

Serial Powering for the Tracker Phase-2 Upgrade

Dominik Koukola on behalf of the CMS Tracker Group

Lopud Island, Croatia October 13-18, 2019

Outline

Serial powering scheme

- > Introduction and motivation
- ➤ Shunt-LDO regulator and RD53A readout chip
- > System issues

Recent system tests and developments

➤ Serial powering chains with RD53A Quad modules

LHC Plan

- ATLAS and CMS will upgrade their Inner Trackers for HL-LHC
- Both will use Serial Powering to power the pixel readout chips
 - => Never been used in HEP experiments
- Presentation will give a CMS Inner Tracker biased view on Serial Powering
 - ➤ Largely also applicable for ATLAS Pixel ITk

Power related challenges for Phase 2 IT

HL LHC era will bring increased requirements for the Inner Tracker:

- ☐ High radiation levels up to:
 - Fluence of 2.3 x 10^{16} n_{eq} cm⁻²
 - Total ionizing dose of 1.25 Grad

=> Radiation hard design

- ☐ Increased latency, granularity and hit rate:
 - Big buffers, many pixels, high bandwidth

=> High supply current (~2A / chip)

- ☐ Minimize material budget for good tracking performance:
 - Light cables and mechanical structures
 - Tight space constraints
 - CO₂ cooling

=> Compact and low mass design

Why serial powering?

Direct parallel powering

Requires many thick cables to maintain voltage

Parallel powering with DCDC converters

- ➤ Not sufficiently radiation hard
- Space limitations

Serial powering

➤ Fewer (n≈8 times) and lighter cables

CMS Inner Tracker Phase 2 Overview

More in talk on "CMS Inner Tracker Upgrade" by Panja Luuka Tuesday 09:00

Serial powering requirements:

- On-detector power ~50kW
- Supply current ~3kA
- 500 serial powering chains
- 3900 modules (Double and Quad modules)

Constant current

- Serial chain is powered with a constant input current
- Up to 12 modules are connected in series in a serial chain
 - ➤ Modules have different local grounds
- Current based powering system => Insensitive to voltage drops on cables

Constant current

- Serial chain is powered with a constant input current
- Up to 12 modules are connected in series in a serial chain
 - Modules have different local grounds
- Current based powering system => Insensitive to voltage drops on cables
- No auxiliary on-detector electronics needed for serial powering
 - > Only cabling between power supply and readout chips

High voltage bias for Sensors

Constant current

- High voltage is provided in parallel
 - ➤ Baseline choice is **one parallel HV supply line** per serial chain
- HV return path is through the serial chain
- Modules have different local grounds
 - > Sensors see different HV due to different ground potential
 - > Up to 20V differences in sensor HV in a chain
 - => Not problematic for planar sensors
 - => For 3D sensors higher HV granularity foreseen
 - > Sensor forward biasing possible when HV off and LV on
 - => Several solutions to avoid this

On-detector readout electronics

Constant current AC coupled **High Voltage** Optoconversion **Communication Links Low Voltage** Module #1 DC/DC LpGBT converter VTRx+ Module #2 LpGBT VTRx+ Module #3 Readout electronics are powered in parallel with DC/DC converters > AC coupled data and command links required Module #n Three different powering schemes mixed!

Shunt-LDO regulator & RD53A readout chip

Overview of recent chips with Shunt-LDO regulators

Date corresponds to the first (expected) availability

Improved performance (Startup, voltage accuracy, ..)
New features (Overvoltage/overload protection, ..)

"Constant current to constant voltage converter"

Combines two functionalities: Shunt + LDO

Shunt part:

- Regulates input voltage => resistive behavior
- Shunts not used current to ground

$$Vin = Vofs + \frac{R3}{1000} * Iin$$

LDO part:

- Provides constant output voltage
- Requires 0.2 V drop out voltage => Vin > Vout + 0.2V

Relationships

$$Vin = Vofs + \frac{R3}{1000} * Iin$$

$$Vout = 2 * Vref$$

- Resistive input behavior
- Provides constant voltage to the chip
- Input impedance, Vofs and Vref are configurable

Relationships

$$Vin = Vofs + \frac{R3}{1000} * Iin$$

$$Vout = 2 * Vref$$

RD53A readout chip

Demonstrator pixel readout chip designed by the RD53 collaboration (22 institutes - ATLAS and CMS)

- 400x192 pixels (50x50 μm² each)
- Three analog front end architectures
- ½ size of final chip => ~ ½ power (~1A)
- 65nm CMOS technology => 1.2V core voltage
- Radiation hardness > 500 Mrad

Final prototype of production chips expected in 2020:

More in talk on "RD53 analog front-end processors" by Luigi Gaioni Tuesday 15:00

RD53A readout chip - Power

½ size of final chip

=> ~ ½ power (~1A)

65nm CMOS technology

=> 1.2V core voltage

- Two power domains => one for digital, one for analog
 - > To decouple noisy digital from sensitive analog

- Dimensioned for production chip
- Can take 2A each => more than twice the expected load of final chip
- Maximum input voltage 2V

■ Three powering modes:

- ➤ Shunt-LDO mode (nominal mode)
- ➤ LDO mode (Shunt disabled)
- ➤ Direct (Shunt-LDO bypassed)

System issues

Constant supply current

Constant input current

Example current consumption of one readout chip

> Need to **provide enough <u>constant</u> current** for the chip to operate:

$$I_{constant} = I_{Max \ chip} + I_{headroom}$$

- > Surplus current is dissipated in shunt part of regulator => intrinsically inefficient
- > Load variations on chip are not propagated to power supply => resistive load to power supply
- ➤ If more current is drawn than provided (overload), regulator will fall out of regulation => Fast transients are filtered by external decoupling capacitors
- Headroom also needed to cover imbalances in current sharing among parallel chips

Optimizing the working point

- Optimize choice of: Current headroom, Input behavior (slope, offset)
- Goal is to have power efficient and reliable powering => compromise between the two

Low headroom Sufficient current (> max load)
Sufficient voltage (> 1.4V)

- Mismatches and parasitics need to be taken into account
- First studies confirm that **20% headroom** is sufficient to cover estimated mismatches

Typical failure cases

Normal operation

Current is shared equally between parallel chips

Open on one chip

Remaining chip has to take double the current

Short on one chip

- All current goes through shorted chip
- Parallel chips don't receive power anymore

Typical failure cases

Normal operation

Current is shared equally between parallel chips

Open on one chip

Remaining chip has to take double the current

Short on one chip

- All current goes through shorted chip
- Parallel chips don't receive power anymore
- > Serial powering chain stays operable when one chip of a module fails
 - Shunt-LDO designed to take twice the nominal operation current
- > Additional protection features have been added since RD53A
 - => Overvoltage & Overload protection

Hotspots and possible temperature gradient

- Shunt-LDO is located in very small area on the chip bottom
- Excessive current and drop out voltage are "burned" there ➤ Up to 35% of power in nominal operation!
- => Highly efficient CO2 cooling allows for this intrinsic inefficiency
- In case of one chip fails the power dissipated in the shunt parts can significantly increase

Recent system tests and developments

RD53A Quad modules

Elink connector

- First RD53A Quad modules were produced (without sensor so far)
 - > Four chips are powered in Shunt-LDO mode in parallel
- Successful operations (powering and readout) of all four chips
 - > Including operation of multiple modules in a serial chain

More in poster on "Prototype module construction for the high luminosity upgrade of the CMS pixel detector" by Branislav Ristic

Two flavors of serial power chains in CMS

Ladder structure

TBPX: 1 chain for 2 consecutive ladders in Phi

Disk structure

TFPX/TEPX: 1 chain per ring

Prototyping detector-like structures for electrical tests

Ladder structure

Up to 5 modules in series

Disk structure

4 modules in series

Cooling inand outlet

(Elinks and readout board not shown)

- Electrical connections similar to final detector
- Aluminum structure with water cooling pipe inside
 - ➤ Cooling is essential: ~10 W per module are dissipated

Measurements with Alu Power Flex for Disks

- Started electrical tests with disk structure
- Want to study RD53A power performance in detector like setup.
- Demonstrate full chain operation (power + optical readout)

Input voltage potential of each module

Picture with thermal camera

Conclusion

- Serial powering concept is well established
- Active R&D communities in ATLAS, CMS and RD53
 - > Demonstrated robust performance in tests and simulations
 - ➤ Many **improvements** in Shunt-LDO regulator performance since RD53A
- System developments and tests are ongoing
 - > Basic tests with RD53A Quad modules including chain operation were successful
 - > Started tests with **detector like structures** for ladder and disk geometries
- Future challenges are still ahead
 - > Ensure efficient current sharing
 - > Optimization of serial powering parameters (working point, headroom)

Backup

Possible sensor forward bias issue

Setting a work point for the Shunt-LDO

Shunt-LDO evaluation

- ➤ Irradiation campaign
- ➤ Overvoltage protection
- ➤ Overload protection

Serial Powering system tests with RD53A chips

Possible sensor forward bias when HV off and LV on

- Can generate forward bias of sensors when HV off and LV on
- Different local ground on each module => HV OFF is not 0V on sensor when LV on
 - => Biased sensors and leakage current in off mode possible
- Power supply off mode (high/low ohmic) important for leakage current path

Setting a working point for the Shunt-LDO

Relationships

$$Vin = Vofs + \frac{R3}{1000} * Iin$$

$$Vout = 2 * Vref$$

- Choose Vofs and Slope (with resistors)
- Trim Vref (with trimbits)

- => For input behavior
- => For output behavior

Fixed after installation

Adjustable during operation

- Provide constant input current
 - Shunt-LDO regulates input voltage accordingly
 - > Has to be higher than maximum expected load
 - \triangleright Limited by 1.4V < V_{IN} < 2.0V and $I_{IN.SLDO}$ < 2.0A

Shunt-LDO evaluation

Irradiation campaign with Shunt-LDO testchips

Shunt-LDO is fully functional after 600Mrad at 0C:

- Output behavior is very stable
- Some variations of input behavior
- Reference voltages change due to internal resistorNew design with radiation harder resistor

Additional feature: Overload protection

Decreases output voltage if load current gets too high
 => Reduces transients propagated to other chips in the chain

- Creating 1 ms overload pulse and comparing with and without protection
 - => Without protection huge transient on input voltage
 - => With protection reduced transient on input voltage

Additional feature: Overvoltage protection

> Acts like a voltage clamp => Limits maximum voltage

- Tested with different configured maximum voltages
- Startup significantly improved compared to RD53A

Serial powering system tests with RD53A chips

Serial powering system tests with RD53A chips

- First serial powering tests based on single RD53A chip cards connected externally
- Emulated serial power chains of double and quad modules with 16 RD53A chips

Emulating Quad and Double modules

b) 4x "Quad-chip modules"

VI curves for each module group

=> Successfully operated serial chains with up to 16 RD53A chips on Single Chip Cards

Powering RD53A chips with new Shunt-LDO test chips

- Started to test new Shunt-LDO test chips with RD53A chip (By bypassing the RD53A Shunt-LDOs)
 - > Want to evaluate new Shunt-LDO performance with RD53A chip