

Recent depleted CMOS developments within the CERN-RD50 framework

Eva Vilella^{*}, on behalf of the CERN-RD50 collaboration

*University of Liverpool Department of Physics Oliver Lodge Laboratory Oxford Street Liverpool L69 7ZE

vilella@hep.ph.liv.ac.uk

- Depleted CMOS sensors have huge potential for future experiments in physics
- o **CERN-RD50 programme** to develop and study these sensors with high priority
- $\circ~$ The programme includes
 - → ASIC design
 - ➔ TCAD simulations
 - ➔ DAQ development
 - ➔ Performance evaluation
- o It involves
 - →~ 25 people
 - → ~ 12 institutes

RD50-MPW1 – Submission

RD50-MPW1 - General design details

- MPW in the 150 nm HV-CMOS process from LFoundry
- Submitted in November 2017 and received in April 2018
- $\circ~$ To gain expertise, test the process and test novel designs
- Fabricated using 2 different substrate resistivities

→ 500 Ω ·cm (40 samples) and 1.9k Ω ·cm (80 samples)

RD50-MPW1 – Chip contents

- **1)** Tests structures for e-TCT and C_{DET} measurements
- 2) Matrix of depleted CMOS pixels with 16-bit counter
 - → 26 x 52 pixels
 - → 75 μm x 75 μm pixel area
 - → For photon counting applications (proof-of-concept)
- 3) Matrix of depleted CMOS pixels with FE-I3 style readout
 - → 40 x 78 pixels
 - → 50 µm x 50 µm pixel area
 - \rightarrow For particle physics applications
- $\circ~$ Analog and digital readout embedded in the sensing area
- Completely independent matrices

UNIVERSITY OF LIVERPOOL

RD50-MPW1 – Pixel cross-section

- Large fill-factor pixel
- PSUB layer isolates NWELL from DNWELL

→ CMOS electronics in pixel area are possible

- $\circ~$ Detector capacitance has 2 contributions
 - → P-substrate/DNWELL
 - → PSUB/DNWELL
 - → Total capacitance ~ 250 fF
- $\circ~$ Equivalent Noise Charge (ENC) $^{\sim}$ 100 120 e $^{-}$

LIVERSITY OF

RD50-MPW1 – Pixel readout electronics

Analog readout

- o Sensor biasing circuit, CSA, RC-CR filters and CMOS comparator
- CSA with programmable discharging current
- $\circ~$ CMOS comparator with global V_{Th} and local 4-bit DAC for fine tuning

Digital readout

- Column drain readout (synchronous, triggerless, hit flag + priority encoding)
- Global 8-bit Gray encoded time-stamp (40 MHz)
 - For each hit \rightarrow Leading edge (LE): 8-bit DRAM memory \int ToT = LE TE
 - ➔ Trailing edge (TE): 8-bit DRAM memory
 - → Address (ADDR): 6-bit ROM memory

0

(off-chip)

RD50-MPW1 – Pixel readout electronics

RD50-MPW1 – Readout architecture

- Time-stamp (LE + TE) and pixel address (ADDR) are stored in End Of Column (EOC) circuit
- If > 1 hits in the same column
 - Pixel with hit flag = '1' and largest address is read out first (hit flag and priority encoding)

LVDS

LVDS

clk640MHz

Shift register with 78 EOC circuits (one EOC per column) @ 40 MHz

R. Casanova, TWEPP 2019

- **Continuous readout sequence:**
 - LE, TE and ADDR of the hit pixel with hit flag = '1' and highest priority stored in EOC (1 clock cycle)
 - 2) CU reads sequentially the data stored in each EOC @ 40 MHz (78 clock cycles)
 - 3) Serializers send data off-chip @ max. speed of 640 MHz

RD50-MPW1 – Measurements

eTCT measurements to study sensor depletion region

 Samples irradiated at TRIGA reactor in Ljubljana to several different n-fluences ranging from 1E13 to 2E15 n_{eq}/cm²

o <u>Test structure</u>

- → 3 x 3 pixels matrix without readout electronics
- ➔ Central pixel to read out
- ➔ Outer pixels connected together
- ➔ Pixel size is 50 μm x 50 μm

Depletion depth changes with irradiation + acceptor removal effects seen

RD50-MPW1 – Experimental set-ups

2 experimental set-ups available

- o RD50-MPW1
- Babyboard/chip board
- Standalone PCB/Caribou
- $\circ~$ Adaptor card and/or FMC
- Xilinx ZC706 FPGA board
- User interface

RD50-MPW1 – Measurements

Hit map – Test pulse injection

- Test pulse injection to one selected pixel (before irradiation)
 - \rightarrow V_{test} = 1.5 V (square pulse)
 - \rightarrow 25 times per pixel
- Matrix readout
- \circ Expected result \rightarrow 25 hits from each pixel
- \circ Reality
 - \rightarrow > 25 hits from each pixel
 - → There is crosstalk (address lines) + a few inefficient pixels
- $\circ~$ Doing new chip simulations to understand this problem

F. Förster, RD50 WS 2019 R. Casanova, TWEPP 2019

RD50-MPW1 – Measurements

<u>Hit map – Sr90</u>

- Sr90 source placed on the centre of the matrix
 - → The matrix is small (~ 4 mm x 2 mm)
- Expected result → Uniform matrix
- \circ Reality \rightarrow Left / right asymmetry
- $\circ~$ Studying possible voltage drops in the matrix

F. Förster, RD50 WS 2019 R. Casanova, TWEPP 2019

UNIVERSITY OF LIVERPOOL

RD50-MPW1 – Measurements

I-V curve

- $\circ~$ I-V of central pixel of test structure (pixel size is 50 μm x 50 μm)
- Measurement done using a probe station with sensor in complete darkness
- $\circ~V_{BD}^{~}$ 55-60 V as expected from the design
- $\circ~~I_{\text{LEAK}}$ is too high (µA order well before V_{BD})
- This issue has been extensively studied: <u>TCAD</u> + <u>support from the foundry</u>
- Methodologies to optimize leakage current in *new prototype RD50-MPW2*

UNIVERSITY OF LIVERPOOL

Post-processing – Lessons learned

- LFoundry adds structures to the design files to prepare them for fabrication.
- These structures (in the pixels, peripheral readout electronics, I/O pads, etc.) involve conductive material.
- We believe these structures **contribute quite significantly to the high I**LEAK.

- We have <u>minimised the presence of these structures</u> as much as possible to minimize I_{I FAK} in RD50-MPW2.
- Wherever not possible, LFoundry suggested placing these structures inside a PWELL.

Post-processing – TCAD simulations

Electron current density in pad diodes

Post-processing – TCAD simulations

- Simulated leakage current for pad diodes.
- $\circ~$ Increase in I_{LEAK} when conductive material is present on the surface (RD50-MPW1).
- $\circ~$ I_{LEAK} is reduced when conductive material is placed in PWELL (RD50-MPW2).

- <u>N-type guard ring</u> added as safeguard to "collect" leakage current.
- **<u>P-type guard rings</u>** added to reduce "lateral" depletion.

- <u>N-type guard ring</u> added as safeguard to "collect" leakage current.
- <u>P-type guard rings</u> added to reduce "lateral" depletion.
- **PSUB** added below P-type guard rings to further reduce "lateral" depletion.

LIVERSITY OF

Edge defects – TCAD simulations

- 1) Without defects (ideal case).
- 2) With defects and no guard rings.
- 3) With defects, and NWELL and PWELL guard rings.
- 4) With defects, and NWELL and PWELL with PSUB guard rings.

Edge defects – TCAD simulations

2D50

RD50-MPW2 – Submission

RD50-MPW2 - General design details

- MPW in the **150 nm HV-CMOS process from LFoundry**
- Submitted in January 2019 (dies expected in December)
- $\circ~$ To implement methods to minimize the leakage current
- Fabricated using 4 different substrate resistivities
 - 10 Ω·cm (80 samples), 100 Ω·cm (80 samples),
 1.9k Ω·cm (80 samples) and 3k Ω·cm (80 samples)

RD50-MPW2 – Chip contents

- 1) Tests structures with depleted CMOS pixels
- 2) Matrix of depleted CMOS pixels with analog readout
 - → 8 x 8 pixels
 - → 60 μm x 60 μm pixel area
 - \rightarrow Analog readout embedded in the sensing area
 - → Aimed at improving the amplifier response rate
- 3) SEU tolerant memory array
- 4) Bandgap reference voltage
- 5) Test structures with SPADs and depleted CMOS pixels
- $\circ~$ New methodologies to minimize leakage current

RD50-MPW2 – Matrix of depleted CMOS pixels

Pixel flavour with continuous reset – Analog readout

- Sensor biasing circuit, CSA, RC-CR filters and CMOS comparator
- CSA with programmable discharging current (IFB_CONT)
- $\circ~$ CMOS comparator with global V_{Th} and local 4-bit DAC for fine tuning
- $\circ~$ Very detailed design to minimize rising/falling edges of sensor amplifier
 - → Falling edge controlled by C_{FB} and I_{FB_CONT}
 - → I_{FB_CONT} is constant for linear discharge (ToT is possible)

E. Vilella (Uni. Liverpool) – VERTEX, Lopud Island (Croatia)

UNIVERSITY OF LIVERPOOL

RD50-MPW2 – Pixel readout electronics

Pixel flavour with switched reset – Analog readout

- Sensor biasing circuit, CSA, RC-CR filters and CMOS comparator
- CSA with programmable discharging current (I_{FB_CONT}) + extra current upon particle hit controlled by switch / comparator output (I_{FB_SW})
- $\circ~$ Very detailed design to minimize rising/falling edges of sensor amplifier
 - \rightarrow Falling edge controlled by C_{FB} and I_{FB_CONT} + I_{FB_SW}
 - → Total discharging current is not constant for immediate discharge (ToA is possible)

RD50-MPW2 – Pixel readout electronics

Continuous reset

- o Linear discharge
- Fall time proportional to the number of e⁻ collected by the sensor
- Time-walk = 7 ns

- o Non-linear discharge
- Fall time NOT proportional to the number of e⁻ collected by the sensor
- \circ Time-walk = 6 ns

C. Zhang, TWEPP 2019

UNIVERSITY OF LIVERPOOL

New pixel flavour – Sampling pixel

- <u>Aim</u>: Minimize the time-walk.
- <u>Time-walk</u>: Time difference in the detection of events that generate smaller or larger signals.
- A few methods for on-chip time-walk correction in depleted CMOS sensors developed already (compensated comparator, 2-thresholds, etc.).
- \circ Best result so far found in the literature is ~ 6 ns.
- Schematic of sampling pixel:

- Programmable chain delay to sample a few points of SF signal (i.e. 5)
- Analog memories to store the voltage values
- Off-chip ADCs
- Off-chip processing to determine t₀ (time of event)

D50

New pixel flavour – Sampling pixel

O. Alonso, LCWS 2018 S. Moreno, TWEPP 2019

- Best achieved time resolution with the sampling pixel is ~ 2 ns.
- Proof-of-concept pixel submitted in June 2019 (dies expected in spring 2020).

- <u>CERN-RD50 programme</u> to develop and study <u>depleted CMOS sensors</u>
- $\circ~$ This programme includes
 - →ASIC design
 - ➔TCAD simulations
 - ➔DAQ development
 - ➔ Performance evaluation
- We have developed 2 MPW prototypes (RD50-MPW1, RD50-MPW2) already with
 - → Small pixel sizes
 - ➔Optimized leakage current and radiation tolerance
 - →Improved response rate and time-walk
- We have plans to continue developing depleted CMOS sensors within our collaboration

Back up slides

Pixel geometry – TCAD simulations

<u>3D simulations</u> – <u>Electric field as a function of corner geometry in pixel</u>

LIVERSITY OF

RD50-MPW2 – Test structures 1)

Matrices of 3 x 3 depleted CMOS pixels

- For I-V and e-TCT measurements
- Very similar to other test structures used in the past
- $\circ~$ 8 external pixels are shorted together
- $\circ~$ I/O pads for central and external pixels
- $\circ~$ No electronics in the pixels
- $\circ~$ No electronics in the I/O pads
- a) Pixel size \rightarrow 50 µm x 50 µm P-substrate/deep n-well spacing \rightarrow 3 µm Corners \rightarrow rounded
- **b)** Pixel size \rightarrow 60 μ m x 60 μ m
 - P-substrate/deep n-well spacing \rightarrow 8 µm Corners \rightarrow rounded
 - c) Pixel size \rightarrow 60 µm x 60 µm P-substrate/deep n-well spacing \rightarrow 8 µm Corners \rightarrow chamfered
 - **d)** Pixel size \rightarrow 60 μm x 60 μm P-substrate/deep n-well spacing \rightarrow 8 μm

Corners → squared

-

RD50-MPW2 – Test structures 5)

e) <u>SPADs</u>

- 12 single diodes
- **Different cross-sections** \cap
- *Problematic* layers have been prevented Ο

Matrices of 3 x 3 depleted CMOS pixels f)

- To compare large and small FF pixels Ο
- Large and small FF pixels with different size: Ο
 - → 50 μm x 50 μm
 - → 75 μm x 75 μm
- To study the depletion region as a function of the collecting electrode size:
 - → 5 μm x 5 μm
 - → 10 μm x 10 μm
 - → 15 μm x 15 μm

To study the SEU tolerance of several memory cells by comparing them to the standard cell. The array has <u>8 different flavours</u>:

- **3.1)** Standard cell from the LFoundry library (latch cell)
 - It uses 8 transistors
- **3.2)** <u>DICE cell</u> (Dual Interlocked Storage Cell, full custom)
 - Special cell based on 2 cross-coupled inverters
 - It uses 12 transistors
 - Immunity against SEUs (non-simultaneous)
- 3.3) Enhanced DICE cell (full custom)
 - DICE cell with larger spacing between sensitive nodes
 - Immunity against simultaneous SEUs
- **3.4)** Standard cell with TRL (Triple Redundancy Logic)
 - With feedback correction driven by error detection
- 3.5) DICE cell (full custom) with TRL
- **3.6)** Standard cell with TRL and split latch
 - TRL split between 2 bits to separate sensitive nodes further
- 3.7) DICE cell (full custom) with TRL and split latch
- 3.8) <u>SRAM cell</u>
 - It uses 6 transistors

The memory array will be tested in sites like Leuven, Jyväskylä and Groningen.