

CMS Phase-1 Pixel Detector:

Operational Experience, Performance and Lessons Learned

Atanu Modak

On Behalf of the CMS Collaboration

Timeline:

Phase-1 Upgrade:

Motivation for upgrade:

- Phase-0 was designed for an instantaneous luminosity of 1x10³⁴ cm⁻²s⁻¹
- LHC performing beyond expectation, projected instantaneous luminosity for Run-2 2x10³⁴ cm⁻²s⁻¹
- Large hit inefficiency due to high data rate

Upgrade features:

- One additional barrel layer and endcap disk
- Layer-1 closer to IP
- Improved Readout Chips
- 1.9 times more readout channels
- Forced to keep same power cables, use DCDC conversion near detector
- Two-phase CO₂ cooling
- uTCA based backend hardware

Phase-1 Detector: Front-end

Layout of the read out chip (ROC)

- 8 bit ADC for pulse height
- Increased buffer size for timestamp (24) and data (80)
- On chip digitization, readout at 160 Mbps
- Mainly two flavors of ROC:
 - PROC600 for Layer-1 and psi46dig for rest
 - Data rate: PROC600 580 MHz/cm², psi46dig
 150 MHz/cm²
 - Data Drain: PROC600 dynamic cluster draining, psi46dig - double column drain

Token Bit Manager (TBM) block diagram

- There is one circuit in TBM that gets latched by SEU and needs power cycling to restore functionality
- Typical SEU rate during 2018: ~ 3/100 pb⁻¹

Schematic of a typical module

Cooling and Material Budget:

- Two-phase CO₂ cooling instead of mono phase C₆F₁₄
- Set temperature -22°C, possible to go even lower
- Light weight, thinner, stainless steel cooling pipes

- Cooling choice reduced the material budget
- Carbon fiber made support structure
- Auxiliary components moved to higher pseudo-rapidity
- First use of two-phase CO₂ cooling in CMS; Several phase-2 projects will use CO₂ cooling

Phase-1 Detector: DAQ Architecture

Status after 2017:

- Modules with broken DCDC not properly powered
- Bias voltage on, module power off condition damaged modules
- Damage proportional to accumulated radiation and distance from beam line
- 6 (accessible) Layer1 modules replaced during 2017-18 YETS out of total 8 damaged modules in Layer-1

Beginning of 2018: 97.3% Active detector

	Tot ROC	Inactive	%Active
L1	1536	56	96.4
L2	3584	224	93.7
L3	5632	88	98.4
L4	8192	48	99.4
Ring1	4224	290	93.1
Ring2	6528	88	98.7

known

DCDC Converter Failure: Impact on operation in 2018

- Using DCDC converters was an elegant solution for Phase-1 detector powering
- Due to a fault in FEAST chip design it started breaking while in disable state due to charge build up in a circuit when irradiated (> 10kGy)
- Adapted power cycling procedure during 2018 operation to avoid breaking the converters.
- Latest FEAST (2019) chip fixes the problem and will be used in Phase-1 detector replacing the old ones

Impact on operation in 2018:

- No power cycle during run, accumulate stuck-TBM and power cycle after the end of the fill
- Kept converters always in enabled state, used CAEN system for power cycling. Operated converters with lower input voltage
- Immediate consequence was high current trips in power groups with higher share of modules
- Raised trip limit, smart programming to reduce start up current in power groups, or in worst case selectively disabled converter to avoid trips

A DCDC converter without the shield on inductor

Improvement in 2018 Operation:

- Pixel Frontend Controller programs the modules
- Local DDR memory based firmware for PixelFEC, pre-stored data in segmented memory
- Drastic improvement in module programming time
- Faster calibrations

Commands are stored in Segmented memory

SEU Recovery:

- Pixel detector very close to the interaction point, high rate environment
- Front-end chips, opts-hybrids, CCUs are affected by single event upset
- Refreshing the configuration brings it back to normal, SEU on TBM needs a power-cycling

Automatic Software Scheme:

More complete and quicker module configuration during soft error recovery

- Full Configuration: Pixel level programming, ~66kB data/module
- Partial Configuration: ROC level programming, ~0.5kB data/ module

Detector Thresholds:

- Higher threshold in Layer-1 due to cross talk noise
- Changed programming sequence of the ROC to mitigate the issue, recovers hit efficiency
- Problem is being addressed in new version of PROC600

See Danek's talk after lunch on Layer-1 Issues and Solutions

Hit Efficiency:

Overall excellent hit efficiency by Phase-1 detector

Small Layer-1 inefficiencies in low and high luminosities are understood.

Being addressed in new PROC600.

See Danek's talk after lunch on Layer-1 Issues and Solutions

Precision Tracking, Residuals:

 $x:12\mu m$

Disk-2

 $y:19\mu m$

 $z: 22\mu m$ Layer-3

Excellent hit residuals/resolutions

 $r\phi:9.5\mu m$

Monitoring: Leakage Current and Depletion Voltage

- Prediction of leakage current agrees well with measured values from the detector
- No limitation from power supplies

Phase-1 Pixel - Full depletion voltage vs days

- Hamburg model to simulate the evolution of depletion voltage
- Need ~800V for Layer-1 in Run-3

Long Shutdown-2 Activities/Plan

Detector in Cleanroom:

 Detector was extracted from experimental cavern in January, 2019

- Detector kept inside cold box in cleanroom
- Module temperatures ~ 0-2 degC, to protect the silicon sensor

Detector Refurbishment:

- Layer-1 will be fully replaced with improved Readout Chip (PROC600v4)
- This will fix most of the problems as observed during previous operation
- Also include new TBM, fixing the latching issue
- Replace DCDC damaged modules in Layer-2
- Fix module power connection problems
- Upgrade power supplies to deliver 800V, 15 mA
- Modify FPix power board to improve the granularity of HV distribution
- Replace all DCDC converters with the latest version of the FEAST chip

DAQ Software and Monitoring Improvements:

- Restructuring DAQ software to make it easier to develop and maintain
- New UI and more added monitoring
- Introduce fast signal based reconfiguration of frontend registers in regular interval to recover from SEU
- Calibration code developments and speed up with new DDR based FEC firmware
- Pixel FEC and FED firmware developments
- New pixel online monitoring system: centralized information, possible to correlate variables, friendly user interface

Cold box temperatures

New PixelMonitoring System

Summary:

- Successful commissioning and operation of the detector during 2018
- No major issues encountered
- 94.3% active detector by the end of 2018 operation, excellent position resolution and hit efficiency
- It was an operational achievement not to break a single DCDC in 2018
- PixelDAQ also performed exceptionally, only 5% of the total downtime due to pixel
- LS2 refurbishment works are running on schedule
- New Layer-1 and other refurbishment will ensure an excellent detector until the end of Run-3