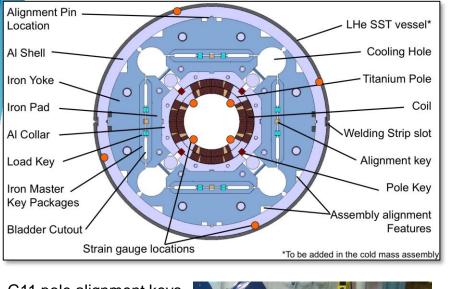


MQXFA03 Preload and Outlook on Pre-Series

Dan Cheng - LBNL 16-Oct-2019



Outline

- Introduction
- Differences between prototypes and pre-series
- Lessons Learned
- Magnet Assembly Processes
- MQXFA03 and Outlook for Pre-Series
- Summary

Differences between Prototypes and Pre-Series

All MQXF magnets have the same cross section

MQXFAP1a/b 1st Prototype 4.0 m mag. length QXFP Coils 4.56 m yoke length

MQXFAP2 2nd Prototype And Pre-Series

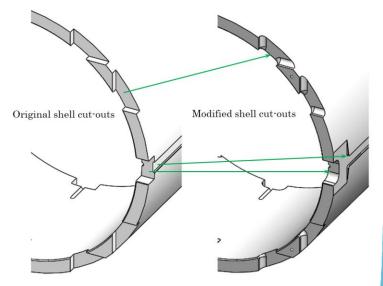
4.2 m mag. length

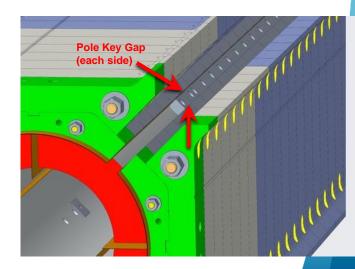
- QXFA Pre-series structures
- 4.56 r also have modified shell cutout geometry to reduce stresses

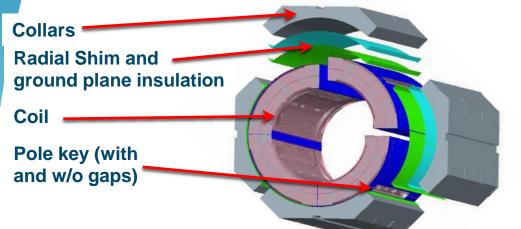
G11 pole alignment keys ended at straight section in MQXFAP1 Pre-series structure pole keys also end at

straight section

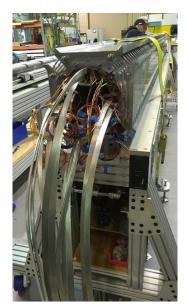
Stainless steel spacers used as coil extenders for MQXFAP1


MQXFAP1 coil superimposed on structure with MQXFAP2 coil


Full-length G11 pole alignment keys were used in MQXFAP2

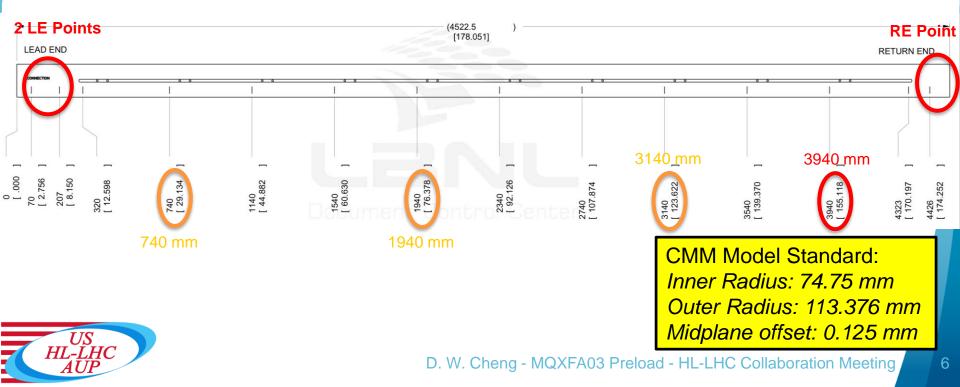

Lessons Learned, Applied to Pre-Series

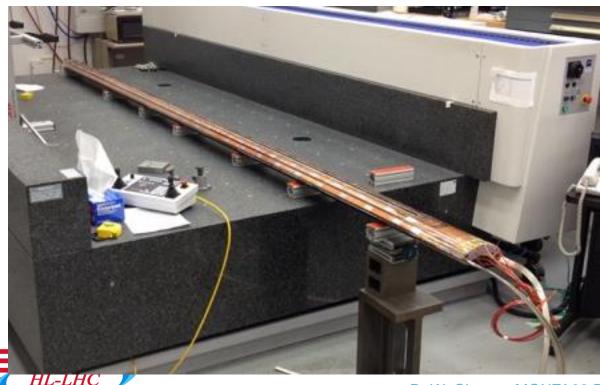
- Shell Design Criteria has since been implemented
 - 10-15 mm radii in the cutouts, end shells modifications
 - Class AA UT inspection of forgings
 - Dye penetrant inspections postmachining
- Reducing shell stress by increasing the pole key gaps
 - Targeting 100-150 µm per side
- Change in Preload operations
 - Evidence suggests a possible pathdependent damage of coil wedge-end spacer interface
 - Preload operations to now incorporate initial axial end load contact, followed by 50% azimuthal & 50% axial, then final azimuthal and full axial preload

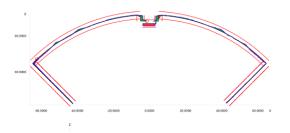


Assembling the MQXFA Magnet

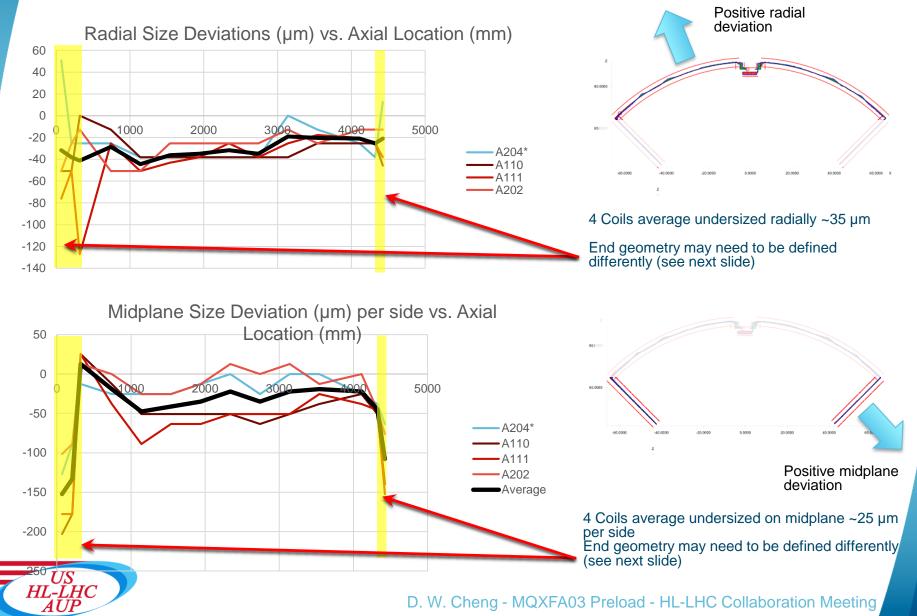
- Fuji (pressure-sensitive) paper exposures are used to examine the contact conditions of the coil and collar
- Iterative adjustments of radial shimming is possible

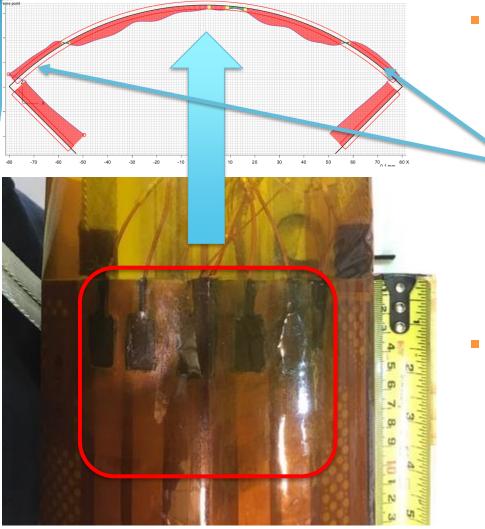



CMM Measurements


- Coils are measured after receipt
- Cross Section Data was collected in three sections
 - LE Section (2 points)
 - 10 straight section locations (10 points)
 - RE Section (1 point)
- For MQXFA03 SG is <u>only at ~3940 mm</u> location
 - Prior three locations no longer used

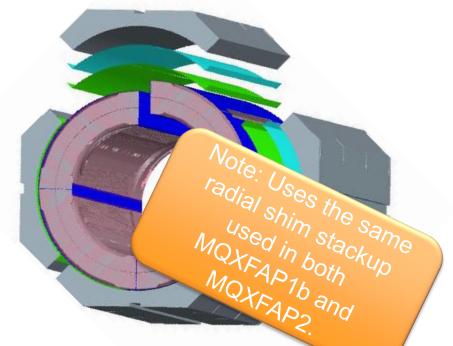
CMM Measurements


- All LBNL data was taken using a Zeiss Accura for CMM
- Calypso software post-processed data
 - All surfaces were "best-fit" to reference geometry with equal weighting
 - The alignment key was not included in coil 109 measurements
 - ID was not measured (will be with new LBNL CMM system)

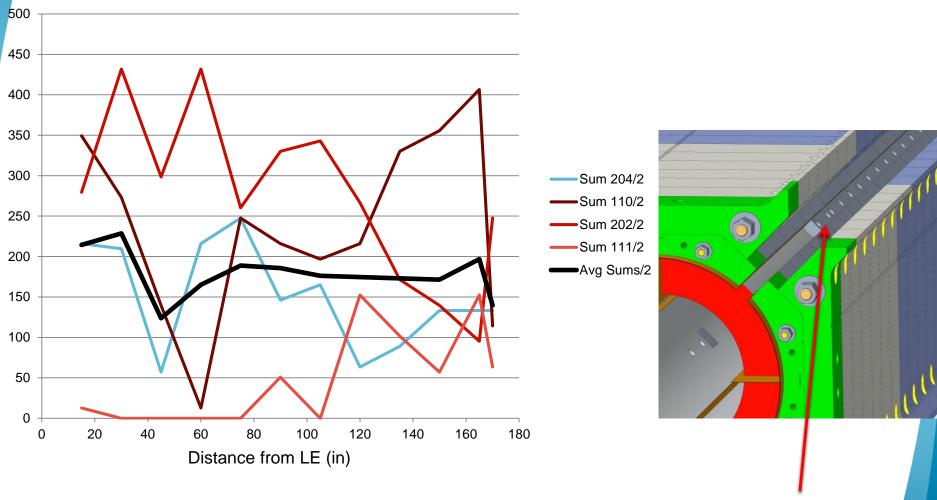


New Leica tracker system will be utilized for later coils, along with Spatial Analyzer (weighted fit will be possible)

Coil size Plot


Note on CMM Measurements on end

- Example of profile at 70 mm
 - There is a pocket in the end shoe for the solder connections to be made
 - "Global Fit" of the profile may overstate profile deviations of the OD
 - Net radial and midplane deviations are much smaller than what is indicated by a global fit of all points
 - New Leica system and Spatial Analyzer software may be utilized to minimize this "global fit" error
- Past Fuji paper results showed good exposure even on the ends
 - End-specific shimming likely is not required


MQXFA03 Coil Pack Build 5 with 204

- Nominal Collar R: 114 mm
- Nominal Coil R: 113.376 mm
- Nominal Radial shim = 0.025" (0.624 mm)
 - Plan to still aim for ~0.020"
- Target MQXFA03 radial stack up is ~0.021" (~0.54 mm)
 - 0.0045" Coil GPI + 0.005" + 0.005" & 0.005" G11

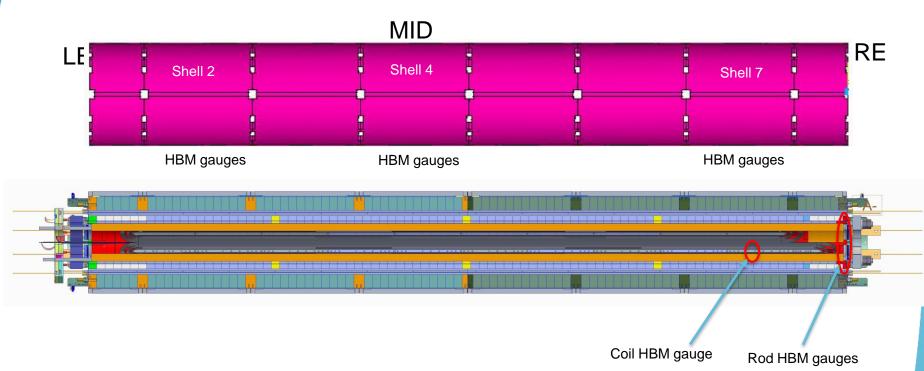
	204	110	202	111		
Kapton Ground plane insulation	0.0045" (0.114 mm)					
Coil Specific Radial Shim	0	0	0	0		
Coil-specific midplane shim (no different end shimming)	0.000" 0.0 mm	0.000" 0.0 mm	0.000" 0.0 mm	0.000" 0.0 mm		
Fuji paper		0.000" ((0.0 mm)			
Radial Shim	0.005" Polyimide + 0.005" Polyimide + 0.005" G11 (~0.38 mm)					

MQXFA03 Pole Key Gap, microns

US -LHC Pole Key Gap average ~175 µm per side

Preload Comparison of the MQXFA Magnets

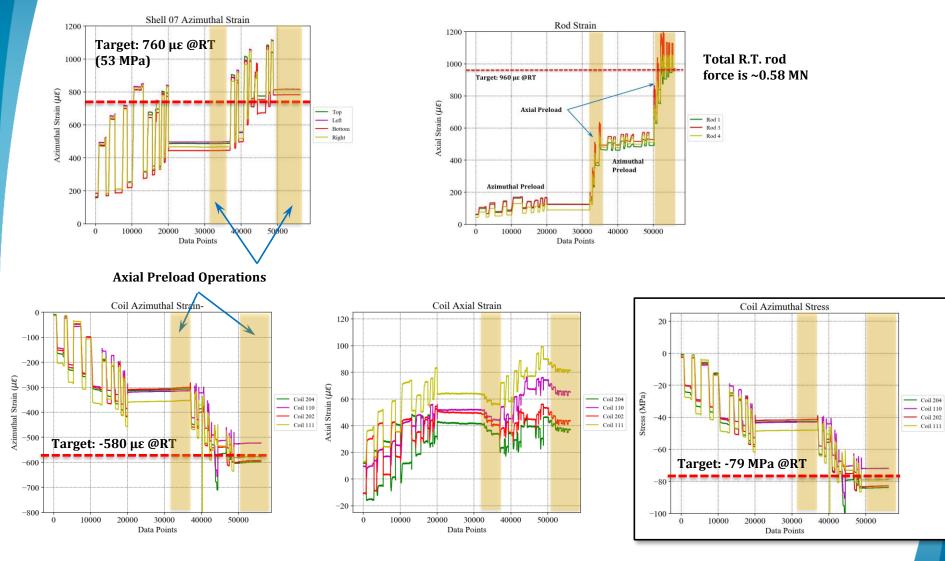
		S	hort models	S	Prototype Structures			Pre-series
		MQXFS1a	MQXFS3a	MQXFS1b	MQXFAP1a	MQXFAP2	MQXFAP1b	MQXFA03
	Coil		-73	<u>-77</u>	<u>-75</u>	<u>-74</u>	<u>-69</u>	<u>-80</u>
R.T.	Shell		102	95	72	83	62	53
	Rods		0.2* MN	0.2* MN	0.36 MN	0.36 MN	0.36 MN	0.58 MN
	Coil		-92	-101	-88**	-91	-90	-103
1.9K	Shell		178	173	140	153	130	110
	Rods		0.65 MN	0.6 MN	0.85 MN	0.85 MN	0.85 MN	1.1 MN
Interfe	erence		910 µm	720 µm	640 µm	710 µm	510 µm	510 µm
Pole k	Key Gap [#]		-50 µm	0	50 µm	20 µm	75 µm	180 µm


* Short model rods are made of 7075-T6 Al; long structures use 316L SST

** Lost coil gauges on cool down; using FEA estimate based on shell gauges

• # Gap per side. Positive values indicate gap, negative values indicate interference

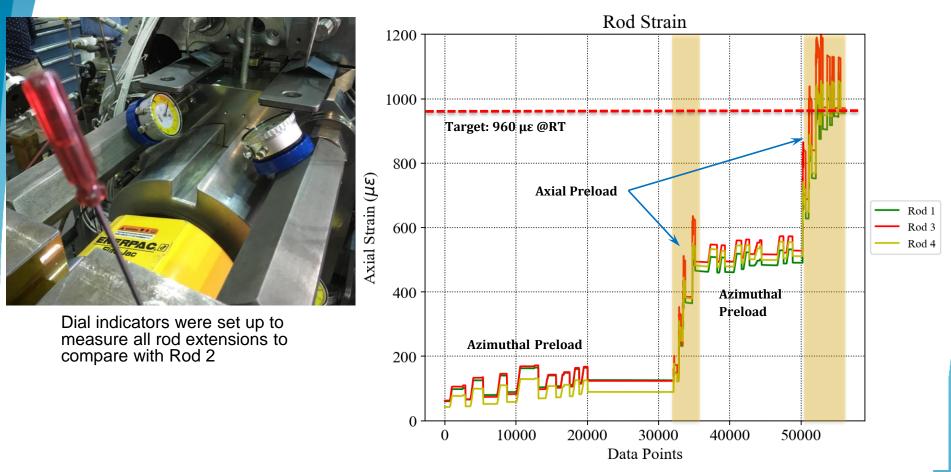
MQXFA03 Strain Gauge Instrumentation



- Axial locations for Strain Gauges:
 - Four HBM Shell Stations (T & Z) on Shells 2, 4, 7
 - Coil gauges (T & Z) only on axial station at 3995 mm from LE
 - Transfer function can be determined from Coil and Shell 7 gauges
- Rods

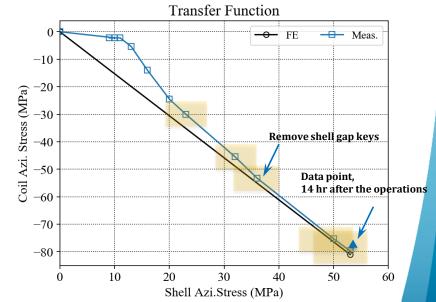
US HL-LHC

HBM full bridge, on RE


MQXFA03 Gauge Readings at Preload

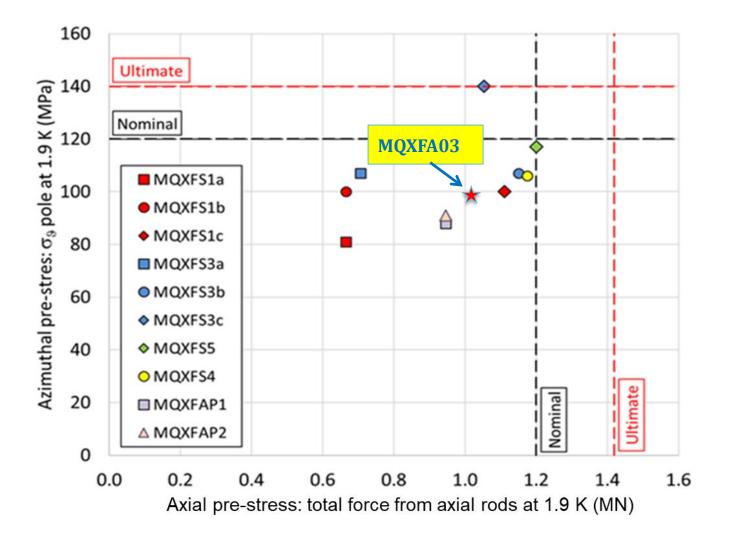
14

MQXFA03 Gauge Readings at Preload, Rods


- Rod 2 gauges were damaged during insertion; half-bridges attempted, but signal is not reliable; dial indicators were used to measure all rods to ensure Rod 2 behaved similarly
- Total rods force is \sim 0.58 MN after preload based on the measurements.

US

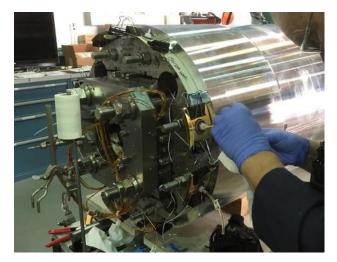
MQXFA03 and Outlook for Pre-Series


				MQXFAP1a	MQXFAP2	MQXFAP1b	MQXFA03
	Coil	-73	<u>-77</u>	<u>-75</u>	<u>-74</u>	<u>-69</u>	<u>-80</u>
R.T.	Shell	102	95		83	62	53
	Rods	0.2* M			0.36 MN	0.36 MN	0.58 MN
	Coil	-92			-91	-90	-103
1.9K	Shell	178			153	130	110
	Rods	0.65 MN	0.6 MN	0.8	0.85 MN	0.85 MN	1.1 MN
Interfe	erence		720 µm	64(µm	710 µm	510 µm	510 µm
Pole k	Key Gap		0	50 µm	20 µm	75 µm	180 µm

- Increased the pole key gaps
 - Machined pole keys
 - Targeted 100-150 µm per side, achieved ~180 µm (basically, no pole key case)
- Preload operations
 - Axial contact made before start of azimuthal preload operations
 - 50% azimuthal target
 - 50% axial target
 - 100% azimuthal target
 - 100% axial preload

16

Pole Stress vs. Axial Force Comparisons


17

Outlook and Near-term Plans

MQXFA04

- The ARMCO yokes for A04 will not be fabricated until late 2019 (material is now only arriving)
- MQXFAP2 is going to be disassembled, conforming parts to be recovered
- Coil Selection Review to take place Oct 30
 - Five coils (4 + 1 spare) to be reviewed
- Magnet expected to be completed ~end of January for testing
- Parts for A05-A08 continue to arrive

Summary

- MQXFA03
 - The first of four Pre-Series magnets is assembled, at BNL for vertical testing
- The prototype magnets have provided lessons learned
 - Changed shell end design to meet the Structural Design Criteria
 - Increased pole key gap to help reduce shell stresses
 - Targeting 100 µm to 150 µm per side
 - Changed operation order of azimuthal and axial preloads
- Parts for A04-A08 are arriving
 - MQXFA04 will be built with recovered MQXFAP2 material
 - ARMCO Pure Iron is arriving at destinations
 - Structural parts are also being delivered

Acknowledgements

- This work is all made possible by an incredible team:
- Ahmet Pekedis, Josh Herrera, Matt Reynolds, Jordan Taylor, Juan Rodriquez, Heng Pan,
- Giorgio Ambrosio, Eric Anderssen, Helene Felice, Paolo Ferracin, Michael Guinchard, Tom Lipton, Joe Muratore, Soren Prestemon, Katherine Ray, Mike Solis, Jim Swanson, Giorgio Vallone, Xiaorong Wang
- And the rest of the HL-LHC AUP collaboration team

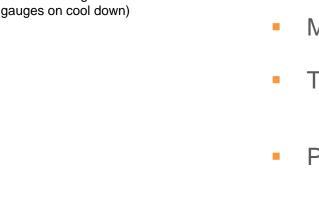
Additional Slides

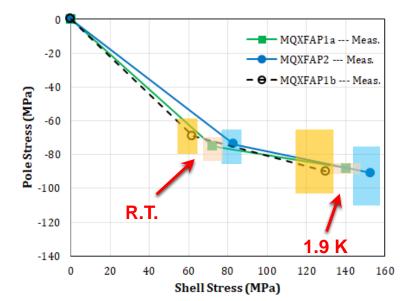
21

MQXFA03 Coil CMM Summary, 204 replace 109

Radial Size devi	iations (inches)				Midplane Size D	Deviations (incl	nes)		
Loc (mm)	A204*	A110	A111	A202	Loc (mm)	A204*	A110	A111	A202
70	0.002	-0.002	-0.003	-0.002	70	-0.005	-0.008	-0.007	-0.004
207	-0.001	-0.002	-0.002	-0.001	207	-0.0035	-0.007	-0.007	-0.0035
320	-0.001	0	-0.005	-0.0005	320	-0.0005	0.001	0.001	0.0005
740	-0.001	-0.0005	-0.001	-0.002	740	-0.001	-0.0005	-0.0015	0
1140	-0.0015	-0.0015	-0.002	-0.002	1140	-0.001	-0.002	-0.0035	-0.001
1540	-0.0015	-0.0015	-0.0017	-0.001	1540	-0.001	-0.002	-0.0025	-0.001
1940	-0.0015	-0.0015	-0.0015	-0.001	1940	-0.0005	-0.002	-0.0025	-0.0005
2340	-0.0015	-0.0015	-0.001	-0.001	2340	0	-0.002	-0.002	0.0005
2740	-0.0015	-0.0015	-0.0015	-0.001	2740	-0.001	-0.0025	-0.002	0
3140	0	-0.0015	-0.001	-0.0005	3140	0	-0.002	-0.002	0.0005
3540	-0.0005	-0.001	-0.0007	-0.001	3540	0	-0.0015	-0.001	-0.0005
4110	-0.001	-0.001	-0.0008	-0.0005	4110	-0.001	-0.001	-0.0015	0
4323	-0.0015	-0.001	-0.001	-0.0005	4323	-0.0015	-0.002	-0.0018	-0.0018
4426	0.0005	-0.0018	-0.0015	-0.0005	4213	-0.0025	-0.0055	-0.006	-0.003
Avg 320-4323	-0.0011	-0.0011	-0.0016	-0.0010	Avg 320-4323	-0.0007	-0.0015	-0.0018	-0.0003
RMS	0.00120	0.00125	0.00201	0.00117	RMS	0.00074	0.00175	0.00208	0.00057
St. Dev.	0.00052	0.00053	0.00126	0.00055	St. Dev.	0.00046	0.00104	0.00118	0.00058
Max	0	0	-0.0007	-0.0005	Max	0	0.001	0.001	0.0005
Min	-0.0015	-0.0015	-0.005	-0.002	Min	-0.001	-0.0025	-0.0035	-0.001
Avg LE	*0.0005	-0.0020	-0.0025	-0.0015	Avg LE	*-0.0043	-0.0075	-0.0070	-0.0038
RE	0.0005	-0.0018	-0.0015	-0.0005	RE	-0.0025	-0.0055	-0.0060	-0.0030

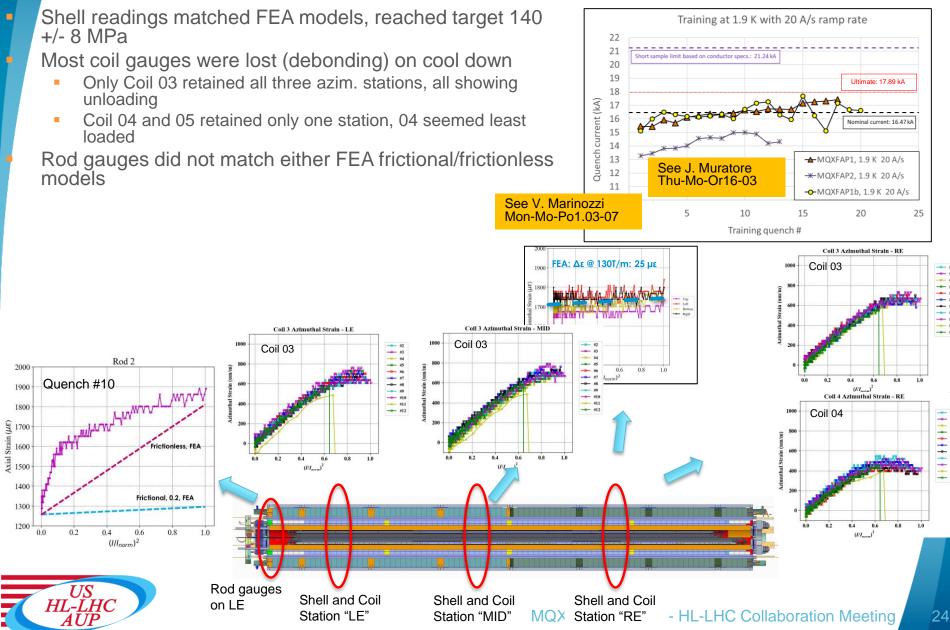
*see next slide for LE

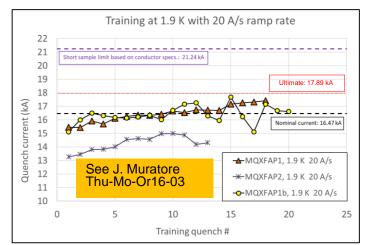

US HL-LHC


Prototype Magnets MQXFAP1a/b

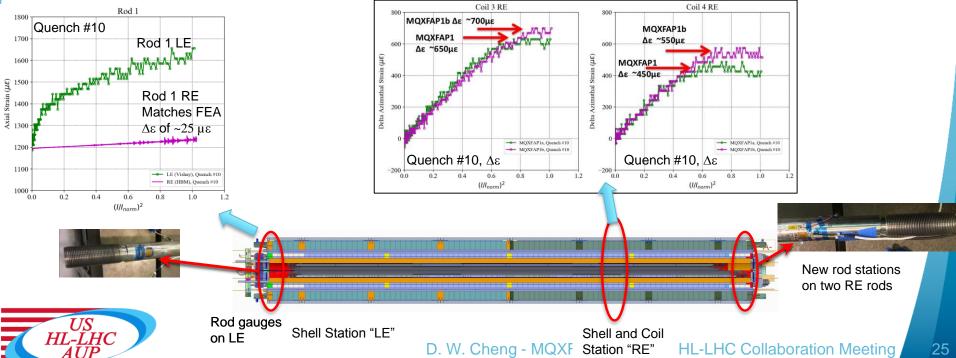
		MQXFAP1a	MQXFAP1b	
	Coil	<u>-75</u>	<u>-69</u>	
R.T. Shell		72	62	
	Rods	0.36 MN	0.36 MN	
1.9K	Coil	-88*	-90	
	Shell	140	130	
	Rods	0.85 MN	0.85 MN	
Interference		640 µm	510 µm	
Pole Key Gap		50 µm	75 µm	

* Estimated from FEA using measure shell gauges (lost gauges on cool down)

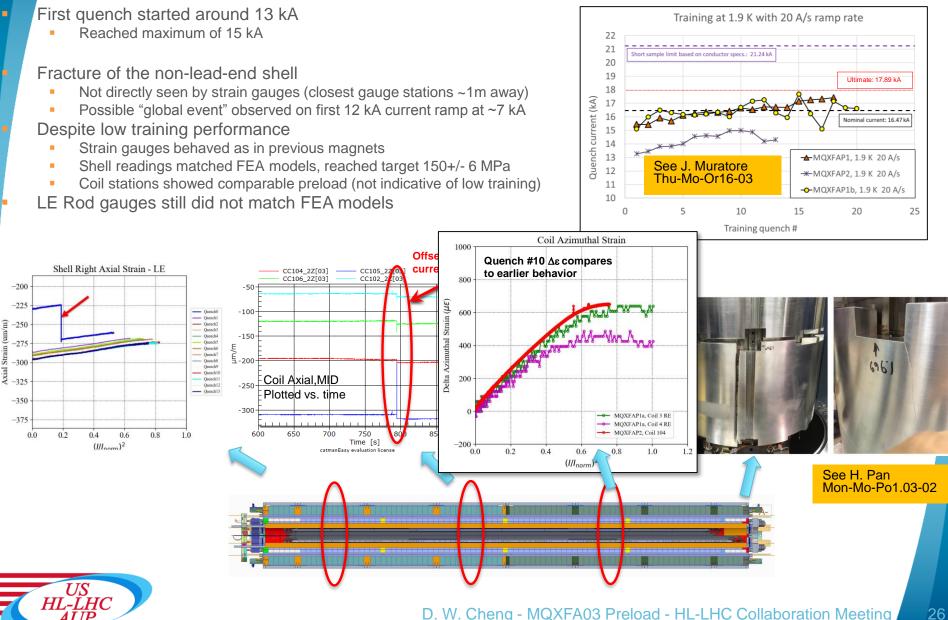



- Builds used the same structure
 - Replaced coil 05 with 06 in MQXFAP1b
- MQXFAP1a based on MQXFS1b levels
 - Do not exceed -94 MPa in any location on coil pole
- Targeted -70 to -75 MPa
 - MQXFAP1a at R.T. using 640 μm interference
 - MQXFAP1b at R.T. using 510 µm interference
- Pole keys
 - Fibers are transverse oriented
 - 50 µm gap per side in MQXFAP1a
 - 75 µm gap per side in MQXFAP1b

MQXFAP1a Strain Gauge Response



MQXFAP1b Comparison with MQXFAP1a


- MQXFAP1b Shell readings also matched FEA models, reached target 125 +/- 6 MPa
- Single coil station ("RE") installed;
 - Compared with available MQXFAP1a data preload of MQXFAP1b suggest higher preload applied, but still leveling off at ~13 kA
- LE Rod gauges still did not match FEA models, but
 - RE gauges mounted on the same rods match FEA frictionless model

Comparison of MQXFAP1a/b Coils

MQXFAP2 Shell Fracture

Coil 109 Issues Timeline

- All coils passed Acceptance Testing after receipt at LBNL
 - See MQXFA03 Readiness Review material, May 22, 2019
 - https://indico.fnal.gov/event/20781
- After assembly in coil pack
 - Impulse tests showed HF artifacts on impulse test (both Direct and Reversed polarities)
 - Removing connectors did not change result
 - Removing VT twist in wiring also did not change
- Hipot testing (not normally performed at this stage of Coil Pack assembly) was performed
 - Test parameters with Chroma 10973 hipot unit
 - 5 V/sec ramp, 10 μA threshold
 - Resulted in a breakdown from Coil to ILRE end shoe at 114 V
 - Resistive short then became present, at about 3 kOhm
- Decided to replace Coil 109
 - Upon disassembly of coils (but still "paired"), short in Coil 109 now shows ~198 kOhm --evidence of change
- Evaluating options for replacement coil

27