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Timing with silicon detectors



Lorenzo Paolozzi  VERTEX 2019

Time resolution of silicon pixel detectors

3

What are the main parameters that control the time resolution of 

semiconductor detectors?

1. Geometry & fields

2. Charge collection (or Landau) noise

3. Electronics noise

𝒉+𝒆−

𝐼𝑖𝑛𝑑 𝑉𝑜𝑢𝑡

(Recommended reading W. Riegler and G. Aglieri Rinella, Time resolution of silicon pixel sensors, JINST 12 (2017) P11017)
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1.  Geometry and fields

4

Sensor optimization for time measurement means:

sensor time response independent from the particle trajectory

⟹ “Parallel plate” read out: wide pixel w.r.t. depletion depth 

GND

𝐼𝑖𝑛𝑑 =

𝑖

𝑞𝑖 ҧ𝑣𝑑𝑟𝑖𝑓𝑡,𝑖 ∙ ത𝐸𝑤,𝑖 ≅ 𝑣𝑑𝑟𝑖𝑓𝑡
1

𝐷


𝑖

𝑞𝑖

Scalar, saturated
Scalar, uniform

Induced current for

a parallel plate readout

from Shockley-Ramo’s theorem:

• Uniform Ramo field (signal induction)

• Uniform electric field (charge transport)

• Saturated charge drift velocity
Desired features:
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2.  Charge-collection (or Landau) noise

5

is produced by the non uniformity of 

the charge deposition in the sensor:

When large clusters are absorbed at the electrodes, their contribution is removed from the

induced current. The statistical origin of this variability of Iind makes this effect irreducible in

PN-junction sensors.

+HV

GND

𝒆−

𝒉+

Ionizing particle

𝐼𝑖𝑛𝑑 ≅ 𝑣𝑑𝑟𝑖𝑓𝑡
1

𝐷


𝑖

𝑞𝑖
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2.  Charge-collection (or Landau) noise

6

Charge collection noise represents an intrinsic limit to the time resolution 

for a semiconductor PN-junction detector.

~30 ps reached by present LGAD sensors.
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Gain

Lower contribution from sensors without internal gain

N. Cartiglia et al., NIM A 924 (2019) 350-354  
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3.  Electronics noise
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Once the geometry has been fixed, the time resolution depends mostly on the 

amplifier performance.

Pulse time

Threshold

Time

Need an ultra-fast, low noise, low power-consumption electronics with fast rise time and 

small capacitance. Our solution:

High 𝑓𝑡, single transistor preamplifier             SiGe HBT technology.

𝜎𝑡 =
𝜎𝑉
𝑑𝑉
𝑑𝑡

≅
𝐸𝑁𝐶

𝐼𝑖𝑛𝑑
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Equivalent Noise Charge
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For a fast charge integrator in BJT technology, the ENC series noise is:

Goal: maximize the current gain β at high frequencies while 

keeping a low base resistance Rb

𝐸𝑁𝐶series noise ∝ 𝑘1 ⋅
𝐶𝑡𝑜𝑡
2

𝛽
+ 𝑘2 ⋅ 𝑅𝑏𝐶𝑡𝑜𝑡

2

For a NPN BJT, the amplifier current gain β can be expressed as:

𝛽 =
𝑖𝐶
𝑖𝐵
=
𝜏𝑝

𝜏𝑡

𝜏p = hole recombination time in Base

𝜏t = electron transit time (Emitter to Collector)

Large β⟹ Minimize the electron transit time
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SiGe HBT technology for low-noise, fast amplifiers
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In SiGe Heterojunction Bipolar Transistors (HBT) the grading of the bandgap in the

Base changes the charge-transport mechanism in the Base from diffusion to drift:

Grading of germanium in the base:
field-assisted charge transport in the Base, 
equivalent to introducing an electric field in the Base 

⟹ short e– transit time in Base ⟹ very high β

⟹ smaller size ⟹ reduction of 𝑅𝑏 and very high 𝑓𝑡

Hundreds of GHz
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Current gain and power consumption: 𝑓𝑡 is the key
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𝑓𝑡 = 10 𝐺𝐻𝑧 𝑓𝑡 = 50 𝐺𝐻𝑧 𝑓𝑡 = 100 𝐺𝐻𝑧

𝛽𝑚𝑎𝑥 𝑎𝑡 200 𝑀𝐻𝑧 50 250 500

𝛽𝑚𝑎𝑥 𝑎𝑡 1 𝐺𝐻𝑧 10 50 100

𝛽𝑚𝑎𝑥 𝑎𝑡 5 𝐺𝐻𝑧 2 10 20

𝜷

𝒇𝒕 𝒇
𝟏

Working 

point
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Current gain and power consumption: 𝑓𝑡 is the key
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𝑓𝑡 = 10 𝐺𝐻𝑧 𝑓𝑡 = 50 𝐺𝐻𝑧 𝑓𝑡 = 100 𝐺𝐻𝑧

𝛽𝑚𝑎𝑥 𝑎𝑡 200 𝑀𝐻𝑧 50 250 500

𝛽𝑚𝑎𝑥 𝑎𝑡 1 𝐺𝐻𝑧 10 50 100

𝛽𝑚𝑎𝑥 𝑎𝑡 5 𝐺𝐻𝑧 2 10 20

Trade-off: ENC Power Consumption

𝑓𝑡 > 100 𝐺𝐻𝑧 technologies are necessary for 

a fast amplification of silicon pixel signals.

𝒇𝒕

𝑰𝑪/𝑨 (log scale)

Technology 

nominal value

Actual working 

point

𝜷

𝒇𝒕 𝒇
𝟏

Working 

point
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Technology choice
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Time digitisation:

• 4 ps inverter; delay precision ~100 fs

• > 40GHz oscillation frequency achievable with 

purely digital schematics

We were able to design a TDCs

with a time binning down to 4ps and power 

consumption of few tens mW/ch

with simple architecture   

Exploit the properties of state-of-the-art SiGe Bi-CMOS transistors to produce an 

ultra-fast, low-noise, low-power consumption amplifier

Leading-edge technology:  IHP SG13G2
130 nm process featuring SiGe HBT with

• Transistor transition frequency:  𝒇𝒕 = 𝟎. 𝟑 𝑻𝑯𝒛

• DC Current gain: 𝜷 = 𝟗𝟎𝟎
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Why SiGe BiCMOS  for signal amplification
• High fT and high β SiGe HBT allows for amplifiers with:

➡Intrinsically low series noise

➡fast pulse integration

➡High gain

➡very low-power consumption

• Moreover, it is a fast growing technology

➡ft = 700 GHz transistor under development

• Commercial VLSI CMOS foundry processes available

13

source:      https://towerjazz.com/technology/rf-and-hpa/sige-bicmos-platform/
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Experimental results
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The prototype chips

15

For generic

timing R&D

For a 

silicon 

TOF-PET

Project

TT-PET

2016 2017 2019

2018 2019

Design

submitted:

Design

submitted:
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The TT-PET “demonstrator” chip
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• SiGe HBT preamplifier

• CMOS-based open-loop tri-stage discriminator (adjustable threshold with 

an 8-bit DAC), that preserves the TOA and the TOT of the pixel

• Discriminator output sent to fast-OR chain

• 50ps binning TDC, R/O logic, serializer

TT-PET

guard ring

front-end

TDC and

logic

Matrix of 3×10 n-on-p pixels, of 470×470 µm2 (Ctot = 750 fF) spaced by 30 µm.
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Full efficiency, even in the inter-pixel region.

Chip 1:   HV = 180 V,   Power = 375 µW/ch,   threshold = 1750 e−

L. Paolozzi et al., 2019 JINST 14 P02009, https://doi.org/10.1088/1748-0221/14/02/P02009

P. Valerio et al., 2019 JINST 14 P07013,   https://doi.org/10.1088/1748-0221/14/07/P07013

Test beam results: efficiency

https://doi.org/10.1088/1748-0221/14/02/P02009
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Test beam results: time resolution
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Excellent result for a silicon pixel detector without internal gain,
obtained on a large capacitance (750 fF) and power consumption of 150 mW/cm2.

160 [µW/ch] 375 [µW/ch]

Chip 1:   HV = 180 V,   Power = 375 µW/ch,   threshold = 1750 e−

uncertainty is statistical only

375 µW/ch160 µW/ch

L. Paolozzi et al., 2019 JINST 14 P02009, https://doi.org/10.1088/1748-0221/14/02/P02009

P. Valerio et al., 2019 JINST 14 P07013,   https://doi.org/10.1088/1748-0221/14/07/P07013

https://doi.org/10.1088/1748-0221/14/02/P02009
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Developed in IHP SG13G2 technology (130nm).  

Matrices with hexagons of two sizes:

➡ hexagon side 130µm and 65µm, with 10µm inter-pixel spacing 

➡ CTOT = 220 and 70 fF

Exploits:

➡New dedicated custom components                                                          
developed together with foundry

➡New guard-ring structure 

19

The “hexagonal” prototype sensor

Collaboration of:
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The “hexagonal” prototype sensor

20

-HV

LV/GNDLV/GND -HV
guard rings

SiGe
electronics

Pixels

TCAD
simulation

(HV = 140 V)

Standard substrate resistivity ρ = 50 Ωcm
No backside metallisation ⟹ not fully depleted 
PRO: much easier production, but 

➡ slightly degraded performance because of regions 
where drift velocity is not saturated

Depletion depth is 26µm at HV = 140 V

➡Most probable deposited charge for a MIP ≈ 1600 
electrons

➡CADENCE Spectre simulation for 1600e– (0.25 fC): 
ideally, ToA jitter = 22 ps
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CAVEAT:

21

This behaviour does not compromise the chip performance.

Therefore,  we made measurements with a source and at a testbeam

➡Current drift up to ~100nA after 

two days of continuous operation.

➡ reversible.

➡under investigation
maybe this high field

is responsible for it
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109Cd radioactive source calibrations
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Rate ≈constant for low thresh. values   ⟹ good discrimination of γ peak. 

109Cd photons (~22 keV) energetic enough for measurement of the gain: 
• AQ = 290 mV fC−1 for the small pixel  ⟹ ENC = σV/AQ = 90 electrons

• AQ = 185 mV fC−1 for the large pixel ⟹ ENC = σV/AQ = 160 electrons

arxiv:1908.09709,  submitted to JINST

https://arxiv.org/abs/arxiv:1908.09709
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90Sr source experimental setup
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No analysis selection applied

)

90 Sr
source

to the events in our monolithic SiGe prototype

custom amplifier board
with 1mm hole

reference LGAD
FBK (B-098L)

50ps resolution

(NIM A 924 (2019) 360-368) monolithic
SiGe

prototype
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Time-walk correction and TOF

24

Small pixel S0, C = 70 fF

Time resolution of Gaussian part:

682 − 502 ≃ (46 ± 2)ps

Time-walk correction

Time of Flight (time-walk corrected) non-Gaussian tail (≈10%) for TOF ≥ 100ps,

maybe due to e– from the 90Sr source

crossing the 10µm region between two pixels.

Requires to be investigated in a testbeam. 
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Time resolution vs. threshold

25

Gaussian fits

x

x  small pixel, HV = 190 V, PSI testbeam

arxiv:1908.09709,  submitted to JINST

50 ps

https://arxiv.org/abs/arxiv:1908.09709
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Time resolution vs. HV
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Gaussian fits
arxiv:1908.09709,  submitted to JINST

50 ps

https://arxiv.org/abs/arxiv:1908.09709
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Time resolution vs. HV

27

Gaussian fits

180 190 200

50 ps

small pixel S0, Cdet = 70 fF, 260 MeV/c pions

(preliminary)

Beam test at PSI
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CADENCE simulation

28

Signal in the hexagonal small pixels:

minimal threshold used (20 mV from baseline)

4.0 5.0 6.0 7.0 8.0 9.0

V [V]

[ns]
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Next steps

29



Lorenzo Paolozzi  VERTEX 2019

CONCLUSIONS

• Timing capability of silicon still to be fully exploited

• SiGe HBT allows for low-noise and fast amplifiers and picosecond readout

• Monolithic ASICs in IHP 130nm SiGe processes without internal gain provided 

‣ full efficiency

‣ excellent time resolution:   220 → 115 → 50 ps RMS

30

→ ???
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Publications and patents

31

Articles:
•Hexagonal small-area pixels arxiv:1908.09709,  submitted to JINST                     

•TT-PET demonstrator chip testbeam: JINST 14 (2019) P02009, https://doi.org/10.1088/1748-0221/14/02/P02009

•TT-PET demonstrator chip design: JINST 14 (2019) P07013, https://doi.org/10.1088/1748-0221/14/07/P07013

•First TT-PET prototype JINST 13 (2017) P02015, https://doi.org/10.1088/1748-0221/13/04/P04015

•Proof-of-concept amplifier JINST 11 (2016) P03011, https://doi.org/10.1088/1748-0221/11/03/P03011

•TT-PET engineering: arxiv:1812.00788

•TT-PET simulation & performance: arxiv:1811.12381

Patents:
•PLL-less TDC & synchronisation System: EU Patent EP18181123.3 
•Picosecond Avalanche Detector (pending): EU Patent Application EP18207008.6

https://arxiv.org/abs/arxiv:1908.09709
https://doi.org/10.1088/1748-0221/14/02/P02009
https://doi.org/10.1088/1748-0221/14/07/P07013
https://doi.org/10.1088/1748-0221/13/04/P04015
https://doi.org/10.1088/1748-0221/11/03/P03011
https://arxiv.org/abs/1812.00788
https://arxiv.org/abs/1811.12381
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Extra Material
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Performance of our present electronics 

33

Frontend ENC (CADENCE simulation): 

80 e– RMS  for Cin = 50 fF  and  Gain = 30    ⟹ σtime = 4 ps

We are working on new version of FE electronics and on a ps TDC

CADENCE Spectre
simulation

(IHP SG13G2)

Towards 1 ps time resolution: SiGe electronics
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Towards 1 ps time resolution: Landau noise

Landau fluctuations of the 

charge deposition constitute 

an irreducible effect of 

standard PN-junction sensors

34

+HV

GND

𝒆−

𝒉+

Ionizing particle

𝐼𝑖𝑛𝑑 ≅ 𝑣𝑑𝑟𝑖𝑓𝑡
1

𝐷
∑
𝑖
𝑞𝑖

Need for a novel silicon sensor to go beyond this        ⟹
R
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]

Gain

N. Cartiglia et al., NIM A 924 (2019) 350-354  
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Towards 1 ps time resolution

We designed a new sensor, the

35

PicoAD: Picosecond Avalanche Detector

Patent pending (EP 18207008.6)
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One order of magnitude better than present best results

36
LGAD read out by our SiGe HBT 

ultra-fast low-noise electronics
PicoAD

GEANT4 + TCAD + CADENCE Spectre simulation

The PicoAD time resolution
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Bipolar transistors for fast low-noise amplifiers

37

BJT technology: can provide a fast integrator that minimises series 

noise

⬇︎
to produce fast and low-noise amplifiers

E. Gatti, P. F. Manfredi, Processing the Signals from Solid-
State Detectors in Elementary-Particle Physics, rivista del 
Nuovo Cimento Vol. 9, No. 1 (1986).

It is known since a long time that for BJT technology
the Equivalent Noise Charge (ENC) depends on the

capacitance Ctot and the integration time 𝜏 as follows:

𝐸𝑁𝐶 = 𝑘1 ⋅ 𝜏 + 𝑘2 ⋅
𝐶𝑡𝑜𝑡
2

𝜏
+ 𝑘3𝐶𝑡𝑜𝑡

2

dominating term: 
series noise

1/f noiseparallel
noise
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CAVEAT 2:   TOT distribution

38
Mitigation measure: introduction of trigger signals in a differential configuration

This modulation of the TOT distribution degrades the time-walk 

correction, and therefore the time resolution

It was found that the single-ended digital trigger signal affected the 

grounding of the pixel matrix and induced a small residual noise. 

Consequence: the TOT distributions show peaks, with time difference 

between peaks caused by the delay of the fast-OR line. 
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• These two caveats are fixed in a new chip, that 
we just received back from IHP.

• The chip contains also front-end test structures:

‣ peak-sensing fast ADC

‣ higher gain pre-amp

‣ new differential driver

39
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Noise rates

40

Measured noise rates agree well with CADENCE Spectre simulation

Large pixels (220 fF) Small pixels (70 fF)

σV = 4.0 mVσV = 4.7 mV
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55Fe and 109Cd source calibrations

41
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Time resolution vs. power consumption

42

fT depends on the collector current Ic
(that is proportional to the power: P = Ic∙Vcc)

The charge gain can be written as:

𝐴𝑄 =
1

𝐶𝑓 +
𝐶𝑑𝑒𝑡
|𝐴𝑉|

In our case, the capacitance Cf between the Base and the Collector of the HBT is 

much smaller than the detector capacitance:      Cdet/|AV|  ≫ Cf

Therefore, since AV is proportional to fT:

larger power  ⟹ larger fT ⟹ larger AV ⟹ smaller ratio Cdet/|AV|  ⟹ higher AQ

From Chenming Hu: Modern Semiconductor Devices for Integrated Circuits, Pearson Ed.
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150, 2.5

150, 1.2

50, 1.2

20, 1.2
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Improvement of time walk correction

Present prototypes New technique


