Operation Experience of the DEPFET based Pixel Vertex Detector of the Belle II Experiment

28th Vertex Conference, 13-18 October 2019

B. Spruck for the Belle II and DEPFET Collaborations

SuperKEKB

- Excellent vertexing and tracking down to low p_T (<100 MeV/c)
- Very low material budget for vertex detectors
- Inner layer only 14mm away from interaction point
- Impact parameter res. $\sigma_z < 20 \mu m$
- Operate in high background environment
- Trigger rate 30 kHz

Physics data taking with full detector started this year

Time Line

- Phase 1 (2016) only accelerator commissioning, no Belle II
- Phase 2 (2018) 1/10 of PXD (1 slice of VXD), "Beast II"
 - Goals: commissioning, safety (beam abort), background, first physics
- Phase 3 (2019) full VXD (besides PXD, full PXD from 2021)
 - Production delay due to low yield in ladder assembly (solved)
 - Only inner layer + 2 outer ladders were mounted

One bad quality module, excluded from DAQ

Combining Vertex Detector (One Half Shell)

B. Spruck, Belle 2 PXD, Vertex 2019, 14.10.2019, p. 6

PXD Sensors

- DEPFET active pixels
- 75µm thin sensors
- Pixel size down to 50x55μm²
- Rolling shutter read-out \rightarrow low power
 - $50 \text{kHz} \rightarrow 20 \, \mu \text{s}$ integration time
- Design: 1% occupancy in layer 1
 - 3% occupancy limit (DHP, DAQ, tracking)
- Rad. hard sensor and ASICSs
- 40 sensors, 250x768 pixels each

DHP

correction

B. Spruck, Belle 2 PXD, Vertex 2019, 14.10.2019, p. 8

PXD DAQ Scheme

- PXD unfiltered data rate $\rightarrow 10x$ that of other Belle II detectors
 - Separate readout path
 - Remove data not belonging to a track
 - Data reduction to 1/10 by High Level Trigger based "Region Of Interest" calculation from CDC and SVD track information
 - Feedback to PXD readout
 - Selection of pixels within rectangular ROIs

Slow Control and Monitoring

Belle II

- PXD Slow Control uses EPICS
 - Interfaces to IPBus, IPMI, UNICOS, NSM2, ...
- 20x200 PVs alone from Power Supply control
- Configuration from ConfigDB
 - Sophisticated sequences for powering the modules (ASICs)
- Archiver (13k PVs, 1.4 GB/day)
- Logging: DB with Elasticsearch, elog, Rocket.Chat
- Control and Monitoring GUI
 - Control System Studio
- Alarm System (BEAST)
- Scaled from 4 to 20 (40) modules from Phase $2 \rightarrow 3$

Control System Studio

Alarm System Tree

Online ROI Selection

- Region Of Interest selection needs accurate ROI calculation on High Level Trigger
- Hit maps for different modules of same event: clusters fit to ROI computed on HLT

PXD Calibration and Optimization

- Phase 3 modules characterized before installation still need further optimization
- Analog Common Mode Correction
- Switchable currents at input of Drain Current Digitizer used to compress spread of drain currents from sensor
- Narrow and stable pedestals
- Low noise (<1ADU, <100e ENC)</p>

Noise of 0.6 ADU Noise Distribution - DCD0 ACMC: On/On/On/On ACMC: On/On/On/On

B. Spruck, Belle 2 PXD, Vertex 2019, 14.10.2019, p. 12

In Phase 3 photons peaks reduced, as Au layer inside beam pipe was thinner in Phase 2 (on purpose)

Gain Homogenity

- Uniform gain over sensor area can be achieved
- Signal to Noise Ratio ≈ 50
- Most probable value and SNR uniform over ASIC combinations

Compensation for Radiation Damage

Belle II

- MPV for cluster changes with irradiation
- Expected, must be corrected for by increasing voltages
- Voltages adjusted to have same source current (100 mA) again
- Radiation dose from diamond sensors → scaling needed

- Defined by hits found close to track intercepting points in modules
- Influenced by
 - Tracking quality
 - Alignment
- Take only tracks with good tracking
 - $p_T > 1 \text{ GeV/c}$

 $\epsilon = \frac{\text{nr of tracks with hit near track intercept}}{\text{nr of good track intercepting a module}}$

Continuous Injection Backgrounds

- Increased luminosity by continuous (top-up) injection, max 50 Hz
- Large background during HER injection (noisy bunch) → can lead to readout problems
- Belle II Trigger Veto (=no readout)
 - Full veto during injection (1-2 ms) and then for \sim 10 ms each time the bunch passes by (\sim 2 μ s)
- For PXD: Possible to blind detector while keeping stored charges (Gated Mode)
 - Deploy for upcoming autumn run

Rolling shutter! Integrated over 20 μs .

Vertex Resolution

- Measuring the point of closest approach from particles from the interaction point in x, y
- Vertex resolution with PXD is close to MC expectations
 - d_0 resolution of 14.5 µm achieved
- Details → T. Bilka: Belle II Vertex Detector Performance

Beam Incidents

- Two major incidents:
 - QCS power supply failure
 - Beam dust particles event(?), collimator damaged
- Beam particles hitting QCS → magnet quench
 - Large <u>instant</u> radiation burst before beam was dumped (3 rad in <40us)
 - PXD modules in current limit → emergency shutdown
- Working point shifted
- Two modules could not be turned on (large currents)
 - One could be recovered after few days
 - Second module only after summer shutdown
- Permanent damage: "dead" gates
 - Single Event Effect (SEE)
 - → dedicated irradiation test for ASICs and sensor in November

QCS: Superconducting quadrupole coils close to interaction point

Sursprises – Synchrotron radiation

- Large photon background was observed for some runs in a few modules in -X
- IR designed such that no direct SR photons hit the central Be beam pipe
 - Secondary photons!
 - Single pixels, low energy
 - Problem: Inhomogeneous irradiation
 - Reason: Change in accelerator "tune"
 - We can only see this if the detector is on

Summary

- Belle II first particle physics experiment to use a DEPFET pixel vertex detector
- Good performance demonstrated
 - Some modules not at optimal working point yet
 - Vertex resolution close to MC expectations
- DAQ / ROI data reduction concept proven
- Suffering from damages due to radiation bursts

- Outlook
 - Understand and prevent damage by "beam incidents"
 - Add new collimators!
 - Complete PXD in 2021

Other talks

- Ch. Schwanda: Performance of the Belle II Silicon Vertex Detector
- T. Bilka: Belle II Vertex Detector Performance

"Synchrotron" Radiation Problem

Gated Mode

- Gating: change the voltages (potentials) such, that no new charge is collected while preserving the already stored charge.
- Gating two times per readout cycle
- Read out continuous during gating, but the data is unusable
- \bullet \rightarrow fraction of the detector area is lost
- Large currents → pedestals change

Pedestals

Online Monitoring

Histograms from local DAQ

Histograms from express reconstruction for online monitoring performance

VXD Installation

B. Spruck, Belle 2 PXD, Vertex 2019, 14.10.2019, p. 28

Background in Pixel detector

- Occupancy of PXD dominated by background
 - physics <1% occupancy</p>
- Beam related background by
 - Synchrotron radiation
 - Beam gas reactions
 - Touschek effect intra-beam scattering because of high particle density
- Interaction background
 - Radiative QED, two photon processes
- Can be studied and decomposed with single beams and varying currents
- Big uncertainty in extrapolations
 - Backgrounds much too high (not only in PXD!)
 - LER background dominates
 - Mitigation needed

Ladder Gluing

Stiffeners

gap: glue gap between Al

dx: lateral displacement

dH: step between modules

B. Spruck, Belle 2 PXD, Vertex 2019, 14.10.2019, p. 32

DEPFET Module Production

B. Spruc!

