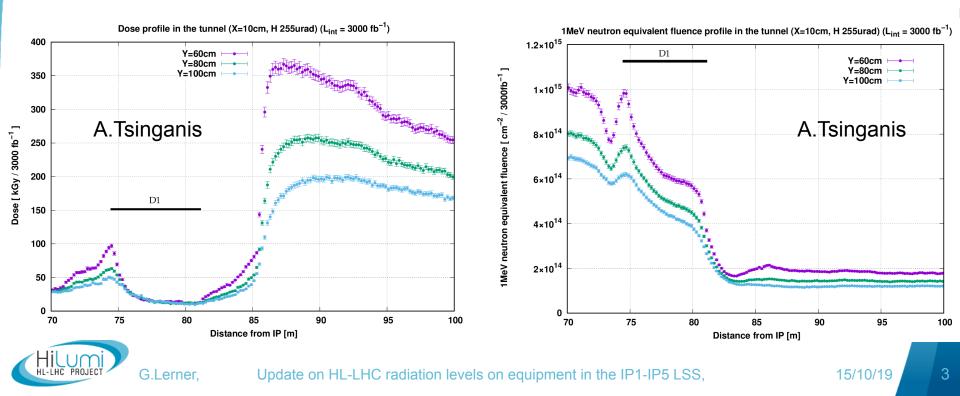


Update on HL-LHC radiation levels on equipment in the IP1-IP5 LSS

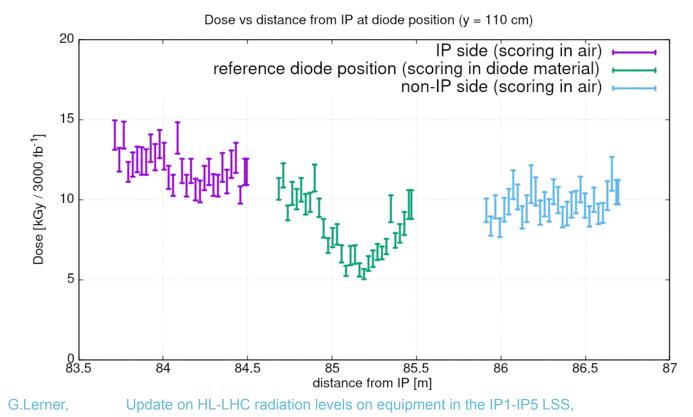
WP10 Energy Deposition & R2E

Giuseppe Lerner, Rubén García Alía, Marta Sabaté Gilarte, Andrea Tsinganis, Francesco Cerutti

9th HL-LHC Collaboration Meeting, Fermilab, USA, 15 October 2019

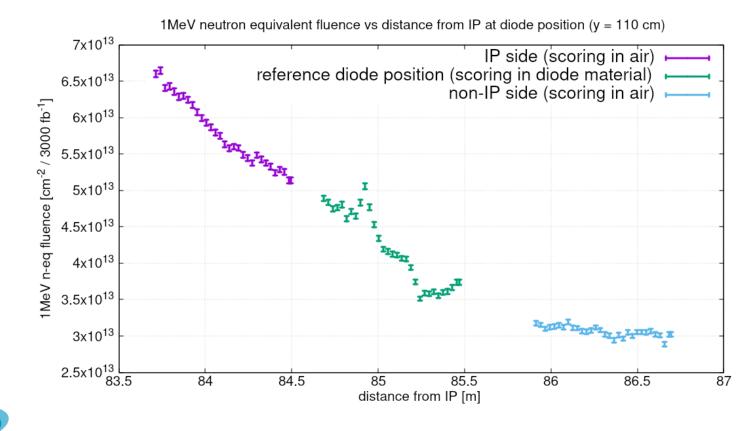

Introduction

- HL-LHC radiation levels in the IP1-IP5 Long Straight Section (LSS).
- No active electronics in these areas → No Single Event Effects (SEEs). The main concern is lifetime degradation caused by:
 - Total lonising Dose (TID), normally the most relevant effect.
 - 1MeV neutron equivalent fluence (1MeVneq) that results in Displacement Damage (DD) - often less critical than TID.
- Content: radiation levels on D1 cold diode, remote alignment system (e.g. magnet jacks), cryogenic equipment, optical fibres.
- Results based on two versions of FLUKA simulations:
 - Simulation by A.Tsinganis with optics v1.3, vertical/horizontal crossing plane in IP1/IP5, TCL4-TCL5-TCL6 at 14σ.
 - Simulation by M.Sabaté Gilarte with optics v1.5 and many layout updates. Only IP1 with horizontal crossing used in this talk - see <u>Marta's talk</u> for more details.


HL-LHC cold diodes: FLUKA with optics v1.3

- The levels on the cold diode after the D1 magnet have already been estimated with FLUKA with optics v1.3 at different vertical distances from the beam (up to 1m).
- Opposite trends of dose and 1MeVneq fluence vs z.
- The simulation with optics v1.5 includes the most recent layout and allows to make more accurate predictions (<u>EDMS 2201836</u>).

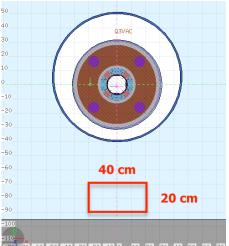
FLUKA with optics v1.5: TID at diode position

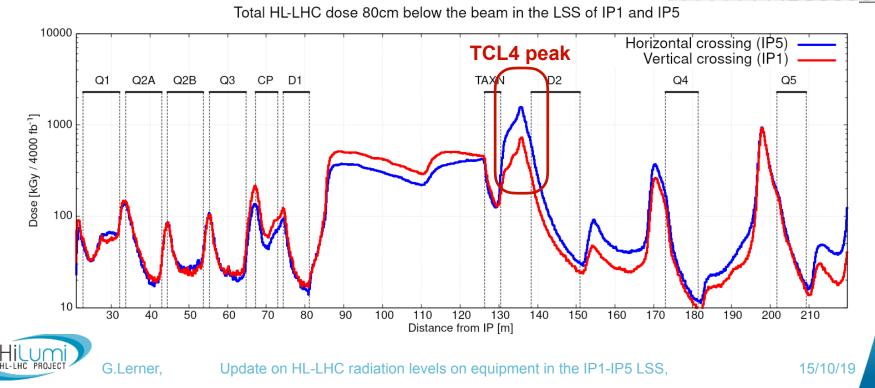

- Lower TID due to the updated layout: beam screen extension beyond D1, expansion of beam pipe at ~84m from the IP, larger distance from the beam, cold diode vessel structure (see backup).
- Upper limit of 12 kGy / 3000 fb⁻¹ at reference position, almost equal to the TID reached at the CHARM campaign (~10 kGy, see <u>G.D'Angelo's TCC talk</u>).

FLUKA with optics v1.5: 1MeVneq fluence on diode

- The 1MeV neutron equivalent fluence is also reduced to between 7.10¹³ and 3.10¹³ cm⁻² / 3000 fb⁻¹ at different distances from the IP.
- Upper limit of 5-10¹³ cm⁻² / 3000 fb⁻¹ at reference diode position, significantly lower than the value reached in CHARM (2-10¹⁴ cm⁻²).

G.Lerner,


Radiation levels on distributed systems in the LSS


- The LSS of IP1-IP5 hosts a variety of distributed systems that can suffer from radiation damage, typically TID:
 - Alignment elements (see talk at WP15.4 review, <u>EDMS 2223853</u>):
 - below the beamline: jacks, motors of collimators and masks.
 - above the beamline: Wire Positioning System (WPS), Hydraulic Levelling System (HLS).
 - Cryo distribution system (QXL) on the side of the beamline.
 - Optical fibres in cable trays and ducts along the tunnel walls.
- The radiation levels are studied with FLUKA (optics v1.3) as a function of the longitudinal distance from the IPs, for different positions in the transverse plane.
- Additional predictions for equipment mounted on beamline elements (e.g. collimators, magnets, crab cavities) are provided using FLUKA with optics v1.5.

TID profile below the beamline

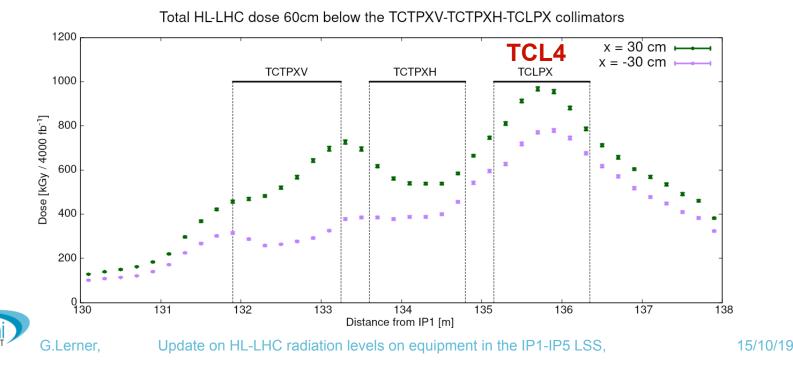
- FLUKA (optics v1.3) TID vs distance from IP1-IP5 for 4000 fb⁻¹ below the beamline, at the position of jacks and collimator motors. Similar profile above the beamline (relevant for WPS and HLS) and on its side (QXL).
- TID peak at TCL4 position between TAXN and D2 for hor crossing, slightly overestimated due to the absence of the stainless steel collimator box in the model.

TID on jacks for magnets, TAXN, crab cavities

 Summary of HL-LHC FLUKA (optics v1.3) TID levels on the jacks for 4000 fb⁻¹, obtained as the maxima below the beamline elements:

Main element	Expected TID [kGy]	Main element	Expected TID [kGy]
Q1	80	TAXN	500
Q2A	150	D2	600**
Q2B	100	Crab cavities	90***
Q3	120	Q4	175
СР	220*	Q5	190
D1	120		

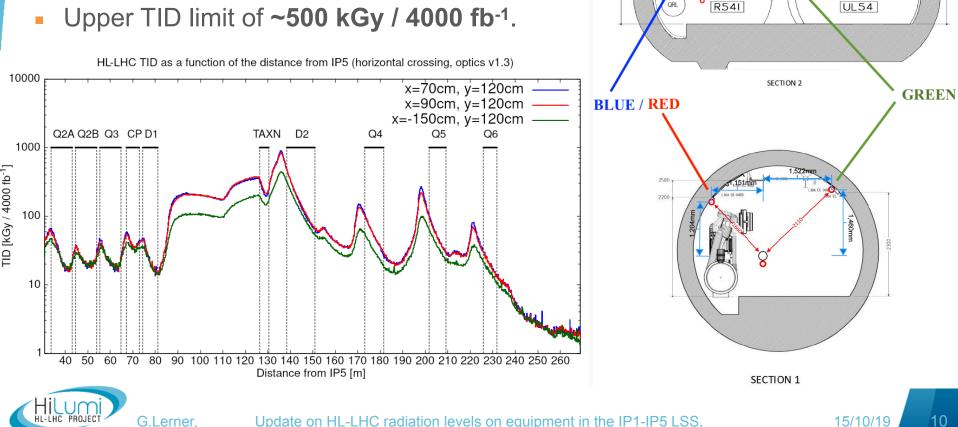
*220 kGy for vertical xing, 150 kGy for horizontal xing **600 kGy for horizontal xing, 300 kGy for vertical xing


G.Lerner,

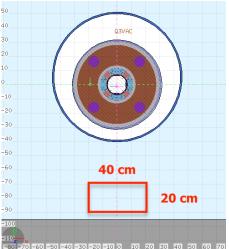
***90 kGy for horizontal xing, 50 kGy for vertical xing

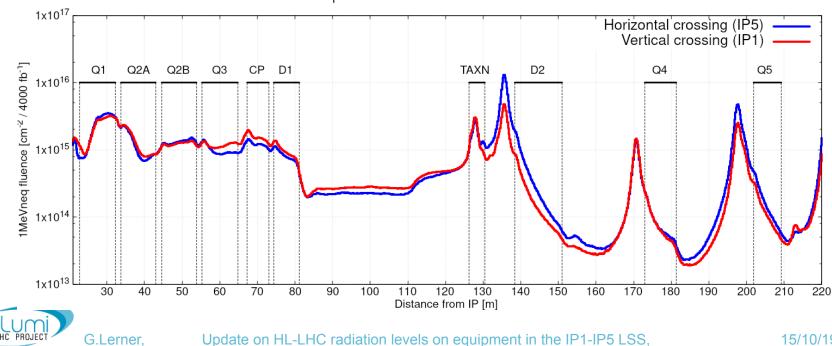
- The TID levels can differ elsewhere (e.g. in the interconnections).
- For reference, higher TID levels on support jacks are expected in other areas, e.g. up to 10 MGy for the SPS dump TIDVG5 (see <u>EDMS 2135822</u>).

TID peak below TCT-TCL4 collimators


- TID peak between TAXN and D2 from FLUKA simulation with optics v1.5 and horizontal crossing. Stainless steel collimator boxes now implemented (reducing TID by a factor ~3).
- Upper limit of **1MGy / 4000 fb**⁻¹ (lower for vert. crossing) valid for:
 - TCTPXV-TCTPXH-TCLPX collimator motors located ~60 cm below the beamline and ~30cm on each side.
 - WPS, HLS and QXL systems (maximum TID along the full line).

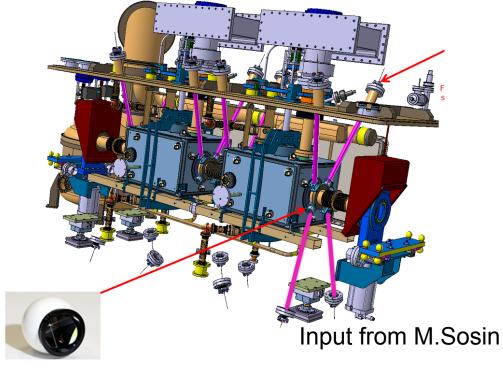
TID profile on the tunnel walls (optical fibre position)


layout input from J.Troller


- TID levels by the tunnel walls lower than below the beamline (decrease with radial distance from the beam).
- Reminder: FLUKA with optics v1.3 has no TCT-TCL collimator boxes \rightarrow TID peak at TCL4 overestimated by a factor 2-3 in the plot below.

1MeVneq fluence profile below the beamline

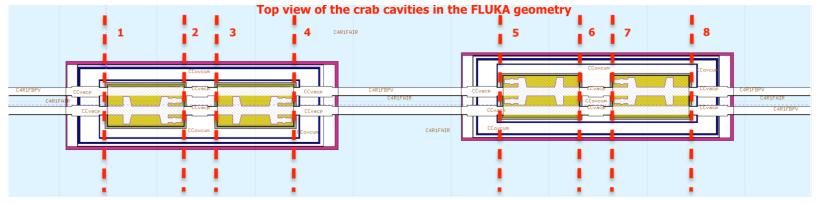
- FLUKA (optics v1.3) 1MeV neutron equivalent fluence vs distance from IP1-IP5 for 4000 fb⁻¹ below the beamline (same transverse position as in slide 7 for TID).
- Differences between TID and 1MeVneg profiles due to different impact of shielding on EM and hadronic radiation.
- 1MeVneg fluence peak at TCL4 position between TAXN and D2 for hor crossing (same as for TID).



Total HL-LHC 1MeVneg fluence 80cm below the beam in the LSS of IP1 and IP5

Reflectors on crab cavities

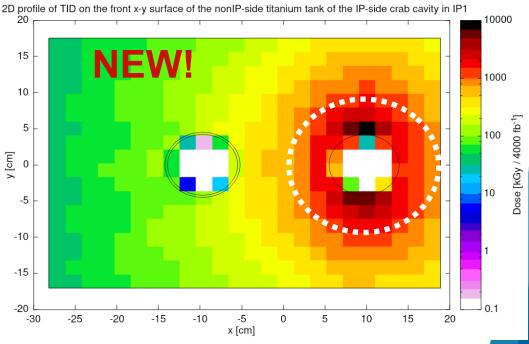
- Request by M.Sosin: crab cavity reflectors at ~10cm from the beam axis and ~5cm from the titanium surface of the He tanks.
- TID scoring available in FLUKA with optics v1.5 on the x-y Titanium surfaces - good approximation of the reflector position.
- The specification given at the WP15.4 alignment system review (EDMS 2223853) was affected by a mistake in the new crab cavity model → Result now updated (next slide).



Update on HL-LHC radiation levels on equipment in the IP1-IP5 LSS,

Reflectors on crab cavities: FLUKA results

TID scored on the 8 x-y titanium surfaces of the two crab cavities.



Update on HL-LHC radiation levels on equipment in the IP1-IP5 LSS,

 Highest TID levels reached on plane 3.

G.Lerner,

New upper limit on the total TID at ~10cm from the beam pipe of interest:
 ~2 MGy / 4000 fb⁻¹ (factor ~2 higher than the previous estimate).

Summary of radiation level specifications

 Summary table of the radiation level specifications on the various systems discussed in this presentation (TID only, except for the cold diode for which also the 1MeVneq fluence is quoted):

Equipment	Upper limit on radiation levels		
D1 cold diode	TID=12 kGy, 1MeVneq = 5·10 ¹³ cm ⁻² [for 3000 fb ⁻¹]		
Support jacks	see detailed table in slide 8		
TCTPXV-TCTPXH-TCLPX collimator motors	TID = 1 MGy [for 4000 fb ⁻¹]		
Reflectors on crab cavities	Peak TID = 2 MGy [for 4000 fb ⁻¹]		
Wire Positioning System (WPS), Hydraulic Levelling System (HLS)	Peak TID = 1 MGy [for 4000 fb ⁻¹] (see slide 7 for full profile)		
Cryogenic distribution system (QXL)	Peak TID = 1 MGy [for 4000 fb ⁻¹] (see slide 7 for full profile)		
Optical fibres on tunnel walls	Peak TID = 500 kGy [for 4000 fb ⁻¹] (see slide 10 for full profile)		

Extra specifications for cryo and alignment systems

- Upper TID limits on more elements not covered in this talk:
 - Cryogenic equipment (EDMS 2223838).
 - Alignment system (EDMS 2223853).

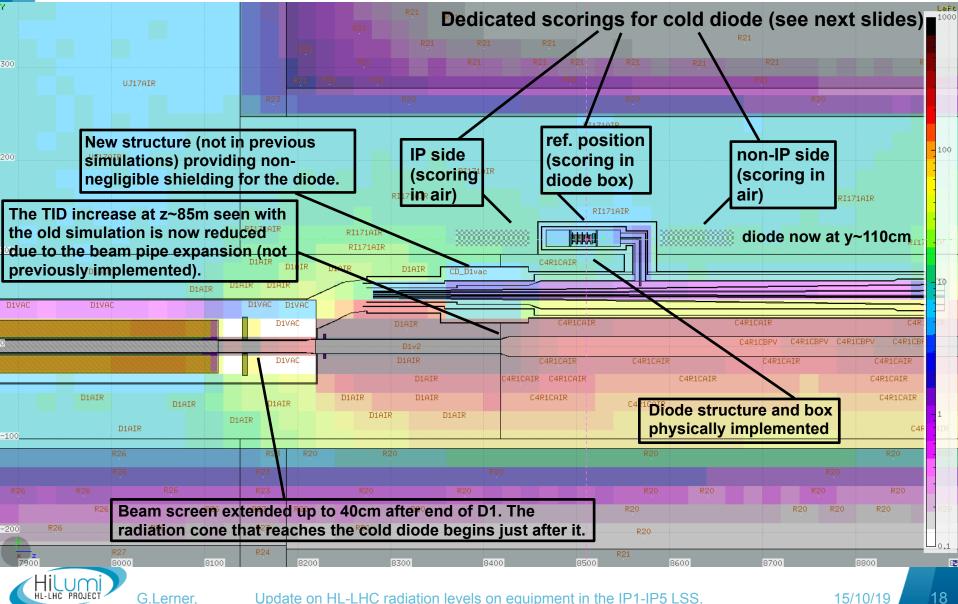
Equipment	TID upper limit [kGy / 4000 fb ⁻¹]		
IT cold mass thermometers	200		
IT warm-up heaters	1500		
IT thermometers on phase separators	2000		
IT beam screen heaters and thermometers	750		
D2 beam screen heater and therm., and heat exchanger level gauges	200		
Motors for Q4-Q5 masks	700		
Alignment motor of BPM after D1	200		

Update on HL-LHC radiation levels on equipment in the IP1-IP5 LSS,

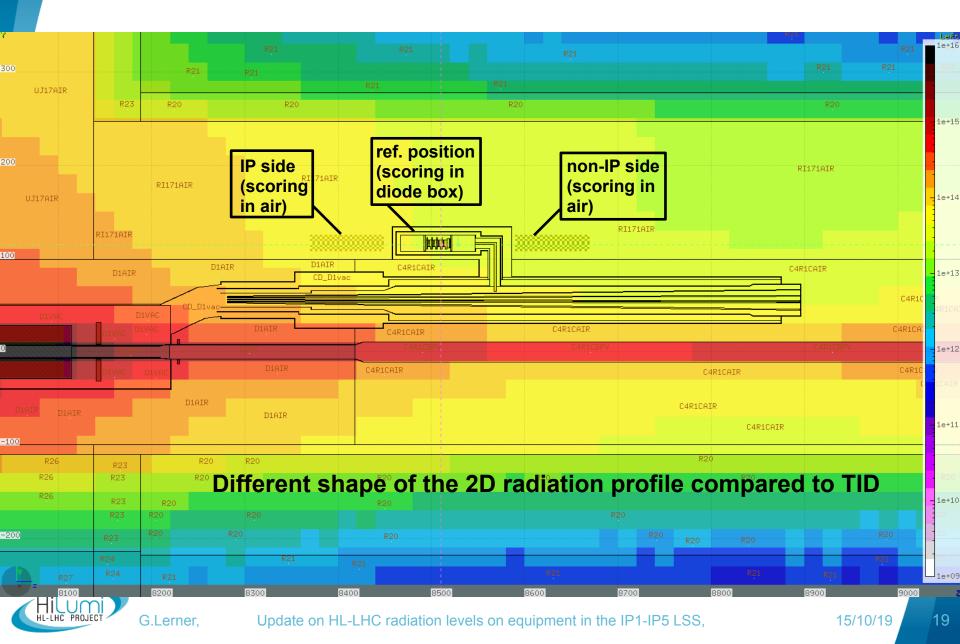
Summary and R2E-R2M implications

- The radiation levels on the equipment in the LSS of IP1-IP5 have very strong gradients due to the beamline elements. Minimum TID values around **10 kGy**, peaks above the **MGy** scale (note that even higher levels can be reached e.g. on beam screen coatings).
- No active electronics is involved → the main concern is material degradation, e.g. polymers, grease.
- The Radiation to Materials (R2M) Work Package within the R2E project supports the evaluation and testing of radiation damage on materials for non-intercepting beam devices, including the coordination of irradiation campaigns at equipment and full system level:
 - WP leader: Marco Calviani.

G.Lerner,


- Activity supervisor: Keith Kershaw.
- *Technical Responsible:* Matteo Ferrari.
- Contact e-mail: <u>r2m-radiationtomaterials-support@cern.ch</u>
- Recent indico event: <u>https://indico.cern.ch/event/814752/</u>

BACKUP



FLUKA optics v1.5: side view of diode box and TID

Update on HL-LHC radiation levels on equipment in the IP1-IP5 LSS.

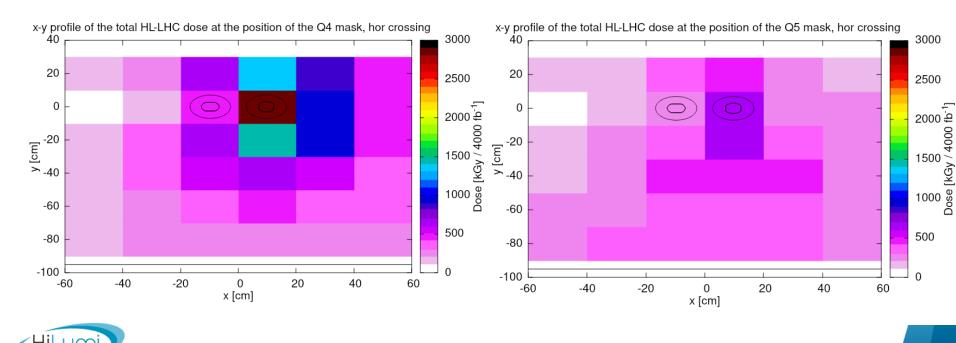
FLUKA optics v1.5: side view of diode box and 1MeVneq fluence

R2E implications of radiation levels on cold diode

- The previous plots can be summarised in updated upper limits on the radiation levels on the diode in the reference position (z ~ 85 m from the IP):
 - Dose: 12 kGy / 3000 fb⁻¹.
 - 1MeVneq fluence: 5-10¹³ cm⁻² / 3000 fb⁻¹.
- The 1MeVneq fluence is well below the value accumulated at the end of the dedicated irradiation campaign in CHARM, while the dose is very close to it.

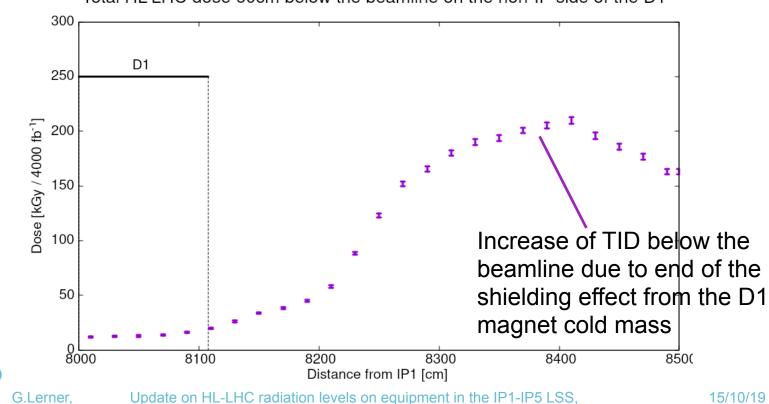
Table 2: Accumulated dose and 1 MeV equiv. neutron fluence at the end of the irradiation campaign in each diode. The uncertainty of the quoted values was estimated to 20 %.

Diode	D1	D2	D3	D4
Fluence $(10^{14} \text{ cm}^{-2})$	2.09	2.15	2.27	2.28
Dose (kGy)	10.40	11.17	11.06	10.24
Diode	D5	D6	D7	D8
Diode Fluence $(10^{14} \text{ cm}^{-2})$	D5 1.74	D6 1.75	D7 1.70	D8 1.66


D.Wollman et al., "Characterisation of the radiation hardness of cryogenic bypass diodes for the HL-LHC inner triplet circuit", IPAC19.

See also <u>G.D'Angelo's TCC</u> presentation

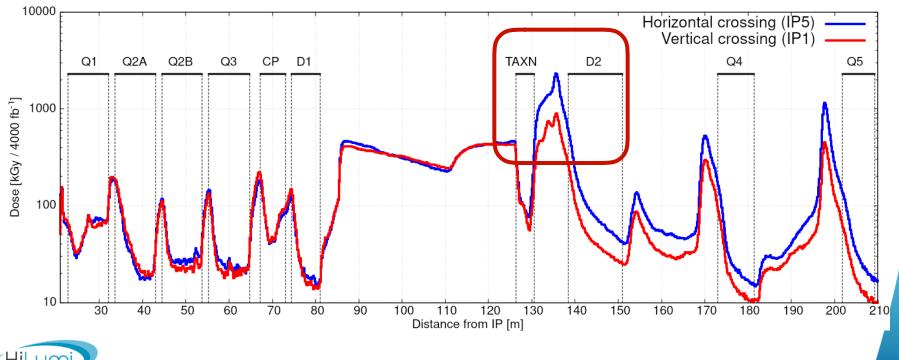
TID on Q4-Q5 mask alignment system


- Remote alignment systems for the masks located before Q4-Q5.
- No design available yet → 2D x-y profiles of TID at the position of the masks obtained with FLUKA with optics v1.3 for horizontal crossing (lower levels expected for vertical crossing).
- Higher levels for Q4, with strong radial gradient in both cases.
 Upper limit of ~700 kGy / 4000 fb⁻¹, 40cm below the Q4 mask.

G.Lerner.

BPM after D1 - TID on alignment system

- The BPM located just after the D1 magnet could be remotely aligned (no official plan/design yet).
- FLUKA (optics v1.5) TID vs distance from IP1 at the end of D1 ~60cm below the beam. The TID grows rapidly with z reaching ~200 kGy / 4000 fb⁻¹.

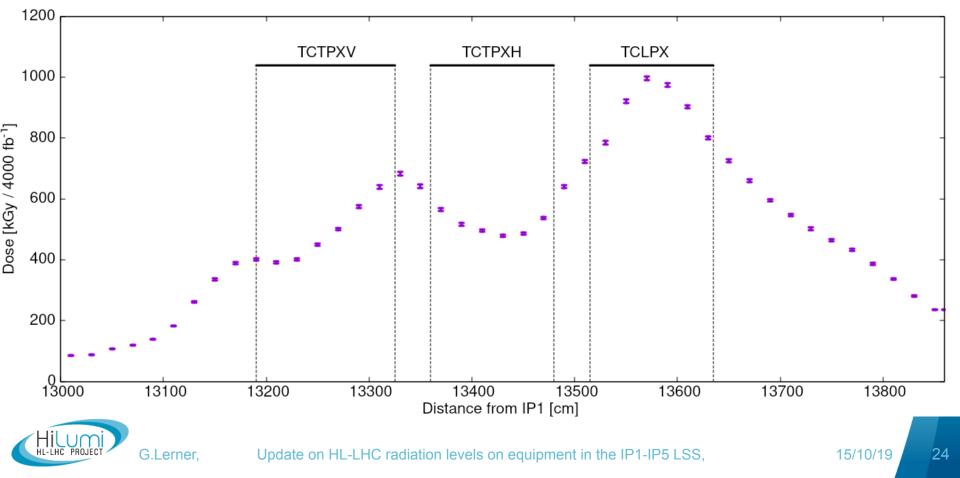


Total HL-LHC dose 60cm below the beamline on the non-IP side of the D1

WPS and HLS systems: FLUKA with optics v1.3

- Optics v1.3, TID vs distance from the IPs, 60 cm above the beamline, to set upper limits on the levels on WPS-HLS systems.
- TID peak of ~2.5 MGy / 4000 fb⁻¹ for horizontal crossing above TCL4, where the v1.3 simulation doesn't include the collimator box. A more accurate estimate can be obtained with the optics v1.5 simulation.

Total HL-LHC dose 60cm above the beam in the LSS of IP1 and IP5



G.Lerner,

WPS and HLS systems: FLUKA with optics v1.5

 The optics v1.5 simulation includes the collimator box and allows to place an upper TID limit of ~1MGy / 4000 fb⁻¹ at the WPS-HLS position (~same pattern seen below the beam).

Total HL-LHC dose 60cm above the beamline at the position of the TCTPXV-TCTPXH-TCLPX collimators

