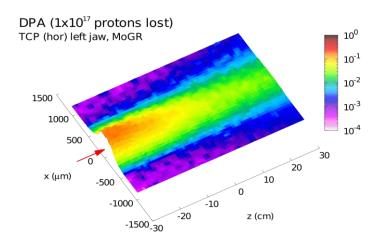


Results of GSI irradiation campaign

C. Accettura, <u>A. Bertarelli</u>, CERN

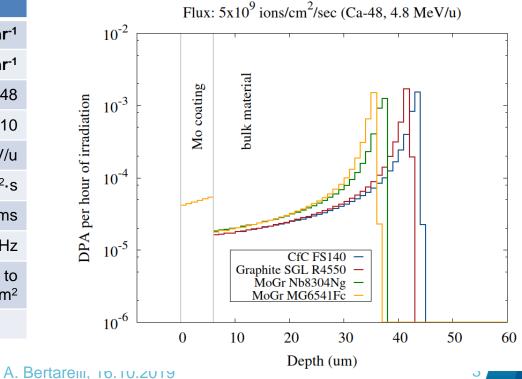
With contributions from: F. Carra, A. Lechner, O. Sacristan, K. Filippidou, P. Pastuszak, A. Weats, A. Peres, A. Baris, N. Biancacci, A. Kurtulus (CERN) M. Tomut, A. Prosvetov, P. Simon, P. Bolz (GSI)


9th HL-LHC Collaboration Meeting, Fermilab, Batavia, US – 16.10.2019

Introduction

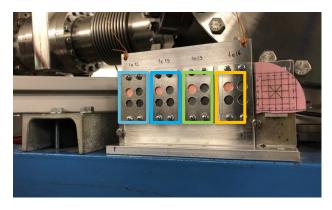
- How to simulate irradiated materials properties after ~20 years of HL-LHC operation?
 - **Assess** DPA and H/HE production by Particle Transport simulation code (**FLUKA**)
 - Perform tests in proton and ions irradiation facilities, as BLIP at BNL, US and UNILAC at GSI (DE) at equivalent levels of DPA and gas production

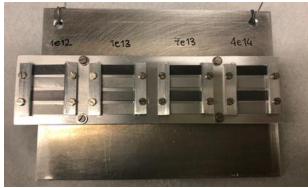
		DPA
Peak DPA in collimator materials at the end of HL-LHC lifetime (3000 fb ⁻¹) (1x10 ¹⁷ protons lost in collimation system)	Mo coating	1-3·10 ⁻³
	MoGr secondary	4-5·10 ⁻⁴
	MoGr primary	Up to 0.3


	High energy proton (BNL BLIP)	Low energy light ions (Ca/C) (GSI UNILAC)	
Penetration	Deep	Superficial	
Gas production	Yes	No 📀	
Activation	High	Zero-low	
DPA rate	Medium	High	

Irradiation Parameters

- Irradiation took place between the 27th March and the 1st April 2019 in the M3 line of the M-branch
- 113 h of beamtime granted
- Ca ions of 4.8 MeV/u to reach higher DPA
- Peak DPA in Mo coating equivalent to the one in HL-LHC after 3000 fb-1


Irradiation Parameters			Flux
DPA rate in Mo coating	~ 5⋅10 ⁻⁵ DPA⋅hr ⁻¹	10 ⁻²	
DPA rate in bulk	~ 2⋅10 ⁻³ DPA⋅hr ⁻¹		
Species	Ca48		ıting
Charge state	+10	OPA per hour of irradiation $^{-5}$ 01 $^{-6}$ 01 $^{-2}$	Mo coating
Energy	4.8 MeV/u	of irrs	Z
Flux	5÷8.5 ion·cm ⁻² ·s	10^{-4}	
Time pulse	1.8÷5.2 ms	per h	
Frequency	5 Hz	VdO 10 ⁻⁵	
Beam spot	$2.5 \times 2.5 \text{ cm}^2$ to 2.7 × 2.7 cm ²		
		10 ⁻⁶	
			0

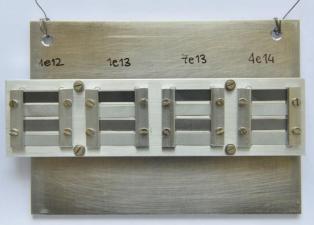


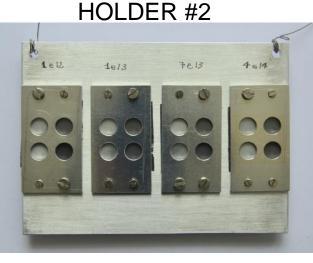
Experimental Setup

- Movable sample holder with 4 target stations
- Possible to irradiate 1 single station (4 materials) → reach 4 different fluences → relation between fluence (DPA) and properties degradation
- 2 samples geometries (optimized for Post Irradiation Examination)

Fluences [ions/cm ²]	Peak DPA coating	Peak DPA bulk	
1·10 ¹²	~2.8.10 ⁻⁶	~1.1.10-4	
1.1013	~2.8·10 ⁻⁵	~1.1·10 ⁻³	
7·10 ¹³	~1.9.10-4	~7.8·10 ⁻³	
4·10 ¹⁴	~1.1.10 ⁻³	~4.4·10 ²	
	Peak DPA collimator at 3000 fb ⁻¹		
Mo coating	1-3·10 ⁻³		
MoGr secondary	4-5·10 ⁻⁴		
MoGr primary	0.3 (in limited region)		

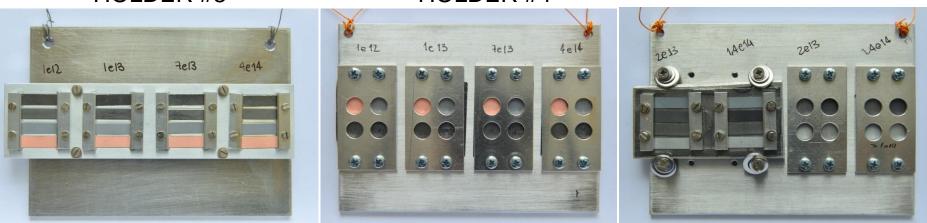
Irradiated Materials


- 8 material combinations tested
 - MoGr Nanoker Production grade (Nb8304Ng)
 - MoGr Brevetti Bizz HRMT-36 grade (MG6541Fc)
 - Graphite SGL R4550
 - CFC Tatsuno FS140
 - Nb8304Ng + Mo coating (DTI)
 - Nb8304Ng + Cu coating (DTI)
 - R4550 + Mo coating (DTI)
 - MG6541Fc + Mo coating (CERN)
- 5 Sample holders, including one hybrid.
- 80 samples in total
- All samples irradiated at 4 different fluences (figures in ions/cm²)


1e12	1e13	7e13	4e14

Visual inspection at the end of irradiation

HOLDER #1



No visual signs of mechanical damage both in coating and bulk

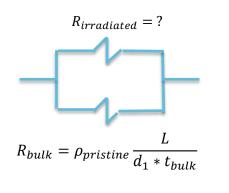
HOLDER #3

HOLDER #4

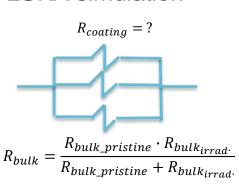
HOLDER #5

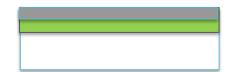
Activation after the test

- Just after the irradiation ~200 µSv/h at ~ 20cm
- Just after the irradiation (inside the box) ~31 µSv/h
- After 1 day (inside the box) ~8 µSv/h

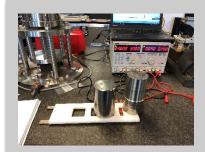


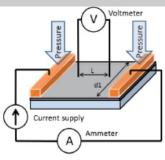
- Sample shipped at CERN on the 11th of June (dose rate < 0.1µSv/h)
- Measurements ongoing in controlled area since the 25th of June



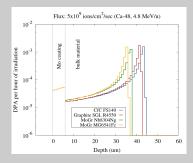

Electrical resistivity measurements

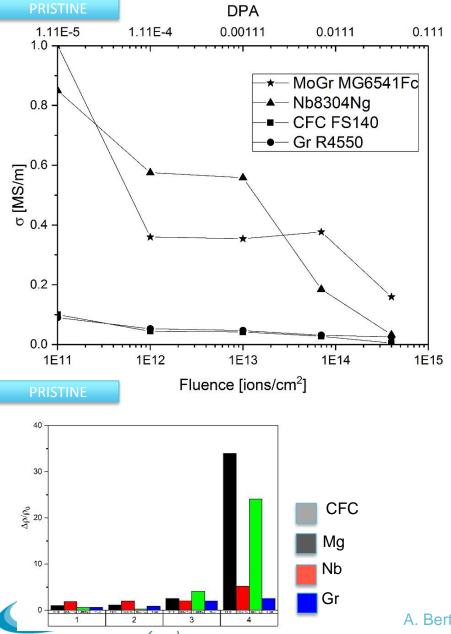
- Four probes method set-up
- Parallel resistance model (2 or 3-layers)
- Minimized sample thickness to see the contribution of the irradiated layer
- Radiation penetration depth from FLUKA simulation

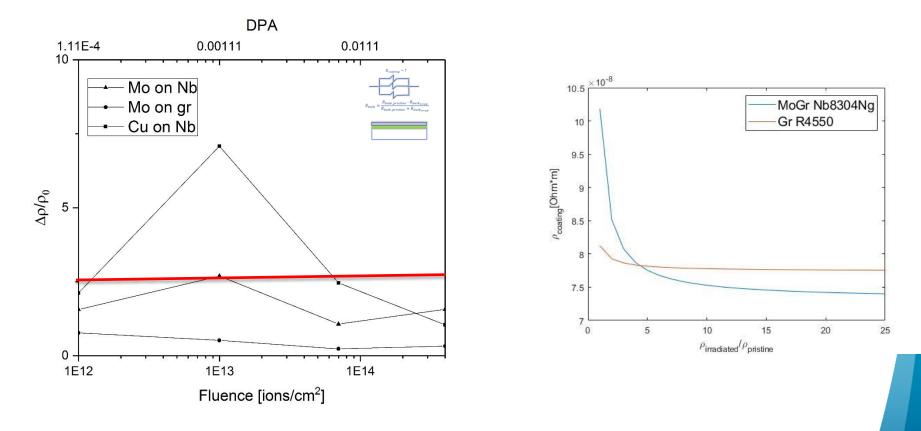




Four probe methods measurements @ Impedance meeting: https://indico.cern.ch/event/816840/

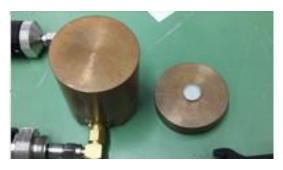


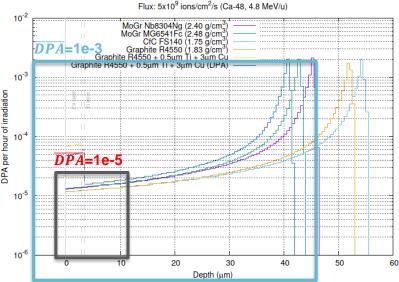



Electrical resistivity measurements-bulks

- All the materials increase their resistivity with fluence
- Graphite starts from a much more disordered state → reach saturation before MoGr (and CFC)
- Electrical conductivity in MoGr systematically higher than Gr in spite of stronger DPA effect
- Threshold effect in MoGr up to 1-7e13 ions/cm² → for a DPA 10 times higher then in secondary collimators the MoGr will have a conductivity ~0.6-0.7 MS/m
- MoGr with fibers more radiation resistant
- High scattering in CFC values

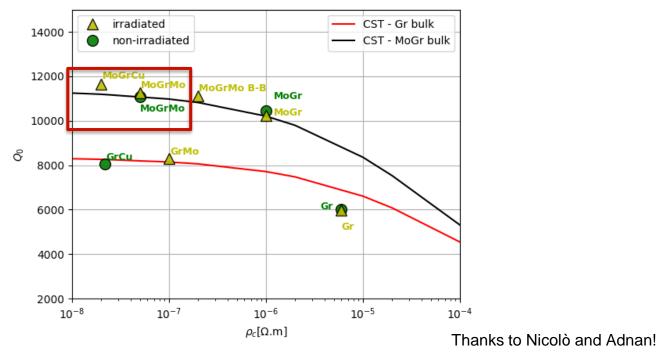
Electrical resistivity measurements-coatings


- No clear trend at increasing fluence observed
- Final values for Mo \sim 6-13 MS/m \rightarrow factor 2-3 worst then pristine values
- Reason not yet explained



Impedance measurement with H011 cavity

- Uncoated samples
 - No relevant changes in the measured Q factor
 - Coherent with DC: average DPA in the layer investigated with the cavity (skin depth ~ 4µm) << then the average DPA in the whole irradiated layer

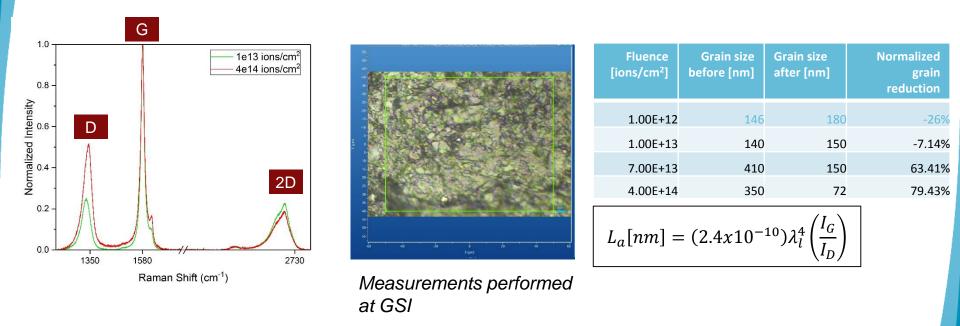

Fluence [ions/cm ²]	Average DPA over 50μm (DC)	Average DPA over 10µm (H011)
1e12	5.5E-05	5.5E-07
1e13	5.5E-04	5.5E-06
7e13	3.8E-03	3.8E-05
4e14	2.2E-02	2.2E-04

 \rightarrow No relevant $\Delta\sigma$ for DPA<2e-4 : coherent with DC

A. Bertarelli, 16.10.2019

Impedance measurement with H011 cavity

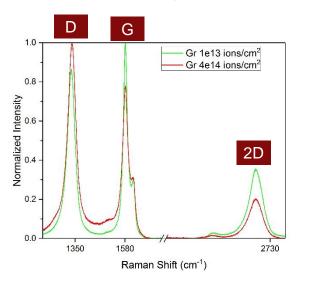
- Coated samples
 - Sensitivity of the cavity too low to detect small Δσ (within the error bar of the measurements) in the region of interest (flat curve)
 - Possible improvement with the smaller cavity

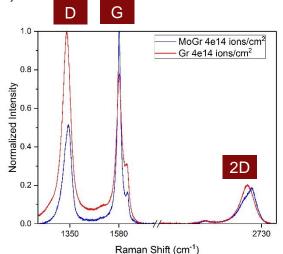


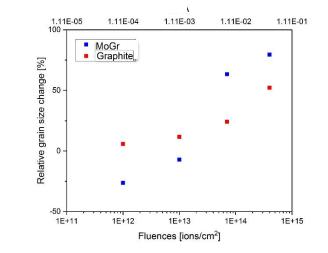
Q factor variation in function of material resistivity (coated and uncoated sample)

Raman Spectroscopy of MoGr

- Penetration of the red laser (λ~632.8nm) in graphite ~100 nm→ investigation of the irradiated region only
- Mapping over 20 points to increase the statistic



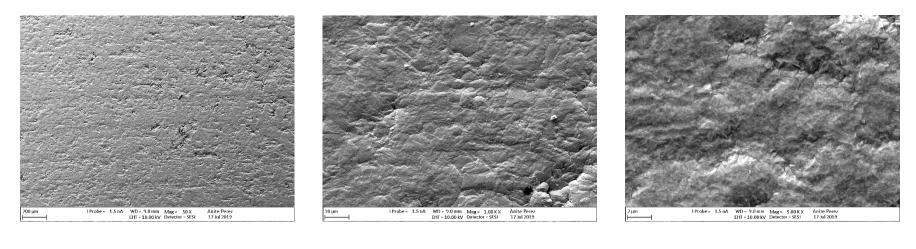

- Important change of grain at 7e13 (coherent with electrical resistivity threshold)
- Results to be cross-checked with the same device used before irradiation (different laser wavelength)

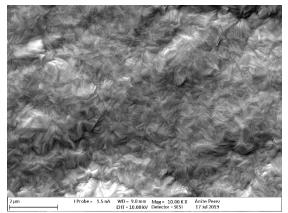


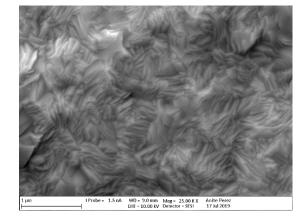
Raman Spectroscopy of Graphite

- Disorder increase with the fluences
- Grain size change less that MoGr, but final grain smaller (consistent with electrical conductivity measurements)

	Fluence [ions/cm²]	Grain size before [nm]	Grain size after [nm]	Normalized grain reduction
	1.00E+12	47	44	5.7%
	1.00E+13	49	43	11.62%
	7.00E+13	57	43	24.13%
ī	4.00E+14	60	28	52.25%


Measurements performed at GSI

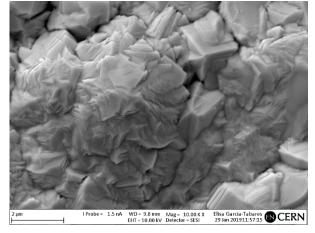



A. Bertarelli, 16.10.2019

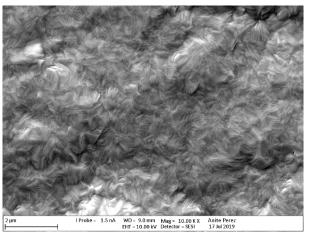
SEM Mo on MoGr

 Mo on MoGr irradiated at 4e14 ions/cm2 → Max DPA in the coating corresponding to the peak DPA in the coating after 3000 fb⁻¹

A. Peres, A. Baris (EN/MME)



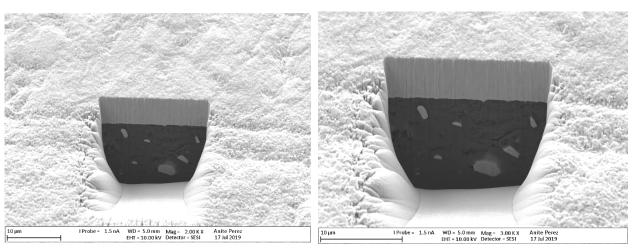
A. Bertarelli, 16.10.2019


SEM Mo on MoGr

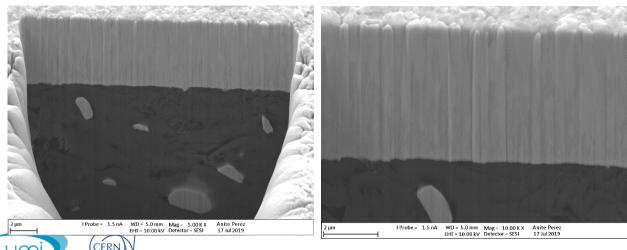
 Mo on MoGr irradiated at 4e14 ions/cm2 → Max DPA in the coating corresponding to the peak DPA in the coating after 3000 fb⁻¹

Before irradiation

After irradiation

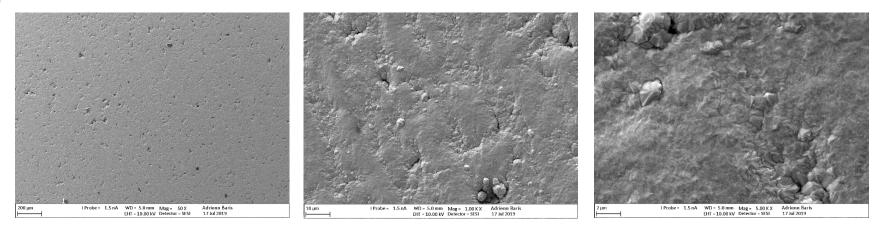


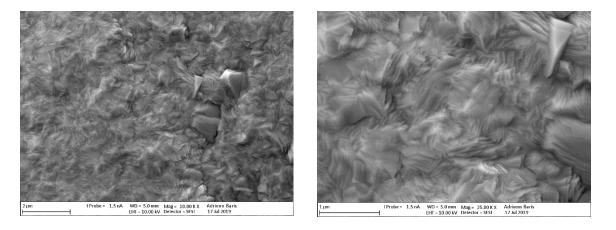
- We are comparing different samples but same bulk, surface preparation and coating process
- Irradiated sample present more discontinuous microstructure: possible indication of grain size reduction → to be checked with XRD
- Discontinuities could explain the reduction in electrical conductivity



FIB Mo on MoGr

 Mo on MoGr irradiated at 4e14 ions/cm2 → Max DPA in the coating corresponding to the peak DPA in the coating after 3000 fb⁻¹

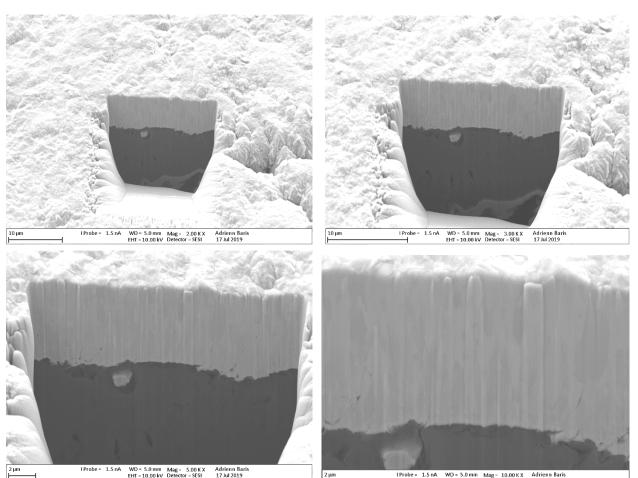

- The coating-bulk interface is continuous, no evidence of coating detachment
- No crack in the coating



A. Bertarelli, 16.10.2019

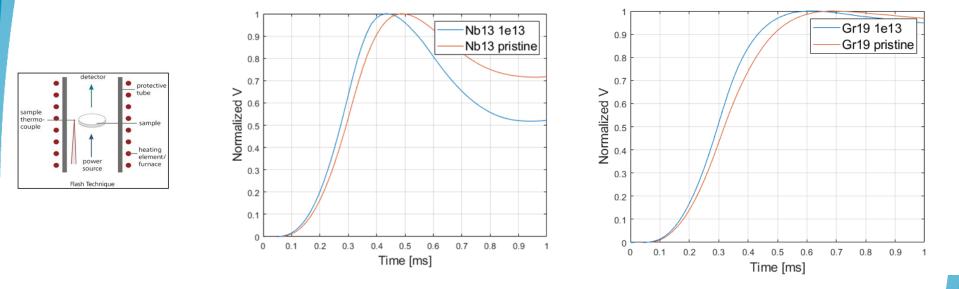
SEM Mo on Graphite

 Mo on Gr irradiated at 4e14 ions/cm2 → Max DPA in the coating corresponding to the peak DPA in the coating after 3000 fb⁻¹



FIB Mo on Gr

Mo on Gr irradiated at 4e14 ions/cm2 \rightarrow Max DPA in the coating corresponding to the peak DPA in the coating after 3000 fb⁻¹



WD = 5.0 mm Mag = 10.00 K X Adrienn Baris EHT = 10.00 kV Detector = SESI 17 Jul 2019 Probe = 1.5 nA

- The coating-bulk interface is continuous, no evidence of coating detachment
- No crack in the coating
- Mo diffusion in the bulk thought the porosities (probably before irradiation)

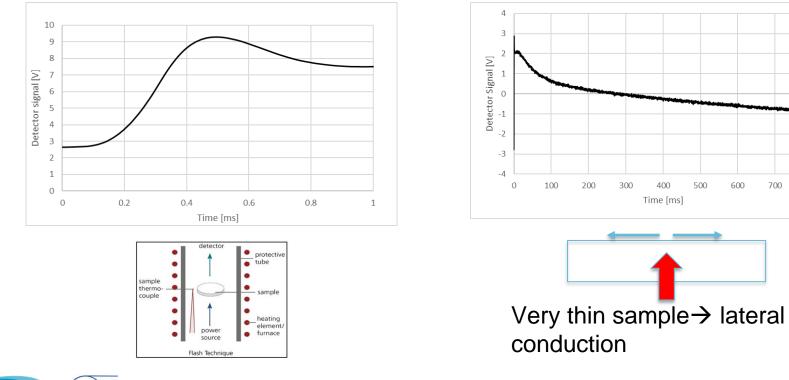
Thermal diffusivity

- 2-layers model+ reverse engineering
- Short and long measurement to study heating up and cooling down (along plane and through plane conductivity studies)

 The through-plane conductivity seems to be higher after irradiation (faster) → analysis ongoing to interpret this puzzling result

Conclusions

- 80 samples of different materials/coatings and size irradiated at GSI UNILAC with Ca ions
- No visible sign of radiation-induced mechanical damage on both coatings and bulk materials
- Electrical conductivity degradation in the bulk in line with expectations (higher for more ordered materials).
- Threshold effect at ~ 7e17 ions/cm² (8e-3 peak DPA) in bulk MoGr highlighted by electrical conductivity measurements and seeming confirmed by Raman spectrography
- Coating degradation seems to be independent of fluence (very low threshold): factor of 2 with respect to the pristine value for both Mo and Cu
- SEM and FIB investigation revealed a possible change in the coating microstructure; adherence seems good also at the maximum fluences (corresponding to DPA expected in HL-LHC)
- XRD measurement completed → data being analyzed to understand microstructural changes



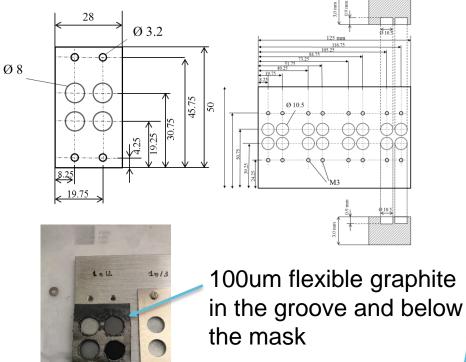
Thank you for the attention and thanks Carlotta for providing the slides

Thermal diffusivity

- 2-layers model+ reverse engineering
- Short and long measurement to study heating up and cooling down (along plane and through plane conductivity studies)

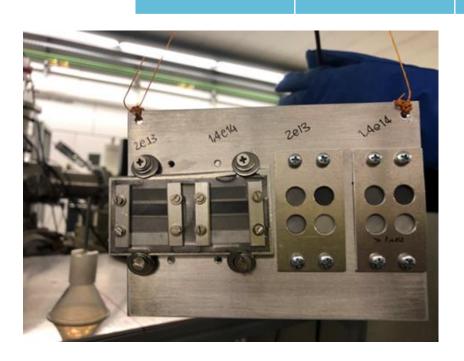
800

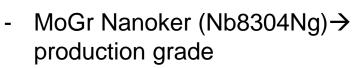

Simulation of gas production


- The ion irradiation is characterized by
 - High dose rate → conservative with respect p+
 - No gas production \rightarrow important to investigate!
- Simulate gas production with H/He implantation
 - Where? → MIAMI (University of Huddersfield): 10keV, ~100nm
 - Possible to regulate the beam to have certain appm/DPA
 - Online TEM monitoring
 - Thermophysical characterization would not be possible in such a small layer, but a threshold for blistering can be established
 - How much?
 - FLUKA simulation (appm/DPA production)
 - Measurement of diffusion coefficient with TDS
 - With the ion irradiated samples (at different DPA) we could investigate the influence of the DPA on the gas effects

Holder description-geometry

- Disk: 10x1mm
- Geometry chosen for microscopy (FIB, XRD, Raman), indentation and adhesion



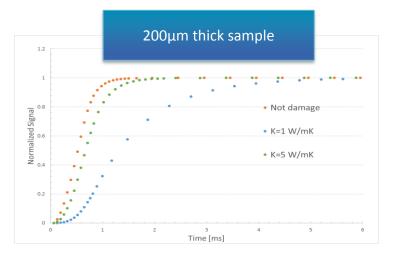

Holder description-materials

 Hybrid holder (beamtime left) to investigate intermediate fluences

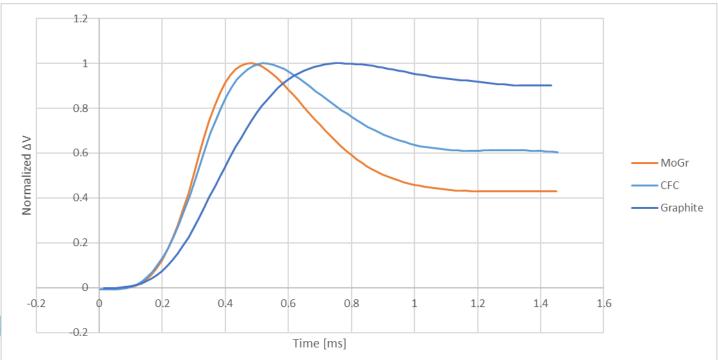
1.4e14

2e13

1.4e14

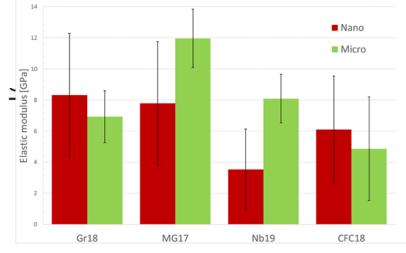

- Graphite SGL R4550

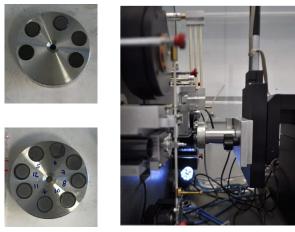
2e13


- Nb8304Ng+ Mo coating DTI
- R4550+ Mo coating CERN (no more spares of DTI coating)

Thermal diffusivity

- Simulation indicates that the influence of the damaged layer should be seen with thin sample
- LFA of thin sample required reverse engineering to find the values of conductivity



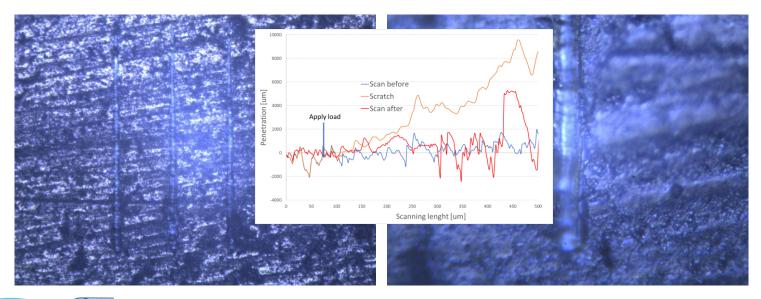


Indentation-Bulk

- Each sample indented in 25 points with penetration-controlled (nano) and load controlled (micro)
- Microindentation allows a reduction of the standard deviation

 useful to observe radiation-induced hardening and increase of the elastic modulus

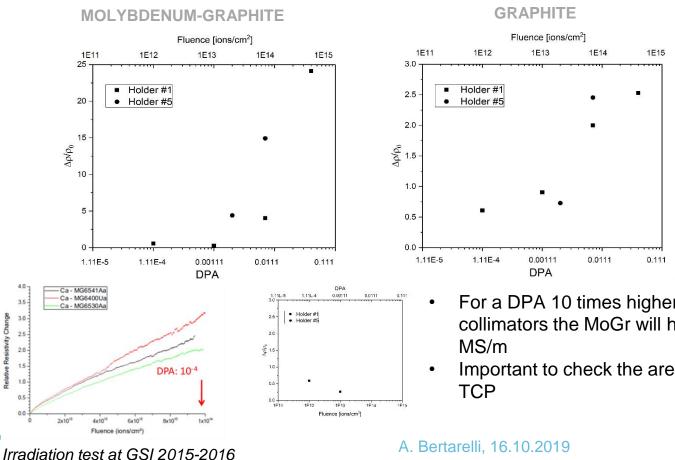
Nano-Micro indentation set-up (GSI)


Material	Average E [GPa]	Standard deviation [GPa]	IET [GPa]
Graphite R4550	6.9	1.7	11
MG6541Fc	12	1.9	5
Nb8304Ng	8.1	1.6	4
CFC FS 140	4.9	3.3	3

 Differences with respect other method (e.g. IET) related to factors such as anisotropy and non-linearity.

Coating adhesion-Scratch test

- An increasing load is applied by the nanoindenter, possible coating failure can be detected with:
 - Optical microscopy images → difficult for material roughness and coating/bulk colours
 - Abrupt variation in the load curve → irregularities due to roughness already present
 - Acoustic emission → not available in the used set-up



Electrical resistivity measurements

- Bulk resistivity changes in function of fluences (DPA)
- Graphite starts from a much more disordered state → reach saturation before MoGr
- Electrical conductivity in MoGr systematically higher than Gr in spite of stronger DPA effect
- Values coherent with previous test

ð

HOLDER #1

HOLDER #5

- For a DPA 10 times higher then in secondary collimators the MoGr will have a conductivity ~0.6-0.7
- Important to check the area affected by 0.3 DPA in

A. Bertarelli, 16.10.2019