

FLUKA simulations on residual gas production in IR7 collimators

9th HiLumi Annual Meeting 16/10/2019

A. Waets, A. Lechner, E. Skordis, J. Espadanal, V. Vlachoudis, A. Mereghetti (EN-STI, BE-ABP) On behalf of FLUKA and collimation teams

Motivation

- **Radiation damage** incurred by high energy protons and secondary shower particles on beam-intercepting devices like collimators during operation
- Estimate quantities using FLUKA that can be related to **changes in important physical properties** of collimator material:
 - Embrittlement/creep/swelling/corrosion
 - Fracture toughness reduction
 - Fatigue response
 - Thermal/electrical conductivity reduction
- Damage effects are dependent upon irradiation parameters including energy, intensity, material properties, ...
- Simulations used to estimate quantities for real accelerator environment which can serve as input for irradiation experiments
 - Displacements in crystal lattice quantified by DPA
 - Void formation/embrittlement caused by H, He residual gas production inside collimator jaw material, (expressed as atomic parts per million per DPA, appm/DPA)

Physics

- Inelastic nuclear interactions of GeV, TeV energy hadrons (primary and secondary) with target nuclei considered as a two-step process:
 - **Fast phase**: nucleon-nucleon collision, primary interacting with single nucleon in target nucleus, production secondary fast nucleons and pions producing a cascade in direction of the beam, further collisions (range cm, m)
 - (Intermediate phase: pre-compound)
 - Slow phase: de-excitation of target nuclei in an isotropic fashion (range < 100 µm for charged particles)
 - Evaporation of nucleons/ nucleon clusters, residual H, He nuclei
- Recoils produced by elastic and inelastic interactions, energy loss through:
 - Electronic stopping (inelastic) for high energies
 - Nuclear stopping (elastic, NIEL) for lower energies, all shower particles can contribute to DPA, at low energy dominated by heavy recoils
 - Atomic displacement cascade forms, function of target material, threshold energy, primary energy

Radiation damage

- The **displacement per atom** (DPA) quantity is a measure of the amount of radiation damage incurred during irradiation, can be used to **relate radiation damage to change of macroscopic material properties**.
- Cannot be measured experimentally, can only be measured indirectly (so far)
- Indirect through study of macroscopic effects (electric and thermal conductivities, radiation hardening, swelling...)
- Quantitative interpretation:
 - 3 dpa means each atom in the material has been displaced from its site within the structural lattice an average of 3 times
 - 0.01 DPA implies 1 out of 100 atoms has been displaced.

	FLUKA material name	Density [g/cm³]	atoms/cm ³	DPA treshold
CFC	AC150GPH	1.67	8.37E22	35 eV
MoGR	MG6403Fc	2.55	1.13E23	35 eV

Optics and collimator settings

- HL-LHC v1.2
- 2 σ retraction
- 7 TeV proton beam
- Beam 2 only
- No misalignments
- assuming all primary protons are lost on horizontal TCP.C
- ~ 1E17 protons lost during HL-LHC

BEAM 2

Impact distribution and scoring mesh

- Primary collimators: mesh size determined by impact distribution ("touches") on horizontal collimator (TCP.C)
 - \circ Distribution in X: 5 μm bins between 0 and 0.4 mm.

Scoring

- Primary collimators: mesh size determined by impact distribution ("touches") on horizontal collimator (TCP.C)
 - assuming all primary protons are lost on TCP.C (~ 1E17 protons lost during HL-LHC lifetime)
 - \circ X: 5 μm bins between 0 and 0.4 mm (in cleaning plane).
 - \circ $\,$ Y: 50 μm bins between -1 and 1 mm $\,$

Scoring

- Primary collimators: mesh size determined by impact distribution ("touches") on horizontal collimator (TCP.C)
 - assuming all primary protons are lost on TCP.C (~ 1E17 protons lost during HL-LHC lifetime)
 - \circ X: 5 μm bins between 0 and 0.4 mm (in cleaning plane).
 - \circ $\,$ Y: 50 μm bins between -1 and 1 mm $\,$
 - Z (longitudinally): 1 cm bins between -30 and 30 cm
- Secondary collimators: mesh size required to be larger due to shower development, jaws impacted by secondary particles
 - $\circ~$ X: 400 μm bins between 0 and 2 cm.
 - \circ $\,$ Y: 400 μm bins between -2.5 and 2.5 cm $\,$
 - Z: 1 cm bins between -50 and 50 cm
- Residual gas production:
 - \circ $~^{1}\text{H},\,^{2}\text{H},\,^{3}\text{H}$ scored separately, summed for analysis
 - \circ ³He, ⁴He scored separately, summed for analysis

Previous results

- DPA studies on primary and secondary collimators (CFC and MoGR)
- Beam 1 geometry and touches
- v1.2 optics

Previous results

- DPA studies on primary and secondary collimators (CFC and MoGR)
- Beam 1 geometry and touches
- v1.2 optics

Previous results

1E17 protons lost	Primary	Secondary
CFC	0.05 - 0.1	1 - 2 · 10 ⁻⁴
MoGR	0.3	4 - 5 · 10 ⁻⁴

- Assuming 1E17 protons all lost on horizontal TCP.C
 - ο 5 μm x 50 μm x 1cm mesh

DPA peak values	Left	Right
CFC	~ 0.085	~ 0.12
MoGR	~ 0.15	~ 0.18

- Assuming 1E17 protons all lost on horizontal TCP.C
 - ο 5 μm x 50 μm x 1cm mesh
 - All H, He species scored on most impacted jaw (right) only

appm peak values	4He	1H
CFC	~ 120	~ 25
MoGR	~ 140	~ 40

• Assuming 1E17 protons all lost on horizontal TCP.C

appm/DPA	Не	Н
CFC	1000 - 3000	400 - 1000
MoGR	1000 - 2000	400 - 1000

9th HiLumi Annual Meeting, 16/10/2019 Fermilab

Primary collimators: Run 2 results

- Present layout features CFC primary collimators
- Integrated intensity measurements estimate betatron induced proton losses amount to 7.1E15 for Run 2 in Beam 2

• Peak DPA values in CPC.C (CFC) at 0.008 (left jaw) and 0.006 (right jaw).

6.5 TeV collimation losses estimation. integrated intensity measurements and scaling factors. Vear 2015 2016 2017 2018 Estimated # 0.4 x 10¹⁵ 1.7 x 10¹⁵ of protons 1.4 x 1015 5.1 x 1015 lost Integrated Intensity 0.254 x 10²¹ 1.17 x 10²¹ 1.03 x 10²¹ 1.36E+21 (ps) Scaling factor 1.4 x 10⁻⁶ 1.2 x 10⁻⁶ 1.6 x 10⁻⁶ 3.8 x 10⁻⁶ (#p lost / ps) Estimated # of protons 0.5 x 1015 1.2 x 1015 1.1 x 10¹⁵ 4.3 x 1015 lost Integrated 0.250 x 10²¹ 1.20 x 10²¹ 1.07 x 10²¹ 1.36E+21 Intensity (ps) Scaling factor 2.0 x 10⁻⁶ 1.0 x 10⁻⁶ 1.0 x 10⁻⁶ 3.1 x 10⁻⁶ (#p lost / ps)

9th HiLumi Annual Meeting, 16/10/2019 Fermilab

Primary collimators: Run 2 results

- Present layout features CFC primary collimators
- Integrated intensity measurements estimate betatron induced proton losses amount to 7.1E15 for Run 2 in Beam 2

• Orbit jitter on order of 50 µm, applying shift will not change distribution

6.5 TeV collimation losses estimation. integrated intensity measurements and scaling factors. Vear 2015 2016 2017 2018 Estimated # 0.4 x 10¹⁵ 1.7 x 10¹⁵ of protons 1.4 x 1015 5.1 x 1015 lost Integrated Intensity 0.254 x 10²¹ 1.17 x 10²¹ 1.03 x 10²¹ 1.36E+21 (ps) Scaling factor 1.4 x 10⁻⁶ 1.2 x 10⁻⁶ 3.8 x 10⁻⁶ 1.6 x 10⁻⁶ (#p lost / ps) Estimated # of protons 0.5 x 1015 1.2 x 1015 1.1 x 10¹⁵ 4.3 x 101 lost Integrated 0.250 x 10²¹ 1.20 x 10²¹ 1.07 x 10²¹ 1.36E+21 Intensity (ps) Scaling factor 2.0 x 10⁻⁶ 1.0 x 10⁻⁶ 1.0 x 10⁻⁶ 3.1 x 10⁻⁶ (#p lost / ps)

9th HiLumi Annual Meeting, 16/10/2019 Fermilab

Secondary collimators

- CFC primary/secondary and MoGR (+coating) primary/secondary collimators combination simulated
 - 400 μm x 400 μm x 1cm mesh
 - Consistent with previous results
- Large statistical uncertainties for Mo coating scoring

Secondary collimators

- CFC primary/secondary and MoGR (+coating) primary/secondary collimators combination simulated
 - \circ 400 μm x 400 μm x 1cm mesh
 - Overall higher residual gas production in MoGR bulk jaw material compared to CFC

Secondary collimators

- CFC primary/secondary and MoGR (+coating) primary/secondary collimators combination simulated
 - \circ 400 μm x 400 μm x 1cm mesh
 - appm/DPA result significantly lower for MoGR due to higher overall DPA

BLIP test simulations

- FLUKA simulations performed to estimate BLIP test results
 - DPA and He production for CFC and MoGR capsules
 - Reference calculations of appm/DPA for H (on the same order as He) and 3 He (~ 20%)

Summary and outlook

- FLUKA simulations performed to assess DPA and gas production in IR7 primary and secondary collimators
 - B2, v1.2 optics, CFC and (Mo-coated) MoGR
 - Results cross-checked and consistent with previous DPA studies
 - appm/DPA reference calculations from BLIP test and simulations
- Outlook:
 - Improve scoring and statistics (coating)
 - Re-evaluate CFC primary / MoGR secondary configuration
 - Use results for/cross check experimental considerations and expected performance in accelerator

B2H HL-LHC	Primary CFC		Primary MoGR		Secondary CFC		Secondary MoGR	
v1.2	Н	He	Н	He	Н	He	Н	He
DPA (peak)	0.12		0.18		0.0001		0.00034	
appm	45	140	65	160	0.075	0.12	0.01	0.15
appm/DPA	400 - 1000	1000 -3000	400 - 1000	1000 - 2000	1200 - 3000	1000 - 2000	600 - 1500	500 - 1000

Backup slides

Backup slides

• appm/DPA in Mo coating on MoGR secondary collimators

H, He production quantity calculation

- H, He production expressed as *appm* or atomic parts per million
- Results in FLUKA normalized per cm³, appm is then expressed with respect to amount of atoms in 1 cm³ of jaw material
- Collimator jaw materials:
 - **CFC**, Fluka material AC150GPH, density $\rho = 1.67$ g/cm³
 - *M*(C) = 12.0107 g/mol

 $M(C) \cdot N_A \cdot \rho_{CFC} = 8.37E22 \text{ atoms / } cm^3$

- **MoGR**, Fluka (compound) material MG6403Fc, $\rho = 2.55 \text{ g/cm}^3$
 - *M*(Mo) = 95.95 g/mol, 1.84%
 - M(C) = 12.0107 g/mol, 98.09% $= (95.95 \cdot 0.0184 + 12.0107 \cdot 0.9809 + 47.867 \cdot 0.0007) \text{ g/mol} = 13.58 \text{ g/mol}$
 - *M*(Ti) = 47.867 g/mol, 0.07%

 $M(MOGR) \cdot N_A \cdot \rho_{MOGR} = 1.13E23 \text{ atoms / } \text{cm}^3$