

Fast turn around Quench Heater tests

Vittorio Marinozzi

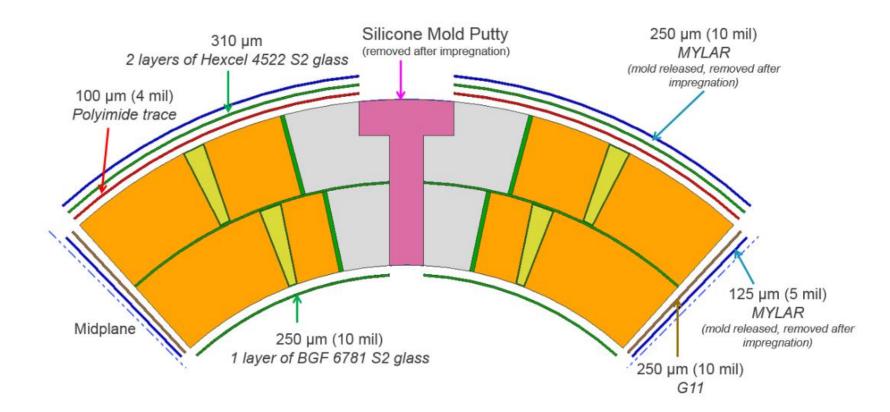
US

On behalf of G. Ambrosio, M. Baldini, L. Elementi, S. Krave, A. Nobrega,, M. Parker

Outline

- Motivation
- MQXF electrical design
- First experiment: effect of thermal cycle on heater-coil insulation
- Second experiment: effect of heater firing on heater-coil insulation
- Third experiment: effect of quench on heater-coil insulation
 - Work in progress
- Conclusions

Motivation


 Autopsy of coils QXFP1 and QXFP5 showed evidence of thickness reduction of the heater-coil polyimide insulation after testing

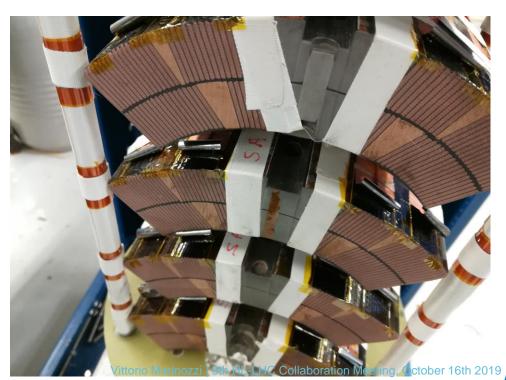
We want to reproduce the phenomenon, in order to identify the cause

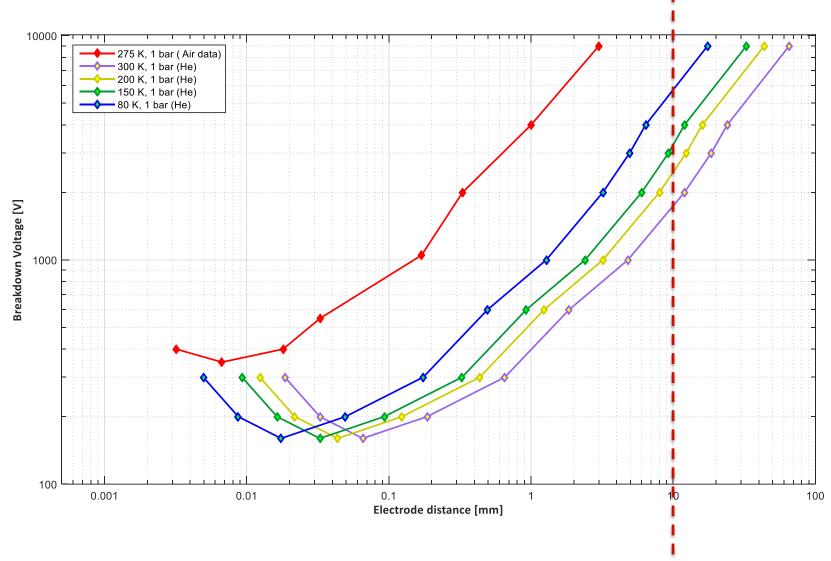
Electrical design

First experiment:

effect of thermal cycle on heater-coil insulation

First experiment: effect of thermal cycle on heater-coil insulation (1)


- For this experiment, 5 samples of coil QXF108 have been prepared
 - QXF108 is a virgin MQXFA coil, not accepted for use in magnet due to a short coil-endshoe
- Samples consist of ~15 cm long sections of the coil
- Sample preparation
 - Quench heater peeled back from both edges of coil section
 - All turns wired together
 - Wires soldered to coil and each bus (4) for hipot test


First experiment: effect of thermal cycle on heater-coil insulation (2)

- Test procedure:
 - Prepare MQXF coil samples
 - Verify electrical integrity of the samples before testing
 - 6 kV Coil-Heater Hipot test
 - Cool down in liquid helium the samples
 - Perform Coil-Heater Hipot tests at different temperatures
 - **4 kV** @ 4.2 K
 - **3.5 kV** @ 75 K
 - **2 kV** @ 150 K
 - **1 kV** @ 300 K

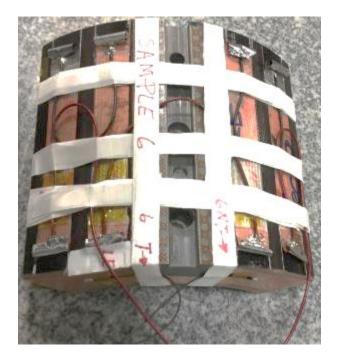
Helium breakdown voltage

US HL-LHC AUP

1 cm = minimum heater-end distance

First experiment conclusion

- I0 of 20 heaters passed electrical checkouts before tests
 - Some heaters damaged during peeling off from edges
- 10 of 20 heaters passed all electrical tests from 4.2 K to room temperature
 - Visual inspection confirms that no sign of degradation are visible
- Conclusion: in this experiment, thermal cycle had no effect on heater-coil insulation



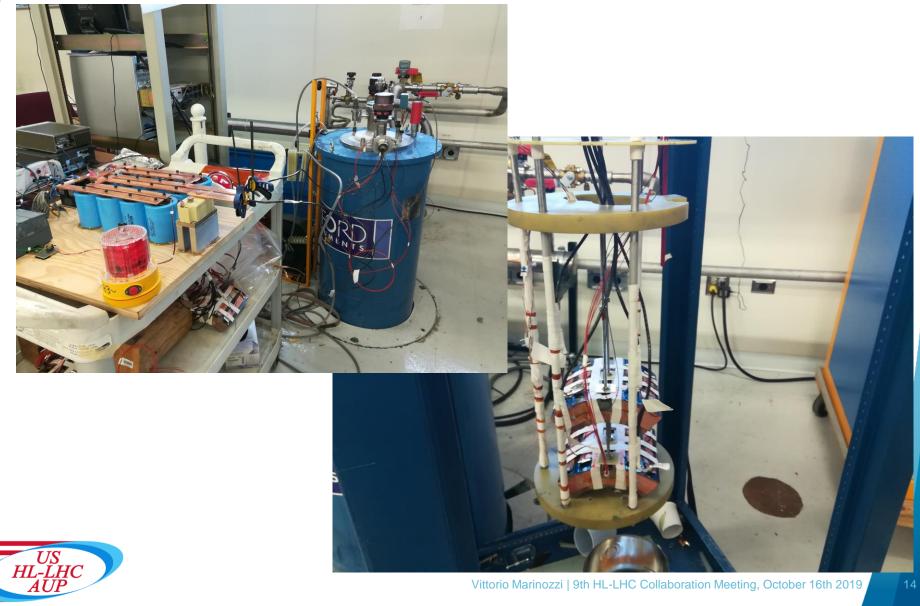
Second experiment: effect of heater firing on heater-coil insulation

Second experiment: effect of heater firing on heater-coil insulation (1)

- Goal is to fire the heaters on similar samples, in order to look at the effect on the heater-coil insulation
- Two coil QXF108 samples have been preferred as before, but with 4 heaters strips put in series

Capacitor bank to fire heaters

- In order to fire the heaters, a dedicated capacitor bank has been built:
 - Twelve 75 V, 27 mF capacitors in parallel
 - Able to reproduce the peak power density which occurs in long coils (236 W/cm^2), with the correct discharge time (32 ms)
- Capacitor bank has to be discharged on 4 heater strips put in series



Second experiment: effect of heater firing on heater-coil insulation (2)

- 2 samples (sample 3 and sample 6) have been cooled down, after all heater traces passed 6 kV Hipot at room temperature
- At 4.2 K, heaters have been fired 20 times on sample 3, only 6 times on other sample 6
 - It showed high resistance (~10 MOhm) after 6th firing, making impossible to continue the experiment
- Performed heater-coil-Hipot to:
 - 4 kV @ 4.2 K (before and after firing)
 - 3.5 kV @ 75 K
 - 2 kV @ 150 K
 - 1 kV @ 300 K

Second experiment results (1)

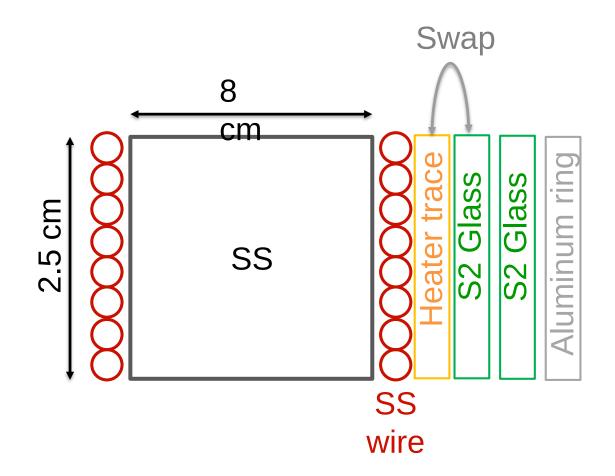
- Both samples passed 4 kV at 4.2 K
- At 75 K:
 - Sample 3 failed at 2 kV, compatible with a path of ~ 3 mm
 - Sample 6 failed at 3 KV, compatible with a path of ~ 5 mm
- At 150 K
 - Sample 3 failed at 1.67 kV, compatible with a path of ~ 4 mm
 - Sample 6 recovered, and passed 2.5 kV test

Second experiment results (2)

- After testing, heater traces have been hipotted up to 4 kV individually, to check the limiting ones
 - Test was limited by the ends of the traces, where sparkles were visible where the strips had been cut
- After completely peeling off the heaters, no sign of bubbles can be found on both samples

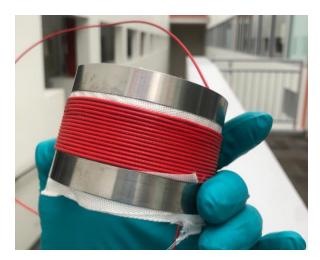
 Conclusion: In this experiment, heater firing seems not to degrade electrical insulation

Third experiment: effect of quench on heater-coil insulation (Work in progress)



Third experiment: effect of quench on heater-coil insulation

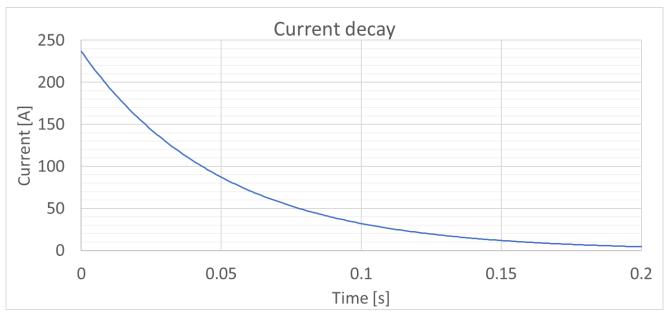
- Fast turn around experiments with coil/magnet quenches are very difficult to perform
 - Lots of time and resources needed
- We are building Ni-Cr (stainless-steel-like) coils to "simulate" quench
 - Coils are built using same procedures as MQXF coils
 - Reaction, impregnation, same materials
 - During test, then they are heated up from 4 K to 200 K in the same time as MQXF magnet during a quench by a current discharge
 - We will allow impregnation voids using different techniques, to create areas that will be filled by helium during testing

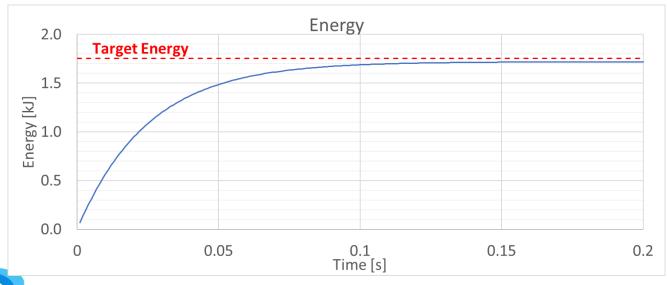

Coil design

Pictures

Coil parameters

Wire diameter	1.3 mm
Insulation material	S2 glass
Insulation thickness	0.15 mm
Wire length	3 m
Number of turns	15
Inductance	37.5 μH
Conductor Weight	34 g
Energy from 2 K to 200 K	1.75 kJ
Warm Resistance	1.6 Ω
Resistance @ 4.2 K	1.1 Ω




Test plan

- Cool down the coils at 4.2 K
- Discharge CLIQ (40 mF, 300 V, 1.8 kJ) on one coil several times
 - This will cause a temperature rise to 200 K in ~ 100 ms
 - Tau ~ 50 ms
 - No current oscillations are expected due to really low inductance (130 Hz oscillation)
- Perform electrical checkouts to verify integrity of the insulation, using MQXF electrical QC criteria
- Perform an autopsy of the coils to look for bubbles in the insulation
- Target of first experiment is reproduce the bubbles
 - If successful, we will make the swap and repeat the experiment to see if this solves the bubbles issue

Plots

US HL-LHC AUP

7

Conclusions

- Some fast turn-around experiments have been performed to try to identify and reproduce the mechanism of thickness reduction of the MQXF heater-coil polyimide insulation
- First experiment on QXF108 samples showed that a thermal cycle cannot reproduce the issue
- Second experiment on QXF108 samples showed that firing the heaters cannot reproduce the issue
- A third experiment is ongoing, aiming at reproducing the effect of quench on the insulation
 - A small Ni-Cr coil will be heat up from 4 K to 200 K in 100 ms by a CLIQ discharge, in order to simulate a quench.
 - Effect of the test on the insulation will be verified by high voltage testing, and by visual inspection and coil autopsy
 - If reproduction of thickness reduction of the polyimide will be successful, we will repeat the experiment performing the swap, to check if it can solve the issue

