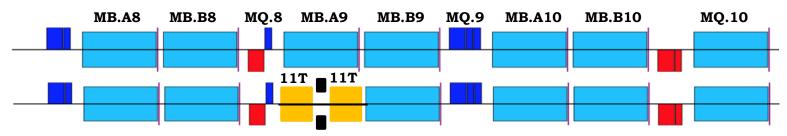


Mitigation of DS Losses with New 11 T Dipole Layout

E. Belli, R. Bruce, M. Giovannozzi, A. Mereghetti, D. Mirarchi, S. Redaelli

2019 HL-LHC Annual Meeting – FermiLab (US) – 14-16 Oct 2019

Outline


Introduction and motivation

- Mitigating present levels of energy deposition in module of 11 T dipole upstream of TCLD collimator in IR7
- Numerical simulations with SixTrack
 - Aperture scans
 - Local orbit bumps: 3 correctors and 4 correctors
 - Alternative collimator settings
- Conclusions

Motivation

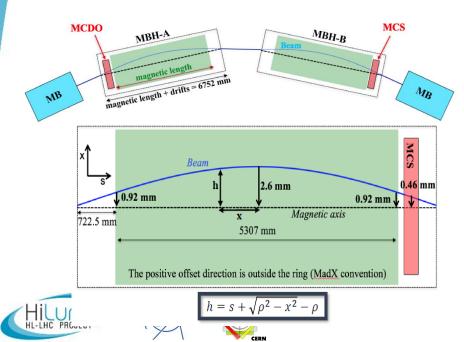
- IR7 DS losses are the highest cold losses in LHC;
- With the higher intensities expected for HL-LHC, these losses could limit the machine performance, inducing magnet quench;
- Mitigation strategy: improve the collimation cleaning by substituting one standard dipole with a pair of 11 T magnets and a TCLD collimator per beam during LS2;

TCLD

- Cell 9 is the optimal location in terms of local and global cleaning inefficiency [1];
- MB quench limit: ~20-30 mW/cm³;

CERN

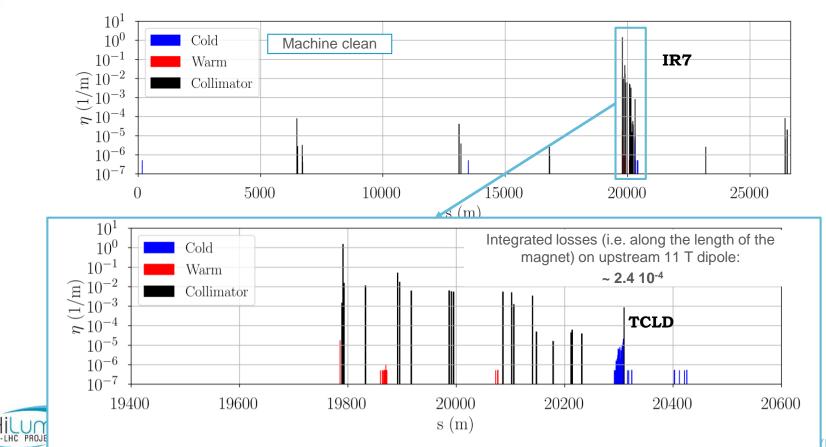
- 11 T peak power density: 48 mW/cm³ vs a quench limit of ~70 mW/cm³ [3];
- Possible ways to increase margin to quench?



Peak power density in SC coils [mW/cm³] [2]												
Protons Ions												
	Cells 8	/9	Cell 11		Cells 8/9			Cells 8/9		9	Cell 11	
MB	MQ	11 T	MB	MQ	MB	MQ	11 T	MB	MQ			
6.0	8.1	48	<0.3	<0.3	6.0	3.6	33	<0.003	<0.003			
70% of quench limit												

Simulation Set Up

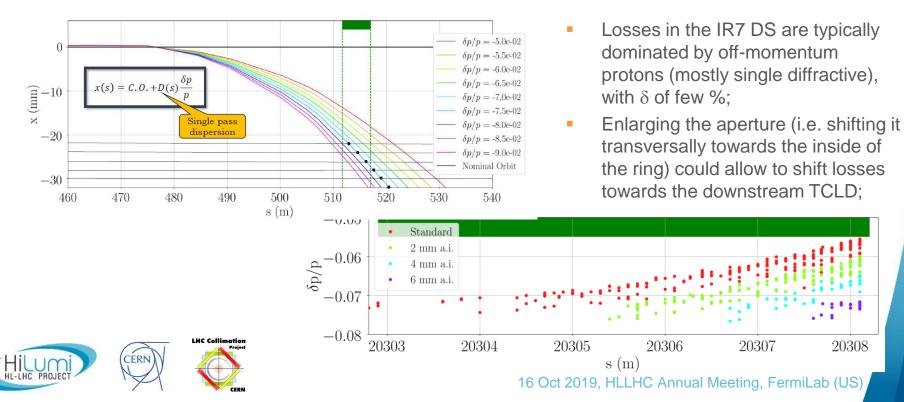
- Standard SixTrack simulations for cleaning:
- HL-LHC optics v1.3, 7 TeV, β*=15cm;
- TCLD between 11 T dipoles at 16.6σ in cell 9;
- Sagitta in 11 T magnet (RBEND) taken into account as aperture offset in SixTRack survey file;


Collimation settings $(\varepsilon = 2.5 \mu m)$	σ	Material
Primary (TCP) IR7	6.7	MoGr
Secondary (TCSG) IR7	9.1	MoGr
Absorber (TCLA) IR7	11.9	Inermet
Primary (TCP) IR3	17.7	CFC
Secondary (TCSG) IR3	21.3	CFC
Absorber (TCLA) IR3	23.7	Inermet
Tertiary (TCT) IR1	10.4	Inermet (V), CuCD (H)
Tertiary (TCT) IR5	10.4	Inermet (V), CuCD (H)
Tertiary (TCT) IR2	35.4	Inermet
Tertiary (TCT) IR8	17.7	Inermet
Secondary (TCSP) IR6	10.1	CFC
Dump prot. (TCDQ) IR6	10.1	CFC
TCL 4 IR1/5	14.2	Inermet
TCL 5 IR1/5	14.2	Inermet
TCL 6 IR1/5	14.2	Inermet

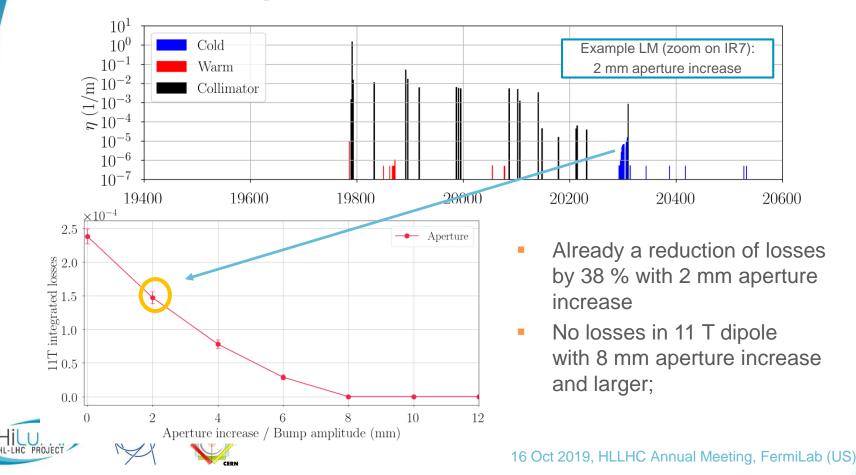
Simulation Studies

- 1. Aperture increase;
 - The aim is to mimic the alignment of the 11 T dipole towards the inside of the ring to gain in aperture;
- 2. Local orbit bump matched at the centre of the dipole:
 - 3 correctors simplest bump option, to control beam position at 11 T dipole;
 - 3 correctors + trim power converters of 11 T mitigation of max of local bump downstream of TCLD;
 - 4 correctors more complete bump option, to control beam position and angle at 11 T dipole;
- 3. Playing with collimator settings:
 - Tighter TCSG and TCLA settings, to improve cleaning;
 - More relaxed TCP and TCSG settings, to reduce impact on impedance
- 4. Combinations of bump, misalignment and tighter TCSG settings as possible operational scenarios;

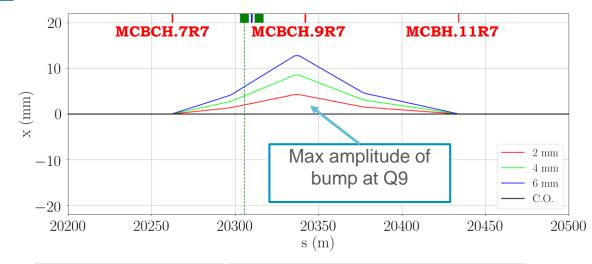
Reference Loss Map


(US)

Aperture Scan


Increase the horizontal aperture of the beam pipe at the 11 T magnet – standard half aperture: 22 mm;

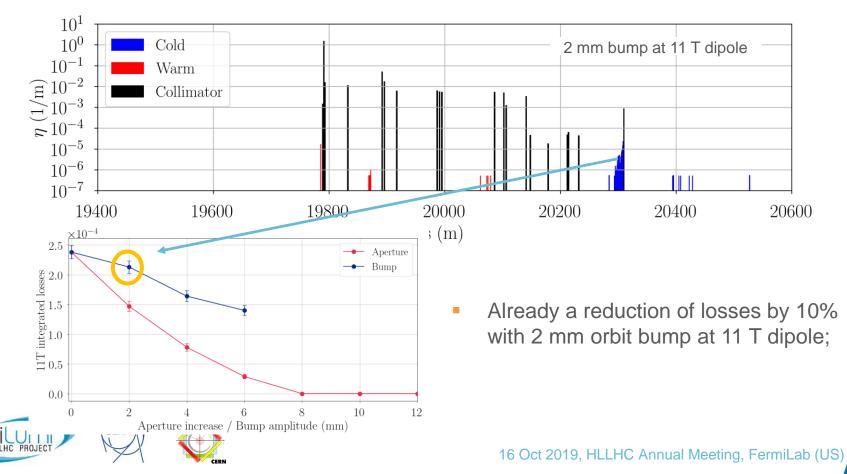
20308


Aim: to emulate a misalignment of the magnet towards the inside of the ring;

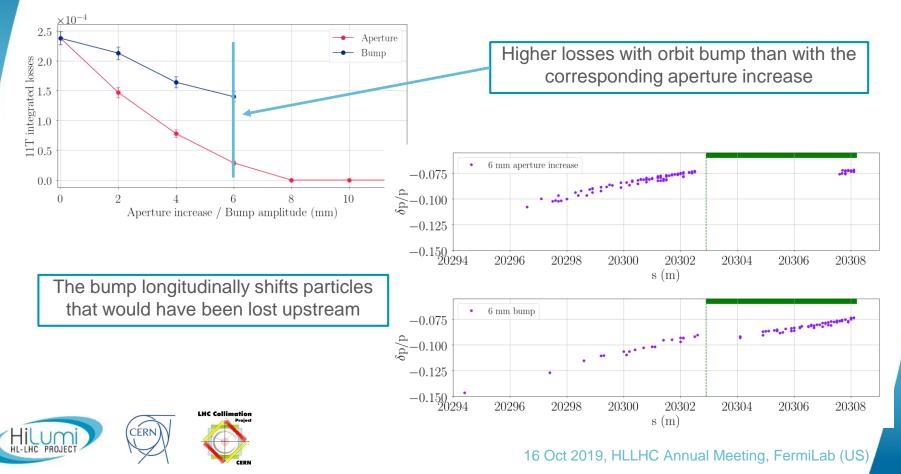
Aperture Scan: Results

3 Magnets Local Orbit Bump

3 values of bump explored, limited by the peak of the orbit bump at Q9:

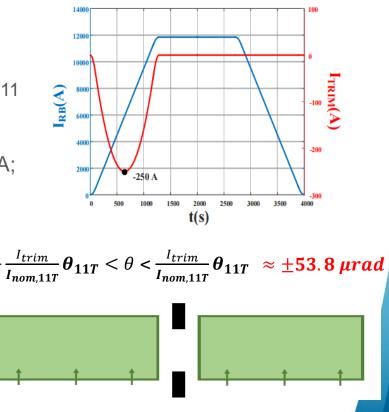

- 6mm @ 11 T → 13 mm @ Q9;
- 4mm @ 11 T → 9 mm @ Q9;

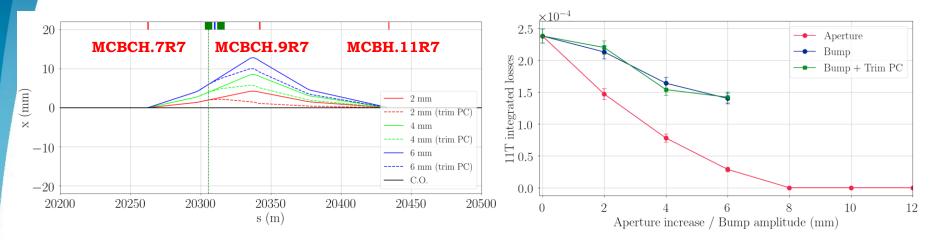
To be compared with 22 mm (current aperture);


Required kick [µrad]	Bui			
Correctors	2	4	6	
MCBCH.7R7	39.1	78.2	117.3	CC
MCBCH.9R7	9.3	18.6	27.9	
MCBH.11R7	30	60	90	
	Imation Project	MCBH	.11R7 out of s	strength

The use of 11 T trip power converter (PCs) can mitigate these points (see later);

3 Magnets Local Orbit Bump: Results

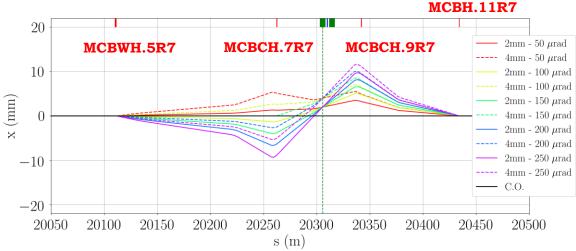

Aperture Increase vs Orbit Bump


Trim Power Converter of 11 T Dipole

- Transfer function of 11 T magnets is slightly different than that of the MBs;
 - Trim Power Converter connected to the 11 T magnets in series to inject or extract current from 11 T dipoles to compensate the difference on the transfer function;
- Nominal current of 11 T magnet: I_{nom,11T}=11850 A;
- Deflection angle of 11 T magnet is half of the bending angle of a nominal dipole: θ_{11T}=2.55 µrad;
- Rating of trim PC: 250 A;
- Modelled in MAD-X as three h-kickers per magnet;

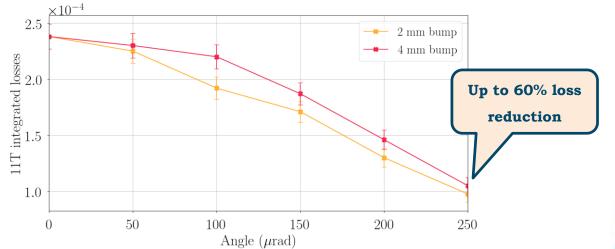
Local Orbit Bump and Trim PC of 11 T Dipole

Required kick [µrad]	Bump amplitude [mm]				
Correctors	2	4	6		
MCBCH.7R7	39.6	78.7	117.8		
MCBCH.9R7	64.7	74	83.3		
MCBH.11R7	8.3	38.4	68.4 🗸		



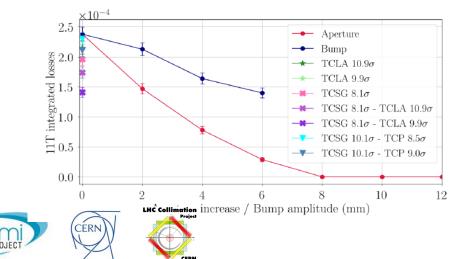
CERN

4 Magnets Local Orbit Bump


- Four magnets allow to control both position and angle of the beam;
- Evaluating performance for 2/4 mm bump for different angles

Required kick $[\mu rad]$		Angle [µrad]									
Ocurrenter	5	50		100		150		200		250	
Correctors	2 mm	4 mm	2 mm	4 mm	2 mm	4 mm	2 mm	4 mm	2 mm	4 mm	
MCBWH.5R7	7.5	30.15	-7.5	15.1	-22.5	53.9	-37.6	-15	-52.6	-30	
MCBCH.7R7	32.3	51	45.9	64.6	59.4	78.1	72.9	91.7	86.5	105.3	
MCBCH.9R7	19.9	61	-1.25	39.9	-22.4	18.7	-43.6	-2.5	-64.8	-23.7	
MCBH.11R7	24.2	36.7	35.8	48.4	47.4	60	59	71.6	70.6	83.2	
-LHC PHOJECT 16 Oct 2019, HLLHC Annual Meeting, FermiLab (US)											

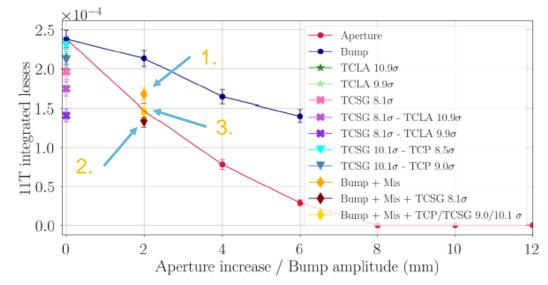
4 Magnets Local Orbit Bump - Results


- Four magnets allow to control both position and angle of the beam;
- Evaluating performance for 2/4 mm bump for different angles

Required kick [µrad]	Angle [µrad]									
0	50		100		150		200		250	
Correctors	2 mm	4 mm	2 mm	4 mm	2 mm	4 mm	2 mm	4 mm	2 mm	4 mm
MCBWH.5R7	7.5	30.15	-7.5	15.1	-22.5	53.9	-37.6	-15	-52.6	-30
MCBCH.7R7	32.3	51	45.9	64.6	59.4	78.1	72.9	91.7	86.5	105.3
MCBCH.9R7	19.9	61	-1.25	39.9	-22.4	18.7	-43.6	-2.5	-64.8	-23.7
MCBH.11R7	24.2	36.7	35.8	48.4	47.4	60	59	71.6	70.6	83.2
16 Oct 2019, HLLHC Annual Meeting, FermiLab (US)										

Varying IR7 Collimator Settings

- To improve cleaning:
 - TCLAs with -1σ and -2σ wrt HL-LHC baseline;
 - TCSGs with -1σ wrt HL-LHC baseline;
 - Mixed;
- To relax impact on impedance:
 - TCPs more opened by 1.8σ, and TCSGs at 1.6σ retraction;
 - TCPs more opened by 2.3σ, and TCSGs at 1.1σ retraction;



Collimation settings ($\varepsilon = 2.5 \mu m$)	σ	Material
Primary (TCP) IR7	6.7	MoGr
Secondary (TCSG) IR7	9.1	MoGr
Absorber (TCLA) IR7	11.9	Inermet
Primary (TCP) IR3	17.7	CFC
Secondary (TCSG) IR3	21.3	CFC
Absorber (TCLA) IR3	23.7	Inermet
Tertiary (TCT) IR1	10.4	Inermet (V), CuCD (H)
Tertiary (TCT) IR5	10.4	Inermet (V), CuCD (H)
Tertiary (TCT) IR2	35.4	Inermet
Tertiary (TCT) IR8	17.7	Inermet
Secondary (TCSP) IR6	10.1	CFC
Dump prot. (TCDQ) IR6	10.1	CFC
TCL 4 IR1/5	14.2	Inermet
TCL 5 IR1/5	14.2	Inermet
TCL 6 IR1/5	14.2	Inermet

Promising results with tighter settings but impact on impedance should be evaluated!

3 Possible Operational Scenarios

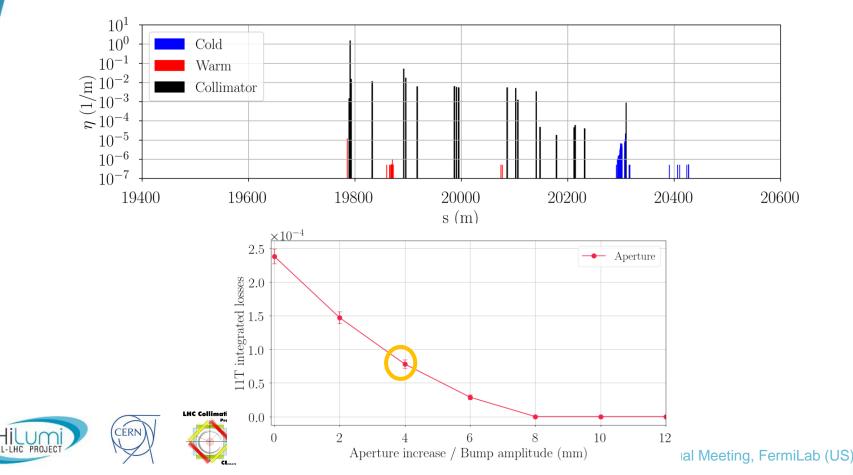
- 1. 2 mm local orbit bump + 1 mm misalignment of 11 T dipole towards the inside of the ring;
- 2. 2 mm local orbit bump + 1 mm misalignment + IR7 TCSGs at 8.1σ ;
- 3. 2 mm local orbit bump + 1 mm misalignment + IR7 TCPs/TCSGs at $9\sigma/10.1\sigma$;

CERI

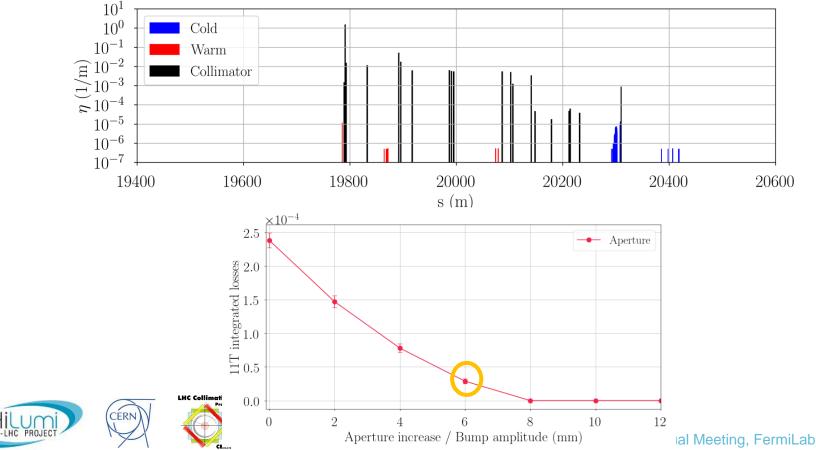
Conclusions

- Installed in cell 9, TCLD provides a good global and local cleaning inefficiency but with a higher power density in the upstream 11 T dipole (~50 mW/cm³ predicted for protons, t=0.2 h);
- Standard SixTrack simulations performed to find possible ways to decrease power load on upstream 11 T dipole:
 - 3 correctors local orbit bump
 - 40% loss reduction in the case of 6 mm bump, but MCB current out of strength and max orbit shift not negligible compared to aperture;
 - 3 correctors local orbit bump + trim PCs of 11 T dipole
 - Max orbit reduced and current within the budget for 6 mm bump;
 - 4 correctors local orbit bump
 - 60% loss reduction in the case of 2 mm bump and 250 mrad angle
 - Collimator settings:
 - 1s reduction for TCSG and 2s reduction for TCLAs allows reducing losses by 40% solution viable only if margins for impedance are demonstrated;
 - Three possible operational scenarios seem promising with loss reduction by 40%
 - Energy deposition studies on-going (see next presentation)

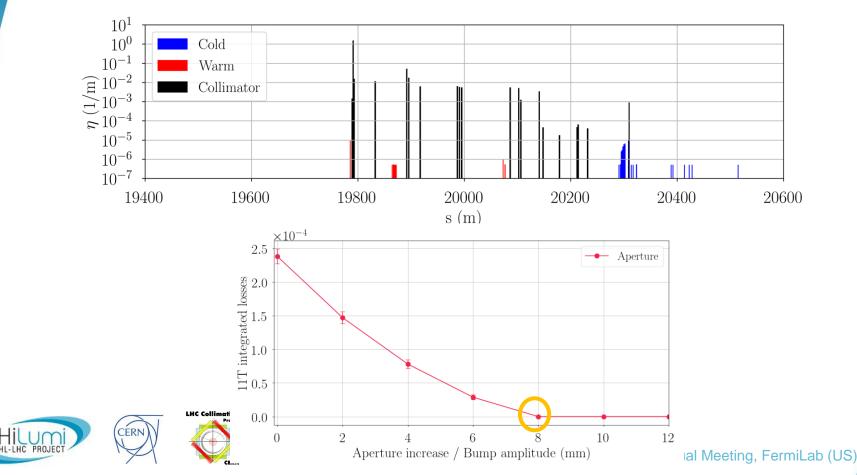
Thanks a lot!


References

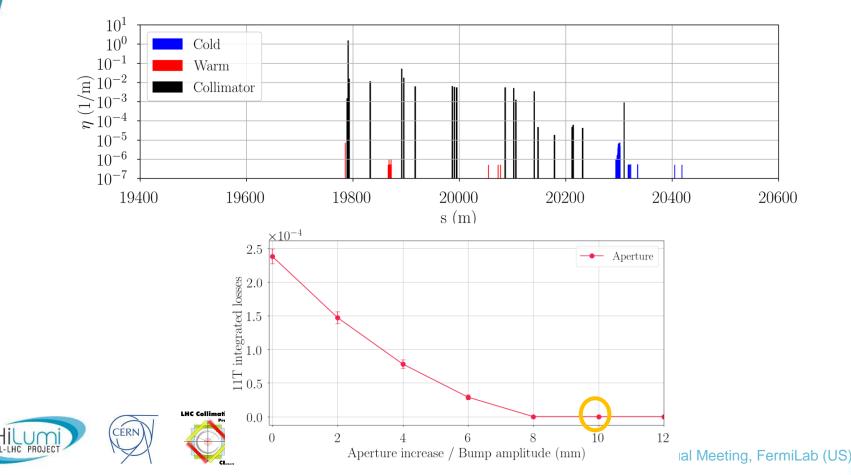
- [1] D.Mirarchi, "Optimisation of TCLD position for HL-LHC", ColUSM #94, 29 Sep 2017.
- [2] C. Bahamonde Castro, "Energy deposition from collimation losses in the DS region at P7", 8th HL-LHC Collaboration Meeting, 17 Oct 2018.
- [3] L. Bottura, "Quench performance and assumptions: magnets and cryogenics", International Review of the HL- LHC Collimation System, 11 Feb 2019.



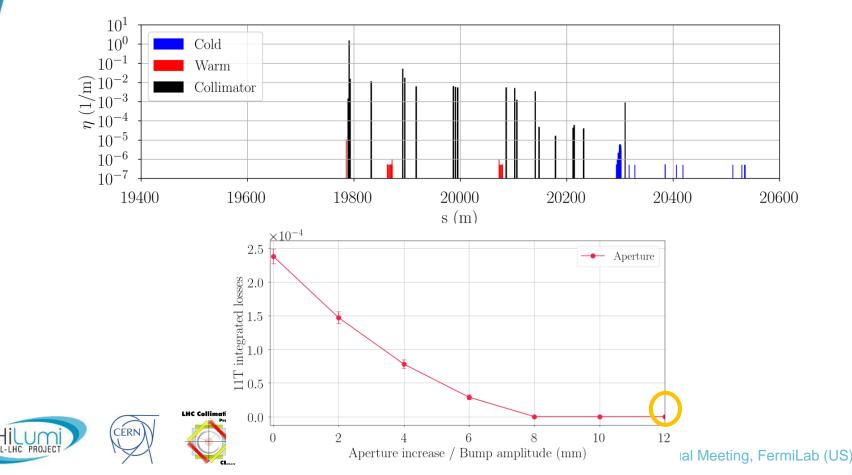
Aperture Scan – 4 mm Aperture Increase



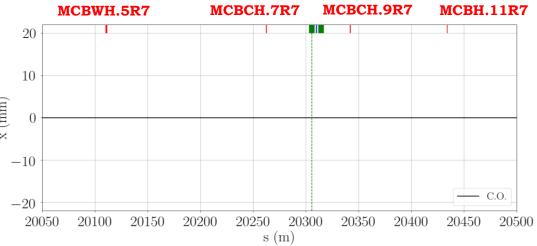
Aperture Scan – 6 mm Aperture Increase



al Meeting, FermiLab (US)


Aperture Scan – 8 mm Aperture Increase

Aperture Scan – 10 mm Aperture Increase

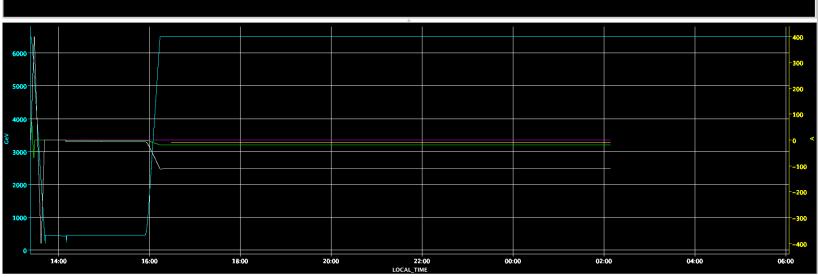


Aperture Scan – 12 mm Aperture Increase

Local Orbit Bump at 11 T Magnet

- At least 3 correctors required to control the bump position and close it;
- 4-magnets local bump to control both position and angle;

Magnet type	B[T]	$L_{mag}[m]$	$I_{max}[A]$
MCBCH @1.9K	3.11	0.904	100
MCBH @1.9K	2.93	0.647	55
MCBWH	1.1	1.7	500

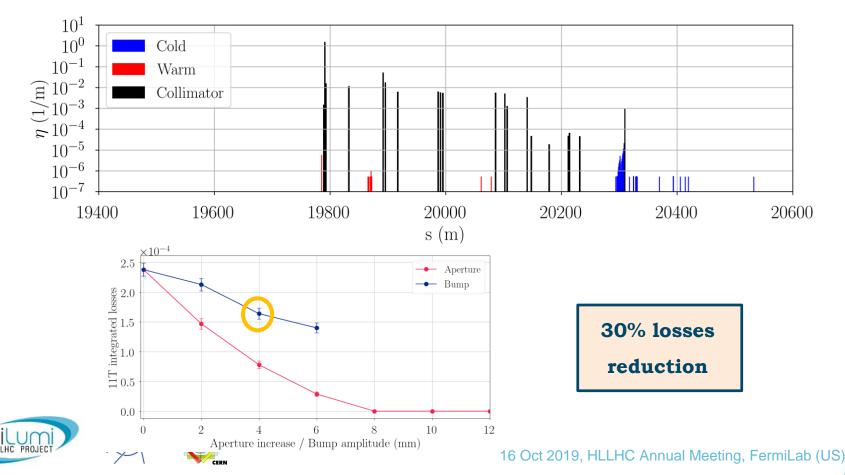


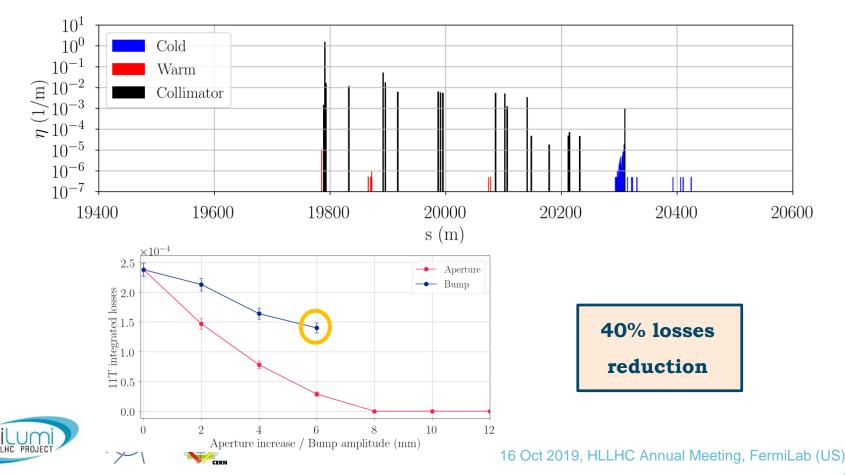
 $I = I_{max}$ $\theta_{max} [\mu rad] @ 7 TeV$ 132.54 89.37 80.14

 $\theta[rad] = 0.3 \ \frac{L_{mag}[m] \cdot B[T]}{p[GeV/c]} \frac{I[A]}{I_{max}[A]}$

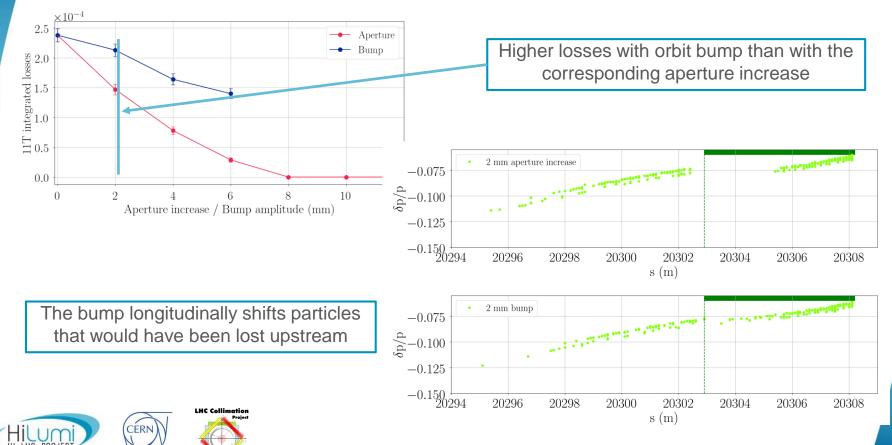
Local Orbit Bump: Correctors Budget

🔶 LHC.BOFSU:OFC_ENERGY 🔶 RPLA.12R7.RCBH11.R7B1:1_MEAS 🔶 RPLB.RR77.RCBCH7.R7B1:1_MEAS 🔶 RPLB.RR77.RCBCH9.R7B1:1_MEAS 🔶 RPMC.TZ76.RCBWH5.R7B1:1_MEAS


Magnet type	I[A]	$ heta$ [μ rad] $@$ 7 TeV	$ heta_{av}$ [μ rad]
MCBWH.5R7	-111.35	-17.8	≈62
MCBCH.7R7	0.5	0.6	≈132
MCBCH.9R7	-18.88	-22.7	≈109
MCBH.11R7	-8.88	-13.1	≈76



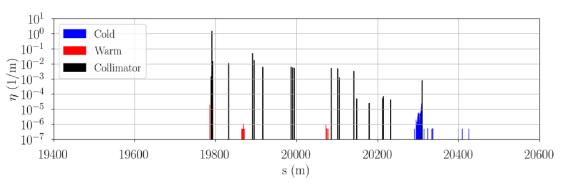
CERN

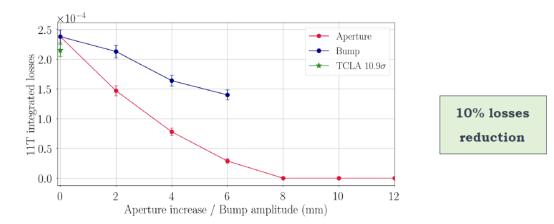

3 Magnets Local Bump – 4 mm Orbit Bump

3 Magnets Local Bump – 6 mm Orbit Bump

Aperture Increase vs Orbit Bump (2 mm)

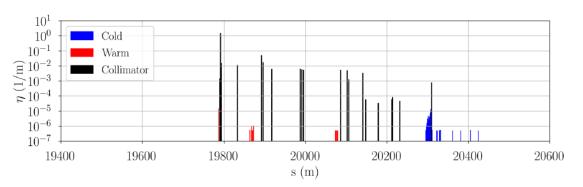
Aperture Increase vs Orbit Bump (4 mm)

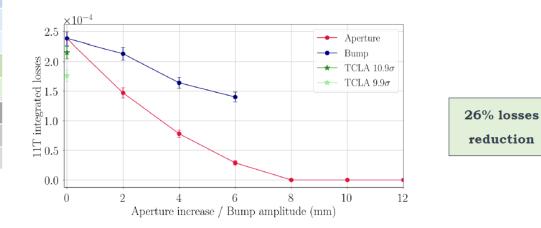

Tighter TCLA Settings – -1σ


	σ
Primary (TCP) IR7	6.7
Secondary (TCSG) IR7	9.1
Absorber (TCLA) IR7	10.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

LHC Collimation

CERN

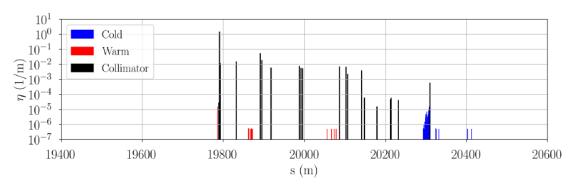

L-LHC PROJEC

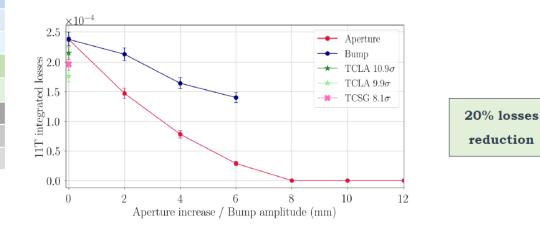


Tighter TCLA Settings – -2σ

	σ
Primary (TCP) IR7	6.7
Secondary (TCSG) IR7	9.1
Absorber (TCLA) IR7	9.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

16 Oct 2019, HLLHC Annual Meeting, FermiLab (US)

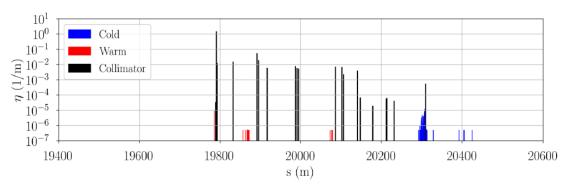

CÉRN

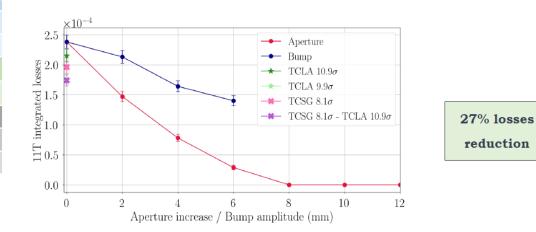

Tighter TCSG Settings – -1σ

	σ
Primary (TCP) IR7	6.7
Secondary (TCSG) IR7	8.1
Absorber (TCLA) IR7	11.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

CERN

LHC Collimation

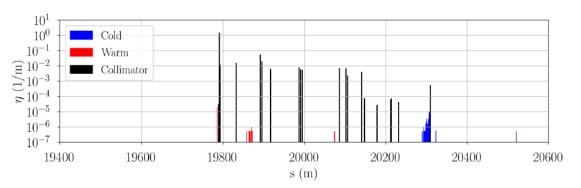


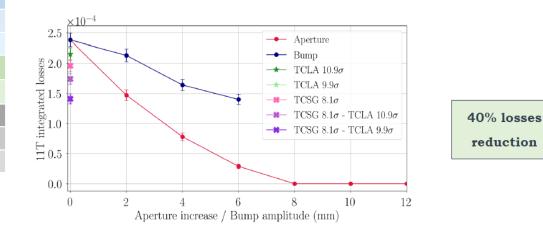

Tighter TCSG and TCLA Settings – -1σ

	σ
Primary (TCP) IR7	6.7
Secondary (TCSG) IR7	8.1
Absorber (TCLA) IR7	10.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

CERN

LHC Collimation

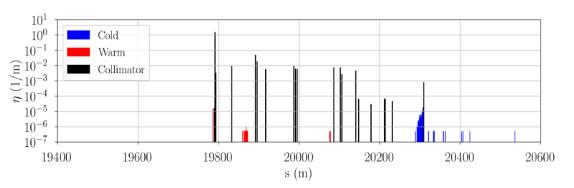


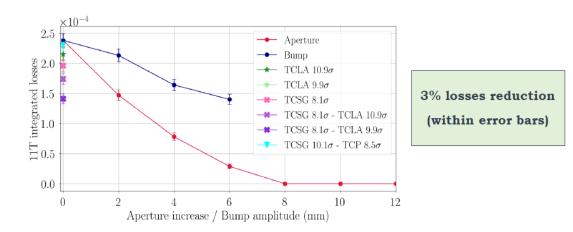

Tighter TCSG (-1 σ) and TCLA (-2 σ) Settings

	σ
Primary (TCP) IR7	6.7
Secondary (TCSG) IR7	8.1
Absorber (TCLA) IR7	9.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

CERN

LHC Collimation

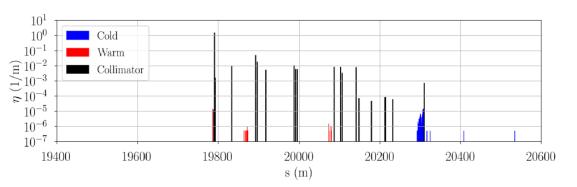


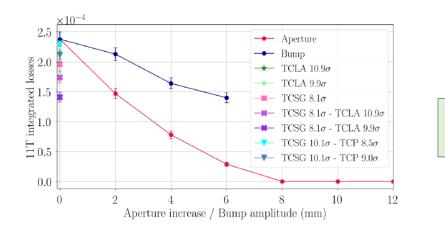


More Relaxed TCP/TCSG Settings – 1.6σ Retraction

	σ
Primary (TCP) IR7	8.5
Secondary (TCSG) IR7	10.1
Absorber (TCLA) IR7	11.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

16 Oct 2019, HLLHC Annual Meeting, FermiLab (US)

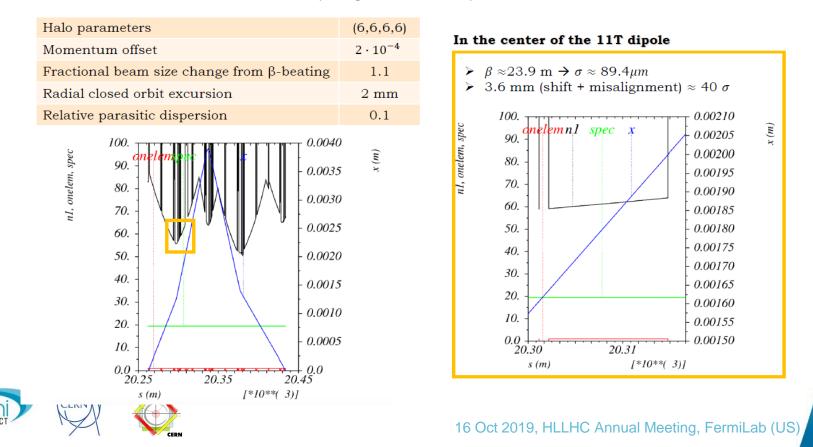

CERN

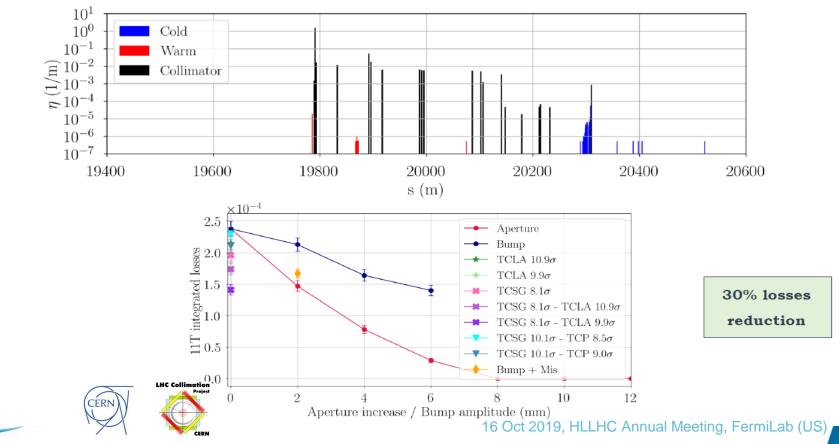

More Relaxed TCP/TCSG Settings – 1.1σ Retraction

	σ
Primary (TCP) IR7	9.0
Secondary (TCSG) IR7	10.1
Absorber (TCLA) IR7	11.9
Primary (TCP) IR3	17.7
Secondary (TCSG) IR3	21.3
Absorber (TCLA) IR3	23.7
Tertiary (TCT) IR1	10.4
Tertiary (TCT) IR5	10.4
Tertiary (TCT) IR2	35.4
Tertiary (TCT) IR8	17.7
Secondary (TCSP) IR6	10.1
Dump prot. (TCDQ) IR6	10.1
TCL 4 IR1/5	14.2
TCL 5 IR1/5	14.2
TCL 6 IR1/5	14.2

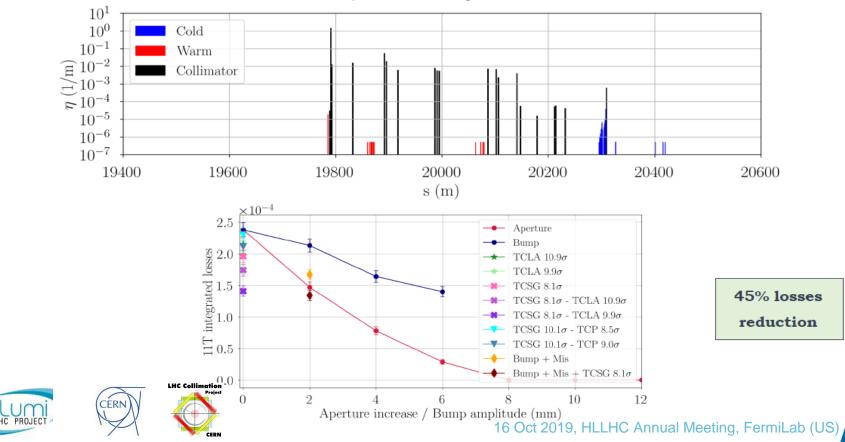
CERN

LHC Collimation

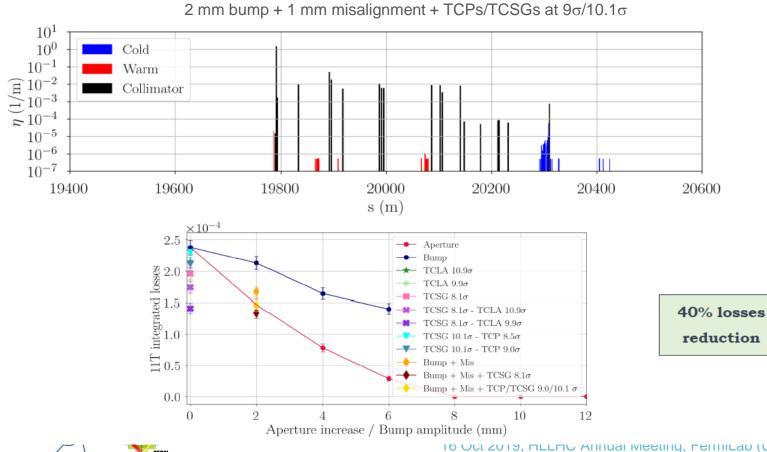



Aperture Check for 1st Option

MAD-X n1 method for computing the available aperture in units of RMS beam size


1st Possible Operational Scenario

2 mm bump + 1 mm misalignment of 11 T dipole towards the inside of the ring.



2nd Possible Operational Scenario

2 mm bump + 1 mm misalignment + TCSGs at 8.1σ

3rd Possible Operational Scenario

CERN

TO OULZUTH, FILLER ANNUAL MEELING, FEITHLAD (US)