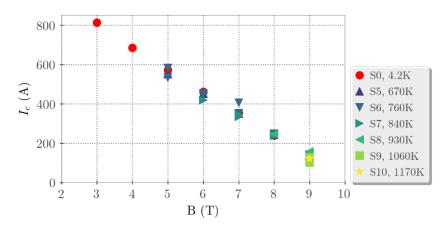


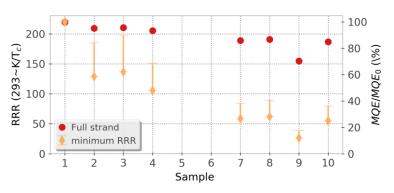


Energy deposition by 440 GeV proton beam

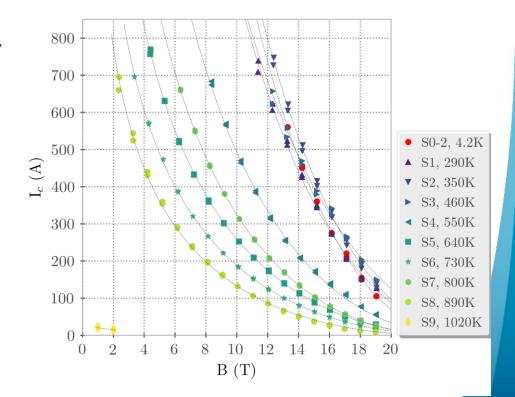
Hadronic showers cause increased heating with increased penetration depth

- Samples placed in steps of ~100 K (hot spot temperature)
- Thermal stresses due to expansion, thermal gradients in the strands and impact of sample holder expansion on strands cause degradation of sc. properties
- Removal of samples & optical inspection performed at CERN
- Critical current measurements ongoing at Uni-GE



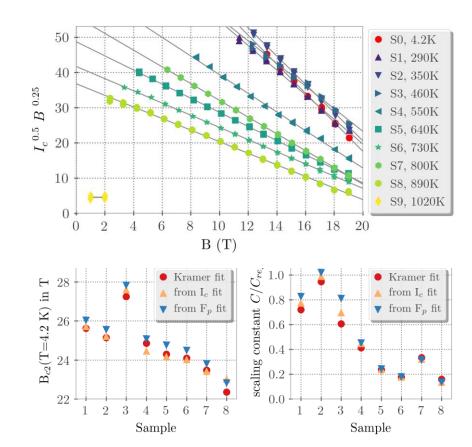


I_c in Nb-Ti strands after beam impact

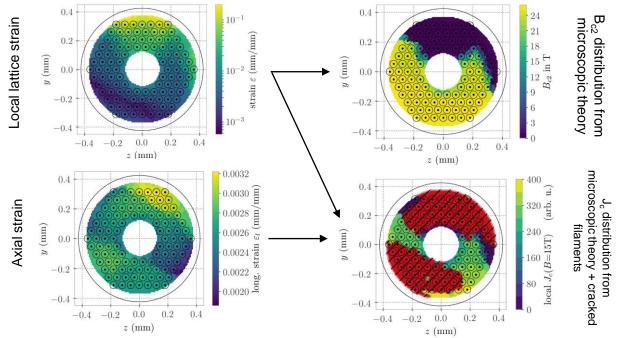

- No degradation of I_c observed
- I_c measurements increasingly difficult at lower fields with increasing hot spot temperature
 - Indicating issues with thermal stability of strands
- Measurements indicate significant reduction of RRR at beam impact position → reduced minimum quench energy (MQE)
 - MQE significantly reduced for samples with hot spots > 800 K

I_c in Nb₃Sn strands after beam impact

- Significant I_c degradation for hot spots > 460 K
- No measurable transport current for hot spots > 890K
 → samples destroyed

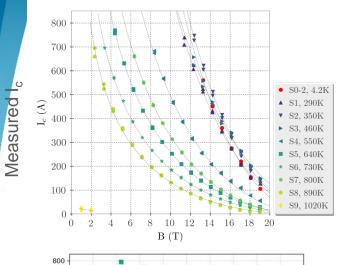


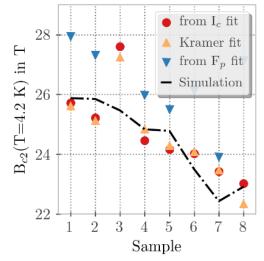
B_{c2} of Nb₃Sn strands after beam impact

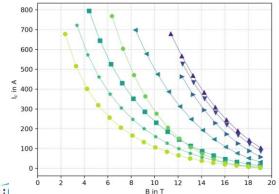

Kramer fit:

- B_{c2} degrades with increasing hotspot temperatures due to plastic deformation of copper matrix
 - B_{c2} remains > 22 T for samples S1-S8
- I_c degradation dominated by reduction of effective cross section due to filament breakage

Results of thermo-mechanical simulations




Thermo mechanical simulations performed with ANSYS to


- study the stresses within the strand cross-section due to thermal gradients and expansion
- study the interaction of the strands with the sample holder
- B_{c2} degradation dominated by lattice strain
- J_c degradation combination of lattice & axial strain

I_c simulations for Nh₂Sn

Simulated I_c

- Measured I_c and B_{c2} degradations well reproduced in the simulations
- Improved performance of S1-3 (as compared to reference) cannot be explained by simulations

Conclusions & Outlook

- Beam induced damage experiment performed with Nb-Ti, Nb₃Sn strands and YBCO tapes @ 4.2 K reaching hot spot temperatures of up to 1200 K
- Nb-Ti
 - no l_c degradation observed
 - Reduced thermal stability of strands (MQE)
- Nb₃Sn
 - Significant I_c degradation for hot spots > 460 K
 - B_{c2} degradation observed in all samples
 - Sources identified with the help of thermo-mechanical simulations
 - Filament breaking due to too high axial strain → dominating factor for I_c degradation
 - Residual strain from copper matrix and other copper/ bronze phases → B_{c2} degradation & small I_c degradation
- Microscopic analysis and tomography for most damaged Nb₃Sn strands planned to verify model of filament breakage
- YBCO tapes to be measured and compared to simulations

