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Scientific framework
— Dark Matter

— Direct Detection

DAMIC Experiment

— DAMIC at SNOLAB
— CCDs as Dark Matter Detectors

DAMIC—M DAMIC at Modane

working to achieve single electron resolution and a background level lower than 0.1 dru
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DAMIC Experiment

DM Direct Detection

SIGNAL:

scattering off nuclei

— The standard WIMP paradigm
- 1-1000 GeV DM masses

- 1-100 keV recoil energy

scattering off electrons

— Asin the case of a dark photon
- 1-1000 MeV DM masses
- 1-10 eV recoil energy

The measure of this rare events requires EXTREMELY LOW Backgrounds:
electromagnetic radiation, neutrons, alpha particles, neutrinos

cosmic rays and secondary/tertiary particles: deep underground laboratories

Radon (222Rn) decays in air: passive shields Pb, polyethylere, ...

alpha particles: 210Pb decays at the detector surfaces, nuclear recoils from the Rn daughters

< Collider
production
X q A
M &
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Freeze-out, >

indirect detection

external/internal radioactivity: 235U, 25Th, 9K, eCo, ®Ar, 137Cs, ... decays in the detector materials, target medium, shields
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DAMIC

at ONOLAB currently taking data

(Vale Creighton Mine located near Sudbury, Ontario, Canada)

Installed Dec 2012
at ~2 km underground, J-Drift Hall
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DAMIC

polyethylene

rk Matter In CCDs

Current detector configuration:
7CCDs in stable data tacking since 2017

1 CCD sandwiched in ancient lead
in SNOLAB, we have set up a DAMIC

experiment under 2km of rock (muon fl
4k pixels,
15x15 microns

reduced by ~5 orders of magnitude).

We then shielded the CCDs using

- ancient lead to stop gammas

Kapton
signal cable

- polyethylene layer (~42cm) to stop
neutrons

Cu box
with C

- a layer of low radioactive lead (~21cm)
to stop gammas

Cu Vacum
vessel

We currently have background reading
around ~11,8 dru (events/keV/kg/day).
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DAMIC
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CCDS as Dark Matter Detectors
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CCDS asS Darl{ Matter exposure
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DAMIC at SNOLAB =

P DArl{ Matter In CCDS

- Conventional 3-phase, triple polysilicon gate CCD, n-type substrate
— 7 CCDs in stable data taking since 2017

— 40 g target mass
16 mega pixels, each individual pixel is 15 microns square
675 microns thick

- Extremely pure silicon ~1011 donors/cm-3, which leads to fully depleted operation
at reasonably low values of the applied bias voltage, ~40V

— Operating temperature of ~140 K (to minimize dark current)

- Conventional floating diffusion amplifiers, and p-channel MOFSETs are used for
reset and amplification

- Slow readout time, to minimize read noise

Major Achievements:
- Exquisite spatial resolution: unique background characterization and rejection

— Lowest Dark Current ever measured in a Silicon detector:
5x1022 A/cmz, <0.001 e/pixel/day (at 140K)

- Resolution of 2e- achieved at SNOLAB
— Best results for DM scattering with masses <5MeV/c?

Pixel Charge Distribution

10?

10

[T T I\IHIl

-26 -13 0 13 26
Energy / eV

DAMIC-M

upgrade of DAMIC at Modane

will feature single electron resolution
allowing for detection thresholds of 2-3 e-
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CCDS as Dark Matter Detectors

The silicon bulk of the CCD is used as target to interact with dark matter candidates. From this interaction we expect
charge carriers to form within the bulk and we collect and count the number of carriers in each pixel. It is a direct
detection apparatus for dark matter.,

y Interaction with silicon produces free
“"‘"‘-..

CCh charge carries...
=

e drifted across fully-depleted region
— very little loss of charge
e collected in 15 micron square pixels

— exceptional position resolution
e stored until a user-defined readout time

CCD pixel cross-sectional diagram

after many hours

~— 15,m —> — large exposures
Silicon has lower energy threshold The method of read-out can be optimized to
Silicon band-gap: 1.2 eV improve read-out noise at the cost of read-out time

Mean energy for 1 e-h pair: 3.8 eV 6/25



Calibration and Energy Resolution

 Energy calibration using a O, Al,
Si, Cr, Mn, and Fe x-ray lines

very nice linearity response of the CCDs down to 40eV

-~ 1.08: : :

3 1-06 5% linearity Forays  Amplifiers measure amount of charge in ADU
: 1.0af (LED Source) —e— Optical photons

2 .02 0O AlS; Cr Mn Fe « Conversion factor k (ke V,/ADU) calibrated
- 1pmeomees +H """""""""""" Ooomme Co o LAt using X-ray emission lines

__ 0.98F

TT 0.96F e k is constant over the energy range we are

10" 1 10 interested in

Ionization signal [keV_]
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Nuclear Recoil Efficiency

To characterize a potential DM signal is very important to know the relation between the energy deposited b
recoiling nucleus in the form of ionization E, and the nucleus kinetic energy E..

Calibrations at low energies with low-E neutrons from a 124Sn-sBe photo-neutron source down to 0.7 keV ...

How to: nucleus from the source (monochromatic neutron flux of 24keV) elastically scatter off silicon nuclei; the subsequent nuclear recoils deposit
their kinetic energy in the silicon bulk within 10 nm, producing signals that mimic those expected from WIMP interactions.
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Depth Reconstruction

Muons tracks (at grouncl level) allows measurements of diffussion

Muon track: CCD top view

' DAMIC at SNOLAB Diffusion Model
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Background Characterization

Particle Identification

421

As charges drift across the CCD, they experience lateral thermal motion SR etee

(diffusion) proportional to vertical distance traveled (depth)

Above 1keV, the event profile can identify the progenitor ...

1890

, 1880[
.g‘ B
Xeray! S—=—oo | . " o.
n, WIMP? ) 1e70f
lefusmn ) .
i‘: € l IlmitEd 0. 1860_
m L
2 0.
(a8 $
B
E o aCk 0. 8280 8290 8300 8310 8320
o L
0.
LI [ ] a
Front 0. - B
i, Y 0.
5 10 15 210 25 30
Energy measure d by pixel / keV ‘ | | | | l

8 10 12 14 16
Energy / MeV 10/25



Background Characterization

Background Characterization and Rejection
210Pb (from radon) and 3:Si (cosmogenic) are backgrounds that are very {f I
hard to estimate and must be demonstrated to be low (or able to be rejected) e

> Ep =717 keV

for any proposed dark matter search in Si without electron rejection.
> E,=3.62 MeV

210pp > 219Bj (5() » 219Pg » At=323d
64keV 1.2MeV
2SI » 2P (l4d)  » 2S .
0.22MeV (14d) 1.7MeV 32Si B4
1070 ,_II-, rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr %
- 3 alphas at the same location consistent with a sequence from 232Th - o
E=5.4MeV E=6.8 MeV E“=8m8MeV , o
> Egr=110 keV
> Eg,= 361 keV
> At=11.7d

11/25

L 1 L L
6054 6056 6058 6060 6062 6064 6066 ¢ ﬁsa50506052605'6055605560506062505&5056 '
1 At=17.8d 2 At=5.5h




Scientific Reach
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Light dark matter — electron scattering
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DAMIC-M will be sensitive to light dark matter even if these candidates constitute only a small fraction of the total DM in the univ%'l%éZS



DAMIC-M

DAMIC at Modane (2022)

As of 2018 a new collaboration called DAMIC at Modane has been established. The goal of DAMIC-
M is to operate a DAMIC experiment at Laboratoire Souterrain de Modane (LSM) with a single
electron resolution with a background level of 0.1 dru.

Ongoing R&D for DAMIC-M:

v To achieve single electron resolution

X To better characterize the background level, and reduce to 0.1 dru
X To select the best skipper amplifiers

- to finally go for production
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DAMIC-M

Laboratoire Souterrain de Modane

ITALY @ FRANCE

Fréjus road tunnel

Main hall

- Refuge
Entrance hall
Services:

electricity, ventilation,
air conditioning

>« DAMIC-M (2)
) HPGe room 1

Frejus Peak
Altitude 2932m
FRANCE

Tunnel routier de Fréjus

ITALIE

Altitude
1228m

Distance O m
N




DAMIC-M

CCD Shielding Preliminary Design

= 50 CCDs (kg-size target mass)
= Most massive CCDs ever built (>10 g each) Cryostat with
CCD tower

= Single electron resolution with skipper readout
(demostrated by Fermilab SENSEI group)

= A fraction of dru (events/kg/keV/day) background
= Classical design (Ge detectors and DAMIC at SNOLAB)
® R&D and design up to 2021

® Construction 2022
® Installation in 2023



DAMIC-M

Background model from SNOLAB

4 ard

B CCD Activation
B Getter Tritium

m Surface Pb-
210

Copper Box

* 20% of background comes from 3H
production from silicon activation

* 20% of background comes from tritium in
the getter
Modules

B Copper Vessel

WFlex Cable
mANcient Lead

* 20% of background comes from 210Pb

11.8 dru total
* 20% of background comes from OFC copper

* ...remaining 20% comes from a mixed bag
of detector materials (mostly kapton
cabling)
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DAMIC-M

Challenging goal: 0.1 dru  o.1dn

1 o

v Tritium - will shield silicon to eliminate activation
backgrounds and remove getter hydrogen

v Surface 219Pb - will properly clean all surfaces and control
exposure to radon

B CCD Activation
B Getter Tritium

m Surface Pb-
210

Copper Box

v Copper - will electrofrom all components near CCD and
shield from activation

X Cable - extensive research ongoing into clean cable and

connector options
Modules

B Copper Vessel
mFlex Cable
WAncient Lead

x Other (<1 dru) - need to better measure component
activities (ongoing)

Removes ALL known backgrounds that we
expected to contribute > 1 dru.

- Working now to better understand the
contributions down to 0.1 dru
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DAMIC-M

CCD Transportation

cosmic ray neutrons

CCDs are fabricated by Teledyne DALSA in Canada.

The wafers and CCDs will be shipped by sea in a custom-made
shielded container.

To minimize the radioimpurity from muon spallation, all (inclyding
electroformed cooper) will be transported under a heavy iron
shielding cavity.

This shielding reduces tritium cosmogenic activation by a factor ~25.

(8-10 days transatlantic journey)
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DAMIC-M

Designed by S. Holland (LBNL), fabricated by Teledyne DALSA

CCD prototype

Three CCDs per 6” wafer to test different skipper readout amplifier design.

6k x 6k CCD on 150 mm wafer
675 um thick
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DAMIC-M CCD Packaging

1k x 6k DAMIC-M prototype CCDs

Improvement of packaging procedures originally developed
for DAMIC at SNOLAB, notably by reducing the curing (and
potential exposure of CCDs to radon) from a day to few hours

glueing flex on a silicon
substrate
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CCD

We are also pursuing with AXON a solution employing
picocoaxial cables (low-background demonstrated by
MAJORANA).

Both would fulfill our requirements for cables radio
purity

Low-Bacl{ground Cables

Flex cable R&D
Minimize mass close to CCD

Develop clean fabrication procedures for
multilayer flex (PNNL)
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DAMIC-M

Charge Coupled Device

Charge Transfer
through the CCD
?1
B2
8 —o |

+ >

< |

+ >
+ >

< !
< 1

+V

clockl/gate voltages

Metal gate

Si oxide (insulator)
p-type Si
(buried channel)

n-type Si

\e-h pairs generate

or ionizing particle

Charge
motion

\J

—> output —»

Charge
motion

| amplifier

VREF VD
Summing Transfer Rese
Well te _¢ Outpu
1 X® coi] e
...... Video Out
e - —C
' Load
Resistor

Correlated Double Sampling

0.06

f->-~ ‘
e R pixel 1 R pixel 2
= 0.05}
&
2 f
S 0.04}
=
> 0.03
0.02
T T
0.01
] \\ reference signal refercnee i
0.00 } ‘ signal
—0.01 \[
C C
-0.02 L L )
0 20 40 &0 80

1? g) e/aé;ﬂ



DAMIC-M

clockl/gate voltages
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DAMI C- M clock/gate voltages
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DAMIC-M
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DAMI C- M clock/gate voltages

. Metal gate
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel,
since the FG is surrounded by highly resistive material, the

charge contained in it remains unchanged for long periods of
time.

Skipper amplifier

Noise dominated by the 1/f low frequency noise of the output
amplifier.

Non-destructive AV (charge) measurement (NDCM)!

Reference

avi i L
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H3 video
H2 DG
H1 — ﬂoating gate

-------

Effect on low frequency noise
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel,
since the FG is surrounded by highly resistive material, the
charge contained in it remains unchanged for long periods of
time.

Skipper amplifier

Skipper Charge Resolution
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amplifier.
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel,
since the FG is surrounded by highly resistive material, the
charge contained in it remains unchanged for long periods of
time.

Skipper amplifier

Noise dominated by the 1/f low frequency noise of the output
amplifier.

Non-destructive AV (charge) measurement (NDCM)!
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel,
since the FG is surrounded by highly resistive material, the
charge contained in it remains unchanged for long periods of
time.

Skipper amplifier

Noise dominated by the 1/f low frequency noise of the output
amplifier.

Non-destructive AV (charge) measurement (NDCM)!

Skipper Charge Resolution
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel,
since the FG is surrounded by highly resistive material, the
charge contained in it remains unchanged for long periods of
time.

Skipper amplifier

Skipper Charge Resolution
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel,
since the FG is surrounded by highly resistive material, the
charge contained in it remains unchanged for long periods of
time.

Skipper amplifier

Noise dominated by the 1/f low frequency noise of the output
amplifier.

Non-destructive AV (charge) measurement (NDCM)!
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DAMIC-M

The skipper amplifier utilizes floating gate for the output channel, Skipper Charge Resolution
since the FG is surrounded by highly resistive material, the
charge contained in it remains unchanged for long periods of
time.

Skipper amplifier
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Skipper amplifier

10

The skipper amplifier utilizes floating gate for the output channel, since
the FG is surrounded by highly resistive material, the charge
contained in it remains unchanged for long periods of time.

o = 0.07 e-
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Noise dominated by the 1/f low frequency noise of the output amplifier.
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DAMIC-M

Low Background Chamber

A low-background chamber (background level ~ dru)
is in preparation.

Main objective:

= Characterization of DAMIC-M CCDs in low-
background environment: dark current, 32Si
rate, 210Pb surface background, and CCD
packaging

® First science results with a few CCDs

Installation at LSM beginning of 2020
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Summary

= Silicon detectors are the most sensitive to ionizing particles
= They are microfabricated pixelated sensors, excellent for background characterizations

= All these, have been already demonstrated by DAMIC at SNOLAB: CCDs are an excellent
technology for dark matter direct detection.

= Repetitive, uncorrelated measurements of the pixel charges allow for single charge resolution

= Jonizing backgrounds must be really low to search for dark matter, and it is possible to reach
it with DAMIC-M

All make DAMIC-M a really competitive detector for dark matter direct detection.
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