MuPix and ATLASpix Architectures and Results

Vertex 2019 Workshop

Lopud Island, 14.-18. October, 2019

André Schöning

Physikalisches Institut, Universität Heidelberg

on behalf of the Mu3e and ATLAS HV-CMOS collaborations

German Research Foundation

SPONSORED BY THE

Federal Ministry of Education and Research

MuPix for Mu3e & ATLASpix for ATLAS

- Search for $B(\mu^{\scriptscriptstyle +} \rightarrow e^{\scriptscriptstyle +} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}) < 10^{\scriptscriptstyle -15}$ $10^{\scriptscriptstyle -16}$
- 10⁸-10⁹ muon decays (tracks) per second
 - \rightarrow see Mu3e talk by Frank Meier (Thursday)

- Multi-purpose Experiment @ LHC
- Alternative for ITK Pixel Tracker (HL-LHC)

High Voltage - Monolithic Active Pixel Sensor

active sensor \rightarrow hit finding & digitisation & zero suppression & readout

- low noise $O(50e) \rightarrow low$ threshold
- small depletion region of $\leq 30 \ \mu m \rightarrow \text{thin sensor} \sim 50 \ \mu m$
- standard HV-CMOS (60 120 V) process \rightarrow low production costs
- continuous and fast readout (serial link) \rightarrow high rate applications

Example: Mupix8 Architecture

column drain RO

analog cell:

- reverse biased -85V
- charge sensitive amplifier
- source follower

transmission line:

 send signal to corresponding mirror cell

mirror cell:

- comparator for discrimination
- threshold and baseline by tuning DACs

hit sequence:

signal generation

- signal generation
- amplification

- signal is generated
- charge amplified
- received in mirror pixel

- signal is generated
- charge amplified
- received in mirror pixel
- discriminated

- signal is generated
- charge amplified
- received in mirror pixel
- discriminated
- scaler generated from clk

- signal is generated
- charge amplified
- received in mirror pixel
- discriminated
- scaler generated from clk
- timestamp generation

- signal is generated
- charge amplified
- received in mirror pixel
- discriminated
- scaler generated from clk
- timestamp generation
- hit address and timestamp send to serializer

Finally, **all detected hits** are sent out via a serial link **1.25 -1.6 Gbit/s**

Eye diagram measured with Mupix prototype

Maximum readout rate is 33 Mhits/s per link

HV-MAPS Prototypes - History

MuPix8 & ATLASpix1

Mupix8

- pixel: 80 x 81 μm²
- 200 rows x 48 cols
- amplifier in pixel cell
- discriminators in periphery
- 6 bit ToT
- state machine
- serial link up to 1.6 Gbit/s

ATLASpix

- pixel: 40 x 130 μm²
- 400 rows x 25 cols
- amplifier in pixel cell
- discriminators in active pixel cell
- 6 bit ToT
- state machine
- serial link up to 1.6 Gbit/s

Mupix8 versus ATLASpix simple

MuPix8

Vertex2019, 15. October, 2019

Results in the following ...

Lab characterisations

- charge injection
- radioactive sources
- LED, Laser
- X-Ray fluorescence
- ...

Large number of testbeams (exploiting several telescopes):

- CERN: pions 180 GeV
- DESY: electrons 3-6 GeV
- Fermilab: pions 180 GeV
- MAMI: electrons ~870 MeV \rightarrow very focused beam & high rate!
- PSI: pions ~250 MeV/c, protons ~500 MeV/c \rightarrow high rate!

Mu3e MuPix & ATLAS HV-CMOS Collaborations

UNIVERSITÄT BERN

MuPix/ATLASpix (HV-MAPS) Telescope

- HV-MAPS fully integrated as telescope layers (since 2013)
- O(10) telescopes built (Mupix6,7,8 & ATLASpix)
- long experience in reliably operating HV-MAPS with high particle rates (up to 2.5 MHz)

Mupix8 Performance Plots

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Mupix/ATLASpix Readout Architecture

Problem:

 \rightarrow capacitive coupling between RO lines

ATLASpix (discriminator in cell)

✓ binary(discriminated) RO

MuPix (analog amplified signal) X source follower (A) → cross talk X current driver (B+C) → in principle ok, but design issues with Mupix8

Mupix8 Cross Talk (Source Follower)

row number is proportional to length of trace!

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Mupix8: Time over Threshold and the 2-Discriminator Scheme

Mupix8: Timewalk Correction

"small signals come late..."

Good Correlation between ToT and hit delay time!

Mupix8 matrix A: Time Resolution Results

ATLASpix

Goals

- HVMAPS demonstrator for ATLAS 4th pixel barrel layer
- compatible with ITK pixel (LHC) specification
- compatible with FE-I4 frontend chip
- **ATLASpix1** is a first **technology** demonstrator (no FE-I4 functionalities)

ATLASpix_simple

ATLASpix_simple

Time Resolution with and w/o TWC

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Substrate Resistivity Dependence ATLASpix1

significant larger depletion with higher resistivity!

Neutron Irradiated 80 Ωcm ATLASpix1 @ 60V

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Summary of Efficiencies after Irradiation

no tuning of pixels! $\leq 81/10000$ pixel masked

Efficiency _{40 Hz}	sub- strate	thick- ness	bias voltage (#masked pixel)				
fluence (neq/cm²)	(Ω cm)	(µm)	60 V	70/75 V	80/85 V	90/95 V	
n 2e15	80	62	98.5%	98.4%	98.6%		
n 1e15	80	62	99.3 %		99.5%	99.5 %	
n 5e14	80	62	99.5 %				
n 2e15	200	100	96.5 %		98.7%	98.7 %	
n 1e15	200	100/725	98.7%	99.4 %	99.5 %	99.4 %	
n 5e14	200	100	99.2 %				
p 5e14	200	100	≥ 99.6 %	≥ 99.7%	≥ 99.9%		
p 1e14 (10 MRad biased)	200	725	≥ 99.7%		≥ means that the 40 Hz/pixel average noise limit was not reached		

New ATLASpix3 (TSI)

receivd in Sept. 2019

- Single matrix: 132 x 372 pixel
 - pixel size 150 x 50 µm²
- Column drain readout with and w/o trigger
- Radiation hard design with SEU tolerant global memory
- In-pixel comparator
- 64/66 bit Aurora encoder
- Command decoder with clock recovery
- prepared for serial powering (shunt LDOs)

ATLASpix3 – Readout Architecture

- Triggered and triggerless readout possible via two concurrent readout structures
 - separate control units
 - Configuration via SEU tolerant registers
- Data transmitted:
 - triggerless: 8/10b Aurora encoded
 - triggered: 64/66b Aurora encoded

ATLASpix3 - Threshold Distribution

- threshold scan for the whole matrix
- ⁵⁵Fe decay signals equal a charge injection of about 300 mV
- untuned matrix

ATLASpix3 – Matrix Tuning

Threshold tuning:

- detection thresholds are adjusted to μ +3 σ of untuned distribution
- conducted for two rows (in total 264 pixels):

$$\sigma_{\text{trimmed}} = 9.5 \text{mV} \leftrightarrow \sim 50 \text{ e}^{-1}$$

Pixel Trimming

ATLASpix3 – Summary

- ATLASpix3 is the first large (20 x 20 mm²) HV-CMOS
 - high rate capable
 - radiation tolerant
 - > triggered & untriggered RO
- ATLASpix3 seems to be fully operational

 but more characterization studies required
- Unfortunately, CMOS option is no longer followed up for ATLAS-ITK
- However, ATLASpix3 is multi-purpose and serves as blueprint for
 - > LHCb "Mighty Tracker" project
 - > Telepix (beam telescope)

Conclusions & Outlook

- HV-MAPS (ATLASpix, MuPix) is an established "technology" and have demonstrated their big potential
- Significant advances in ASIC design, also concerning system relevant aspects (e.g. configuration, regulators)
- HVMAPS are baseline for several projects/experiment:
 - > Mu3e Phase I
 - > LHCb Mighty Tracker
 - PANDA (Fair)
 - P2 at MESA (Mainz)
 - beam telescopes

Mu3e Pre-to-Final HV-MAPS: Mupix10

Mupix8 Cross Talk (Source Follower)

Mupix8: Time Resolution Results

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Mupix8: Temperature Dependence

Mupix7 Breakdown Voltage: AMS H18 versus TSI H18

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Substrate Resistivity Dependence

André Schöning, Heidelberg (PI)

49

Vertex2019, 15. October, 2019

Neutron Irrad. 80 Ωcm Sensor @ 2e15 neq 1.1 efficiency 81/10000 pixels are masked; no tuning **Preliminary** 1.05 0 8 ĕ ĕ ĕ 8 0.95 . ▼ 0.9 80 V 0 0.85 70 V 2.1015 neq/cm² 0.8 0 60 V 80 Ω cm 0.75 d=62 µm bias=60V **HV-dependence** 0.7 T ~ 5°C 0.65 0.6 80 60 100 120 140 160 threshold / mV Vertex2019, 15. October, 2019

Leakage Currents: 200 Ω·cm (16.7 MeV p) 1e15 neq/cm² Irradiation campaign with 16.7 MeV protons at BERN with fluence 10¹⁵ neq/cm² I-V Curves for different temperatures temperature dependence Exp. 20V SRH 20V Exp. 50V Current [μA/cm² SRH 50V Exp. 80V SRH 80V Current (µA 10¹ 20°C 10⁰ ATLASPix 1e15 n 10°C 0°C Simple 200 Ω 10⁴ 10 3.4 3.6 60 80 100 3.2 3.8 20 40 Reverse Bias Voltage [V] 1000/T [°K⁻¹]

- leakage currents well below 50 µA/cm² for temperature T=-20°C up to breakdown
- breakdown voltages increase with irradiation (not shown)
- Arrhenius prediction approximately holds for irradiated sensors
- similar studies for neutrons and for fluences up to 2e15 neq/cm²

MuPix Telescopes + Rate Tests

MAMI rate test

- 875 MeV e⁻
- maximum rate rate of
- 1.6 MHz / 5x5 pixels
- corresponds to
 780 Mhits/cm²/s

Effect of Irradation on H35 process

André Schöning, Heidelberg (PI)

Vertex2019, 15. October, 2019

Threshold and Noise Definitions

- Charge injections of increasing strength are sent into a pixel
- Count number of detected signals → detection efficiency
- Shifted and scaled gaussian error function is fitted to the data points

Matrix Tuning

- The matrix implements a 3 bit tuning DAC and a disable bit for each pixel
- Writing of the pixel memories is working and the detection threshold changes linearly with the setting

Power Regulators – Minus Reg

Mu3e Collaboration Meeting Institute for Data Processing and Electronics (IPE)