

Next-Generation Tracking System for Future Hadron Colliders

V. Sola

Università di Torino and INFN

THE 28TH INTERNATIONAL WORKSHOP ON VERTEX DETECTORS - LAFODIA SEA RESORT, LOPUD ISLAND, CROATIA

OUTLINE

Tracking system for future high-intensity hadron colliders

Tracking development

Timing development

TRACKING AT FUTURE HADRON COLLIDER

FCC-hh reference detector y[m] 10 ___ η=0.5 n = 1.0n=1.5 9 Barrel Muon System $\eta = 2.0$ Outer Endcap Muon System Main Solenoid Radiation Shield $\eta = 2.5$ 4 HCAL Barrel (HB) ICAL Extended (HEB) Inner Endcap Muon System Barrel Forward Solenoid 3 n=3.0 ard (HF) **EMCAL Barrel (EMB)** Forward Muon System ICAL Endcap (HEC) $\eta = 3.5$ n=4.0Central Tracke Forward Tracker 26^{z[m]} 12 13 14 20 25 3 5 8 9 10 11 15 16 17 18 19 21 22 23 24 4 6

Next generation high-energy and high-intensity hadronic collider \rightarrow FCC-hh

Cavern length: 66 m Detector: 50 m long 20 m diameter

[http://cds.cern.ch/record/2651300]

TRACKING AT FUTURE HADRON COLLIDER

Next generation high-energy and high-intensity hadronic collider \rightarrow FCC-hh

FCC-hh reference detector

RADIATION BUDGET - TRACKER VOLUME

7

R&D PROPOSAL

Tracking

- ⇒ First layers with fluence above 10¹⁷ n_{eq}/cm², up to 5.10¹⁷ n_{eq}/cm²
- Can we do sensors that tolerate that fluence?

Go thin

Timing development

☞ 5 ps are the target resolution

 → more than one timing layer
 ☞ What is maximum fluence for good timing?

So up to $5 \cdot 10^{16} n_{eq}/cm^2$

R&D PROPOSAL

Tracking

- ⇒ First layers with fluence above 10¹⁷ n_{eq}/cm², up to 5.10¹⁷ n_{eq}/cm²
- Can we do sensors that tolerate that fluence?

S Go thin

Timing development

☞ 5 ps are the target resolution

 → more than one timing layer
 ☞ What is maximum fluence for good timing?

So up to $5 \cdot 10^{16} n_{eq}/cm^2$

SOME OPTIMISM – SATURATION

At fluences above $5 \cdot 10^{15} n_{eq}/cm^2 \rightarrow$ saturation of radiation effects observed

[G. Kramberger et al., doi:10.1088/1748-0221/8/08/P08004]

Leakage current saturation I = $\alpha V \Phi \rightarrow \alpha$ from linear to logarithmic [G. Kramberger et al., doi:10.1016/j.nima.2018.08.034]

Trapping probability saturation $1/\tau_{eff} = \beta \Phi \rightarrow \beta$ from linear to logarithmic [M. Ferrero et al., 34th RD50 Workshop, Lancaster, UK]

Acceptor creation saturation $N_{A,eff} = g_c \Phi \rightarrow g_c$ from linear to logarithmic

WHY SATURATION?

Possible explanation:

Silicon lattice parameter = $5.43 \cdot 10^{-8}$ cm At a fluence of $5 \cdot 10^{15}$ particles/cm² every lattice cell has been crossed by 12 particles on average

Silicon radius (minimum distance between silicon atoms) = $1.18 \cdot 10^{-8}$ cm

GO THIN

12

HOW THIN?

To efficiently record a hit, electronics require al least 1 fC

MPV charge from a MIP crossing silicon ~ 75 e-h/ μ m 50 μ m thick \rightarrow 0.5 fC 20 μ m thick \rightarrow 0.2 fC

SENSOR CHOICE

How to get internal multiplication of 5-10? Impact ionisation occurs when $E_{field} > E_c = 25 V/\mu m$ Stable gain if E_{field} is controlled by applied V_{bias}

SENSOR CHOICE

IRRADIATED n-in-p

High resistivity n-in-p

The field is almost constant vs sensor depth \rightarrow it reaches E_c at same V_{bias} everywhere in the sensor

Φ = 10¹⁶ n_{eq}/cm²

Low resistivity n-in-p

Higher initial N_{eff} \rightarrow higher V_{FD} values

Acceptor-like defect creation - Low resistivity

IRRADIATED LGAD

Collected charge from irradiated LGAD - WF2

With irradiation the multiplication region migrates from gain layer to the bulk region Avalanche is prevented by charge trapping

\rightarrow Thinner sensors provide higher gain after irradiation

Predictions from Weightfield2 using van Overstraeten – de Man model 20 and 30 µm sensors, providing 5 fC of charge at 120 V when new [personalpages.to.infnf.it/~cartigli/Weightfield2/Mail.html]

JUNCTION TERMINATION EXTENSION

Gain termination - JTE At present \rightarrow 30 μ m no-gain width

R&D on trench terminations and AC coupled LGAD \rightarrow Radiation tolerance needs to be investigated

RADIATION TOLERANCE AND TIMING

To reach \sim 30 ps resolution per hit, electronics require al least **5 fC** Present limit for 30 ps time resolution is $3 \cdot 10^{15} n_{eg}/cm^2$

Possible?

Goal: retard multiplication transition from the gain layer to the bulk region

Acceptor removal (see M. Moll's talk)

 $N_{A,eff} = N_{A,0} \cdot e^{c\Phi}$

Adding carbon protects boron from removal Different carbon concentrations have different impact on boron protection

 \rightarrow Gain layer engineering to extend precise timing to $5 \cdot 10^{16} n_{eg}/cm^2$

RADIATION TOLERANCE AND GAIN LAYER

To reach ~ 30 ps resolution per hit, electronics require al least **5 fC** Present limit for 30 ps time resolution is $3 \cdot 10^{15} n_{eq}/cm^2$

Goal: retard multiplication shift from the gain layer to the bulk region

Acceptor removal (see M. Moll's talk) $N_{A,eff} = N_{A,0} \cdot e^{c\Phi}$

Defect engineering and different gain layer implantation strategies will be investigated

$$c \cdot N_{A,0} = 60 \text{ cm}^{-1} \rightarrow < 10 \text{ cm}^{-1}$$

for $N_{A,0} = 10^{17} \text{ atoms/cm}^3$

SUMMARY

Next-generation hadron colliders

R&D on next-generation silicon detectors

> Possibility to track particles up to $5 \cdot 10^{17} n_{eq}/cm^2$

- Saturation of radiation damage effects can be exploited to reach the target
- $^{\triangleright}$ 20-30 μm thick LGAD with gain 5-10 are suitable detectors
- Suitable environment to study radiation damage effects at high fluences
- > Possibility to have precise timing up to $5 \cdot 10^{16} n_{eq}/cm^2$
 - R&D on gain layer implant is mandatory

We kindly acknowledge the following funding agencies, collaborations:

- Horizon 2020, grant UFSD669529
- Horizon 2020, grant INFRAIA
- AIDA-2020, grant agreement no. 654168
- INFN, Gruppo V
- Ministero degli Affari Esteri, Italy, MAE, "Progetti di Grande Rilevanza Scientifica"
- ▷ MIUR, Dipartimenti di Eccellenza (ex L. 232/2016, art. 1, cc. 314, 337)
- U.S. Department of Energy, grant DE-SC0010107
- ⊳ RD50, CERN

BACKUP

FCC-hh PARAMETER TABLE

Table 7.1: Key numbers relating the detector challenges at the different accelerators.

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14	14	27	100
Circumference	km	26.7	26.7	26.7	97.8
Peak \mathcal{L} , nominal (ultimate)	$10^{34} { m cm}^{-2} { m s}^{-1}$	1 (2)	5 (7.5)	16	30
Bunch spacing	ns	25	25	25	25
Number of bunches		2808	2760	2808	10600
Goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
σ_{inel} [331]	mb	80	80	86	103
σ_{tot} [331]	mb	108	108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak av. PU events/BC, nominal (ultimate)		25 (50)	130 (200)	435	950
Rms luminous region σ_z	mm	45	57	57	49
Line PU density	mm^{-1}	0.2	1.0	3.2	8.1
Time PU density	ps ⁻¹	0.1	0.29	0.97	2.43
$dN_{ch}/d\eta _{\eta=0}$ [331]		6.0	6.0	7.2	10.2
Charged tracks per collision N_{ch} [331]		70	70	85	122
Rate of charged tracks	GHz	59	297	1234	3942
$< p_T >$ [331]	GeV/c	0.56	0.56	0.6	0.7
Bending radius for $< p_T >$ at B=4 T	cm	47	47	49	59
Total number of pp collisions	10^{16}	2.6	26	91	324
Charged part. flux at 2.5 cm, est.(FLUKA)	$ m GHzcm^{-2}$	0.1	0.7	2.7	8.4 (10)
1 MeV-neq fluence at 2.5 cm, est.(FLUKA)	$10^{16}{ m cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ionising dose at 2.5 cm, est.(FLUKA)	MGy	1.3	13	54	270 (300)
$dE/d\eta _{\eta=5}$ [331]	GeV	316	316	427	765
$dP/d\eta _{\eta=5}$	kW	0.04	0.2	1.0	4.0

To define the specifications and requirements for the detector

To relate the challenges for the detector at the between LHC / HL-LHC / HE-LHC and FCC-hh

FCC-hh CHARGED PARTICLES

Dose of 300MGy in the first tracker layers. <10kGy in HCAL barrel and extended barrel.

Maximum of 10kHz/cm² of charged particle rate in the Barrel and Forward Muon System, similar to HL-LHC Muon Systems.

In the tracker volume the charged particle rate is just a function of distance from the beampipe with rather small dependence on z.

Underlying events in high energy pp collisions

Scaling of the central charged multiplicity for the SIBYLL, QGSJET, and EPOS models compared to collider data for NSD events

A TIME-TAGGING DETECTOR

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning

Strong interplay between sensor and electronics

FAST TIMING - THE INGREDIENTS

For a planar detector geometry $\sigma_t^2 = \sigma_{Current}^2 + \sigma_{Jitter}^2 + \sigma_{Time Slewing}^2 + \sigma_{TDC}^2$ with a saturated velocity, the σ_t main contributors are **current fluctuations** and **jitter**

Current fluctuations are due to the physics of MIP ionization

Improves with thin sensorsDoes not depend on the gain

For 50 μ m thick sensors contribute ~ 30 ps

→ Physical limit to time resolution

Jitter is driven by the electronics

SHOT NOISE

ELECTRONICS - THE PRE-AMP CHOICHE

MEASURED TIME RESOLUTION

UFSD from Hamamatsu: 30 ps time resolution Value of gain ~ 20

UFSD TIME RESOLUTION

\Rightarrow UFSD achieved 30 ps time resolution, in line with our target

Comparison WF2 Simulation - Data Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

DOPING STRATEGY MOTIVATION

From RD50 Collaboration

Different types of gain layer implant to study the radiation effects on the gain layer

Boron Radiation creates interstitial defects that inactivate the Boron

Gallium

From literature, Gallium has a lower possibility to become interstitial

Carbon

Interstitial defects filled with Carbon instead of with Boron and Gallium

GAIN LAYER RADIATION TOLERANCE

UFSD suffer for gain reduction due to irradiation

FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

GAIN LAYER RADIATION TOLERANCE

UFSD suffer for gain reduction due to irradiation

FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

