

Updates on Impregnation and Epoxy Studies at FNAL

Steve Krave Fred Nobrega

9th HL-LHC CM Meeting — 16 October 2019

- Impregnation Procedure Review
- Investigation into Tg
- Process evolution
- Look at Shear Strength of Nb₃Sn Composite
- Mold Release Peel Testing

Coil Impregnation Process

- Goals of impregnation
 - Provide electrical insulation
 - Epoxy fills the voids in the glass insulation and allows for reasonably high insulation dielectric strength
 - Provide mechanical support
 - Epoxy fixes turns in place such that pre-load may be applied in a safe fashion and the magnet will maintain a magnetic cross section
 - Prevent conductor movement during powering to reduce magnet quenching
 - Allow for efficient handling of coils
 - Without impregnation Nb₃Sn coils are extremely delicate

Impregnation Outline

- Coil Packaging
 - Mold release tooling
 - Install Quench Heaters
 - Install fiberglass

Coil Leak Test

Updates on Epoxy impregnation at FNAL

Coil Outgassing

- Coil is outgassed
 - QXF Coils are run through a pre-impregnation outgassing cycle: Fast ramp to 100C and long cool down (~30 Hours)
 - After outgassing cycle coil volume at inlet side is roughly 10X Chamber pressure
 - Tooling in ~30-90 mTorr (0.04-.12 mBar)
 - Ultimate chamber pressure depends on quality of door seal and behavior of other components external to coil circuit

Filling

- Epoxy mixed and degassed for 1 hour at 55°C
- Injection into coil by Peristaltic pump at 10 ml/min effective flow rate
 - ~.75 liters of epoxy per meter of coil ~3.5 Liters of epoxy in the coil. ~5 hours of fill time
- After fill is complete, Chamber is let to atmosphere and any resin level change is recorded.

Coil in Vacuum Oven

Coil Curing

- Coil Curing follows CTD recipe
 - 110 °C for 5 hours
 - 125 °C for 16 hours
- Temperature control uses locally cooler area to drive tooling

Process Evolution

- Throughout LARP and AUP, we have been seeking to reduce variability and risk from coil to coil by
 - Reducing un-necessary steps
 - Integrating fixed processes
 - Reducing technician fabricated or configured items
 - Reducing sensitivity to process variables

Process Evolution: Feedthroughs and Plumbing

- All "valves" between epoxy tank and coil are of the pinch type.
- No breaks in line with semidisposable feedthrough design
- Herbie Clips are handy and disposable. They avoid some of the troubles of hose clamps

Process Evolution: Instrumentation Thermocouples and wiring

Instrumentation Thermocouples and wiring

Robust, Permanently mounted thermocouples and wire routing

Well-Dressed cabling

Coming Next Coil: automatically logged vacuum gages

Improved granularity on

Permanent, robust

Process Evolution: Mixing and Degassing

A Bigger Step

- A purpose built mixing-degassing vessel is due next week.
- Integrated system
- Less user configuration required

Process Evolution: Coil Clean Up

Pole Trimming Fixture

Midplane Trimming Fixture

Coil Temperature Distribution

- Tooling is long and mostly has essentially Fixed power to mass and cross section
 - Except the ends
 - So we added a little insulation to compensate for added heat loss
 - Things generally look good

But conditions were different than assumed

- Periodic heaters and laminated blocks make for a worse than originally anticipated temperature distribution
 - Important to sample at >Nyquist rate
- Added copper bars (old magnet conductor) to double longitudinal thermal conductivity (and roughly halve gradients).

Examining Tg as a result of the above

- Use DSC and DMA tests to determine Tg along the length of coils QXFP03 and QXFP04 from magnet MQXFP1b.
 - Investigate possible impregnation process differences
 - Possibly use DSC for impregnation QA/QC
- DSC and DMA tests have been performed on cable insulation between turns from QXFP1b. DSC results were not usable from this source.
- A DSC test using a sample from the coil OD of QXFA108 along the titanium pole was successful.
- Determine the Tg offset between DMA and DSC.
- Side note: High Tg may not be desired as it results in larger differential thermal stresse.

DMA Test Results

- CTD101K Tg = 140°C ± 5°C based on DMA test.*
 DSC has an offset from DMA and will be established
- Sample: QXFP01B Practice 2 File: C:...\QXFP01B Practice specimen 2.001 DMA Size: 35.0000 x 13.3300 x 0.7300 mm Operator: AEH Run Date: 28-Aug-2019 12:28 Method: Temperature Ramp Comment: QXFP01B Practice laminate 2 Instrument: DMA Q800 V21.3 Build 96 3000 200 140.52°C 0.10 2500 150 0.08 Storage Modulus (MPa) 2000 Fan Delta Modulus 0.06 -- 100 1500 0.04 1000 500 120 20 40 60 80 100 140 160 180 200 Temperature (°C) Universal V4.5A TA Instruments

after coil sample testing.

DMA Samples from QXFP1b

* Paul Fabian, VP of Operations, CTD

DSC Test Results

DSC Sample from QXFA108

QXFP Sample Locations

- Obtain 7 samples from high and low temperature locations along the length of the coil
 - DMA between turns
 - DSC along pole OD

Neat Resin Sample From QXFA116

- Epoxy samples available from coil lead end, center, and return end.
- Neat resin sample cross section:

10.3 mm x 3.4 mm

Tg Summary & Plan

- Preliminary DMA test results indicate coil Tg within tolerance.
- Developed viable samples from existing coils
 - Destructive test
 - Cable insulation between turns
 - Non-destructive tests
 - Neat resin samples from coil OD alignment slot
 - S2 glass from coil OD

Plan

- Obtain 14 samples along the length from coils QXFP03 & QXFP04
 - 7x samples for DSC
 - 7x samples for DMA
- Test neat resin samples from QXFA116
 - 3x samples for DSC
 - 3x samples for DMA
- Finalize test sample count (34) and submit purchase requisition for testing at CTD.

Other Testing: Short Beam Test

Why Short Beam Shear Testing

An appropriate test to quantify any changes in mechanical performance

- Binder volume is small so rule of mixtures tells us that modulus is unlikely to be affected.
- Compressive behavior is dominated by cable properties
- Tensile just wont work
- Shear
 - Binder is likely to affect interface behavior, therefore shear properties
 - Generally shear samples are complicated geometry that can not be realized with cable
 - Short Beam strength uses a symmetric beam with a span to thickness ration of ~4.
 - This is do-able
- 3 10/15/2019 S. Krave | Binder Comparison

Designation: D 2344/D 2344M - 00*1

Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates¹

This studed is invest under the fixed designation D 2344D D344M, the number inmediately following the designation indicates the year of explanal adoptons or, in the case of retaines, the year of list retainer. A number in parenthese indicates the year of last respectval. A segment of particular structures are effortuated change since the has retained or responsel.

 ϵ^3 Nove—The title has been editorially corrected in November 2000.

1. Scope

1.1 This test method determines the short-beam strength of high-modulus fiber-reinforced composite materials. The specimen is a short beam machined from a curved or a flat laminate up to 6.00 mm [0.25 in.] thick. The beam is loaded in there with beam is loaded in the short of the short D 5229/D 5229/M Test Method for Moistu Properties and Equilibrium Conditioning of trix Composite Materials⁴ D 5687/D 5687/M Guide for Preparation of F Panels with Processing Guidelines for Spec

🛟 Fermilab

	Average	σ	CV
1202	9.68 MPa	0.811 MPa	8.37%
1290	8.91 MPa	0.502 MPa	5.18%

Observations from SBS Testing

Shear Testing and Energy Release

Assuming that K ≈ constant and some basic spring stuff and conserving energy: F=kx

x=F/k E=1/2*k*x^2 E=1/2*k*F^2/k^2 =1/(2k)*F^2 $\Delta E = \frac{1}{2k} (F_1^2 - F_2^2)$

In the highlighted event, the energy release is around 79 mJ

We could assume that the energy is release in the area of the delamination which could be considered at a minimum of~80 uJ/mm^2

Planning on revaluating from a fracture mechanics approach if applicable

17 22 July 2019 S. Krave | Investigation of Thermoplastic Matrix Materials for Nb3Sn Superconducting Coils

Mold Release Peel Testing

- Some recent coils have exhibited adhesion of the coil mid-plane to the impregnation tooling when demolding.
- A Quick comparison of peel strengths of various states of mold release was completed
- Conclusion: Mold release works well when applied in normal circumstances. Teflon works better.

Conclusions

- The FNAL Impregnation process has been evolving to reduce variability and risk
- Process observations have led to additional understanding of system behavior and informed process changes to reduce variability
- We get to learn things by building coils and investigating behavior

