Silicon tracking detector for space-borne experiments

Silicon microstrip detector

Spatial resolution driven by the pitch: strip pitch $25 - 200 \mu m$, readout pitch $100 - 300 \mu m$

Silicon microstrip detector

Spatial resolution driven by the pitch: strip pitch $25 - 200 \mu m$, readout pitch $100 - 300 \mu m$

The total Cosmic Ray flux

- Up to ~ 10²⁰ eV;
- Energy density \approx 1 eV / cm³;
- Luminosity, L > 10⁴⁰ erg/s;

$$\Phi(E)dE = kE^{-\gamma}dE \qquad \gamma \approx 2.6 - 2.7$$

- energies much higher than reachable at accelerators on ground;
- to investigate the spectral and chemical composition accurate detector ('a la particle physics') are needed;
- to reach higher energies, bigger and bigger detectors are needed;

Cosmic Rays flux and composition

Cosmic Rays flux and composition

Cosmic Rays flux and composition

The experimental challenge

The instrument we need has ...

- performance a la `particle physics':
 - high resolution measurements of momentum, velocity, charge and energy
- characteristics to properly access and work in space:
 - Vibration (6.8 G rms) and acceleration (17 G)
 - Temperature variation (day/night $\Delta T = 100$ °C)
 - Vacuum (10⁻¹⁰ Torr)
 - Orbital debris and micrometeorites
 - Radiation (Single Event Effect)
- limitation in
 - weight (15000 lb)
 - power (3KW), bandwidth and maintenance
- Compliant with EMI/EMC specs

exact stress numbers depend from the details of the mission, here AMS-02 values are reported

Tracking in space: Spectrometer vs Calorimeter

Magnetic spectrometer

Calorimetric detector

Spatial resolution: $3 - 10 \,\mu m$

Spatial resolution: 30 – 70 μm

(very) Simplified test flow-chart

DAMPE prototype test

- 3 mechanical and one electrical ladder prototypes mounted on the plane
- vibration test
- thermal cycling
- shock test
- Preliminary results:
 - electrical behaviour is unaffected by stress
 - Silicon detector 'move' by few microns

SERMS laboratory in Terni

DAMPE prototype test

if you are good enough you can break a detector ;-)

- 3 mechanical and one electrical ladder prototypes mounted on the plane
- vibration test
- thermal cycling
- shock test
- Preliminary results:
 - electrical behaviour is unaffected by stress
 - Silicon detector 'move' by few microns

Technology Readiness Level

Source: Adapted from NASA and Mankins (1995)

L3 Silicon Microvertex Detector at LEP (1993)

AMS-01 Silicon Tracker (1998)

Lightweight carbon fiber shell to hold the planes

- Aluminum honeycomb + carbon fiber reinforcement planes
- ✓ Front end electronics disposed vertically on the edge of the plane to save acceptance
- ✓ Thermal bars to dissipate the power on the magnet mass outside

G. Ambrosi, INFN Perugia

AMS-01 Silicon Tracker (1998)

Lightweight ca. shell to hold the p.

- Aluminum honeycomb + carbon fiber reinforcement planes
- ✓ Front end electronics disposed vertically on the edge of the plane to save acceptance
- ✓ Thermal bars to dissipate the power on the magnet mass outside

AMS-01 Silicon Tracker (1998)

Lightweight ca. shell to hold the p.

- Aluminum honeycomb + carbon fiber reinforcement planes
- ✓ Front end electronics disposed vertically on the edge of the plane to save acceptance
- ✓ Thermal bars to dissipate the power on the magnet mass outside

Space:

HEAO3-C2 (nuclei) < 40 GeV/n

Short missions (days)/ Larger payloads

AMS-01 on Discovery (8 days, 1998)

CRN on Challenger (3.5 days 1985)

Long missions Large payloads

DAMPE

G. Ambrosi, INFN Perugia

VERTEX2019

AMS-02: A TeV precision, multipurpose spectrometer

25

25

RAM

MAGNET

The DAMPE detector

The DAMPE detector

AMS-02 Silicon Tracker (2011)

VERTEX2019

 μ ch 27.5 μm ut pitch 110 μm

The DAMPE Silicon TracKer (2015)

FERMI (2008)

strip pitch 230 μm readout pitch 230 μm

73 m² surface 9216 sensors 2304 ladders 221kchannels

LAUNCH!

Tracker signals and charge ID (AMS-02)

Tracker signals and charge ID (AMS-02)

AMS-02 noise behavior vs time

AMS-02 noise behavior vs time

DAMPE STK noise in 42 months

DAMPE STK noise in 42 months

FERMI noise time evolution

40

AMS tracking efficiency and resolution

implantation pitch is 25 μ m, readout pitch 100 μ m

\sim 5 μ m intrinsic position resolution after on-orbit alignment

DAMPE STK position resolution

implantation pitch is 121 μ m, readout pitch 242 μ m ~40 μ m intrinsic position resolution after on-orbit alignment

current experiments

All the current and past detectors are designed as 'telescopes': they're sensitive only to particles impinging from "the top" limited FoV → small acceptance

new paradigma: CALOCUBE

- Exploit the CR "isotropy" to maximize the effective geometrical factor, by using all the surface of the detector (aiming to reach $\Omega = 4\pi$)
- The calorimeter should be highly isotropic and homogeneous:
 - the needed <u>depth</u> of the calorimeter must be guaranteed for all the sides (i.e. cube, sphere, ...)
 - the <u>segmentation</u> of the calorimeter should be isotropic

Development in the framework of the CALCUBE INFN initiative

HERD: cosmic ray detector on board the China Space Station

HERD: cosmic ray detector on board the China Space Station (2026?)

PS + SiPM

@INFN Bari, Lecce, GSSI, Pavia

Silicon Track @INFN Perugia

Fiber Tracker @Univ. of Geneva

a Tracker for HERD

very preliminary design, work in progress

Lagrangian point 2: a nice place in space

(i) Ahttps://en.wikipedia.org/wiki/List_of_objects_at_Lagrangian_points

... ♡☆

tarted

L2 [edit]

L₂ is the Lagrangian point located approximately 1.5 million km from Earth in the direction opposite the Sun.

Past probes [edit]

- NASA's Wilkinson Microwave Anisotropy Probe (WMAP) observed the cosmic microwave background from 2001 until 2010. It was moved to a heliocentric orbit to avoid posing a hazard to future missions.
- NASA's WIND from November 2003 to April 2004. The spacecraft then went to Earth orbit, before heading to L1.
- The ESA Herschel Space Observatory exhausted its supply of liquid helium and was moved from the Lagrangian point in June 2013.
- At the end of its mission ESA's Planck spacecraft was put into a heliocentric orbit and passivated to prevent it from endangering any future missions.
- CNSA's Chang'e 2^[1] from August 2011 to April 2012. Chang'e 2 was then placed onto a heliocentric orbit that took it past the near-Earth asteroid 4179 Toutatis.

Present probes [edit]

• The ESA Gaia probe

Planned probes [edit]

- The joint Russian-German high-energy astrophysics observatory Spektr-RG
- The ESA Euclid mission, to better understand dark energy and dark matter by accurately measuring the acceleration of the universe.
- The joint NASA, ESA and CSA James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope (NGST)
- The ESA PLATO mission, which will find and characterize rocky exoplanets.
- The JAXA LiteBIRD mission.
- The NASA Wide Field Infrared Survey Telescope (WFIRST)
- The ESA ARIEL mission, which will observe the atmospheres of exoplanets.
- The ESA Advanced Telescope for High ENergy Astrophysics (ATHENA)
- The NASA Advanced Technology Large-Aperture Space Telescope, which would replace the Hubble Space Telescope and possibly the JWST.

Cancelled probes [edit]

- The ESA Eddington mission
- The NASA Terrestrial Planet Finder mission (may be placed in an Earth-trailing orbit instead)

.

Aladino

AntimatterLargeAcceptanceDetectorInOrbit

supercoducting coils: magnet

VERTEX2019

Aladino

AntimatterLargeAcceptanceDetectorInOrbit

supercoducting coils: magnet

G. Ambrosi, Manue for 60° incident angles

VERTEX2019

MDR > 20 TV

AMS-100

HEPD-02 tracker

ADVANTAGES Low fake hit rates Low cost Small pitch Thin detector LIMITS High power consumption Temperature control Increasing number of channels 5 years and ~5M for development

From microstrips to MAPS:

IPRD19, Siena Oct. 17

E. Ricci, R. luppa

PAN detector modules

• 5 tracker modules, 2 TOF modules, 2 pixel modules

- 2 StripX: 25 μm readout pitch, 150 μm thick, 2 μm resolution, to measure both bending radius and bending angle, 40k channels, total power budget 8W
- 1 stripY: 500 μm readout pitch, 150 μm thick, high dynamic range ASIC for Z = 1 26, trigger signal, time stamp (<100 ps resolution), 1k channels, total ~1 W
- TOF module
 - 3 mm thick scintillator, read out on all sides by SiPM: trigger, particle counter (max. ~10 MHz), charge measurement (Z = 1 -26), time (<100 ps), total ~1 W
- Pixel module
 - Avoid measurement degradation for high rate solar events
 - Issue to be resolved: total (static) power consumption ~2-4 W, for ~190 cm²

Conclusions

- Almost 100 m² of silicon tracking detector are taking data in orbit
- Silicon microstrip detector are playing a crucial role in running experiments:
 - tuning of spatial resolution vs power is simple (strip pitch)
 - excellent dE/dx measurement for ion identification
 - low power per active unit surface
- Although the technology is 'from last century' it is still optimal for future detector, of any dimension, in space!

Radiation 'hard' electronics

The problem are the SEE (Single Event Effect)

similar test on all active components current limit protection is present for all active components

AMS-01 1998

AMS-01 1998

VERTEX2019